Skip to main content

Acquisition of DXA in Children and Adolescents

  • Chapter
Bone Densitometry in Growing Patients

Abstract

The aim of this chapter is to provide the operator with the basic information required to achieve a good-quality dual-energy x-ray absorptiometry (DXA) scan. Topics such as patient preparation, standard scan acquisition, and typical acquisition problems are discussed. This information is intended to supplement instructions provided in operator manuals and individual department protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koo WWK, Massom LR, Walters J. Validation of accuracy and precision of dual energy x-ray absorptiometry for infants. J Bone Miner Res 1995;10:1111–1115.

    PubMed  CAS  Google Scholar 

  2. Wang J, Thorton J, Horlick M, et al. Dual x-ray absorptiometry in pediatric studies. J Clin Densitom 1999;2:135–141.

    Article  PubMed  CAS  Google Scholar 

  3. Picaud J-C, Duboeuf F, Vey-Marty B, et al. First all-solid pediatric phantom for dual-x-ray absorptiometry measurements in infants. J Clin Densitom 2003;6:17–23.

    Article  PubMed  Google Scholar 

  4. Laskey MA. The influence of tissue depth and composition on the performance of the lunar dual-energy x-ray absorptiometer whole-body scanning mode. Eur J Clin Nutr 1992;46:39–45.

    PubMed  CAS  Google Scholar 

  5. Zemel BS, Leonard MB, Kalkwarf HJ, et al. Reference data for the whole body, lumbar spine and proximal femur for American children relative to age, gender and body size. (Abstract). J Bone Miner Res 2004;19(Suppl1):SU112.

    Google Scholar 

  6. Del Rio L, Carrascosa A, Pons F, Gussinye M, Yeste D, Domenech FM. Bone mineral density of the lumbar spine in white Mediterranean Spanish children and adolescents: changes related to age, sex, and puberty. Pediatr Res 1994;35:362–366.

    Article  PubMed  Google Scholar 

  7. Zanchetta JR, Plotkin H, Alvarez-Filgueira ML. Bone mass in children: normative values for the 2–20 year old population. Bone 1995;16:393S–99S.

    PubMed  CAS  Google Scholar 

  8. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 1991;73:555–563.

    Article  PubMed  CAS  Google Scholar 

  9. Boot AM, De Ridder MAJ, Pols HAP, Krenning EP, De Muinck Keizer-Schrama SMPF. Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab 1997;82:57–62.

    Article  PubMed  CAS  Google Scholar 

  10. Faulkner RA, Bailey DA, Drinkwater DT, Wilkinson AA, Houston CS, McKay HA. Regional and total body bone mineral content, bone mineral density and total body tissue composition in children 8–16 years of age. Calcif Tissue Int 1993;53:7–12.

    Article  PubMed  CAS  Google Scholar 

  11. Arikoski P, Komulainen J, Kroger L, Kroger H. Lumbar bone mineral density in normal subjects aged 3–6 years: a prospective study. Acta Paediatr 2002;91:287–291.

    Article  PubMed  CAS  Google Scholar 

  12. Bachrach LK, Hastie T, Wang M-C, Narasimhan B, Marcus R. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study J Clin Endocrinol Metab 1999;84:4702–4712.

    Article  PubMed  CAS  Google Scholar 

  13. Bailey DA. The Saskatchewan pediatric bone mineral accrual study: bone mineral acquisition during the growing years. Int J Sports Med 1997;18:S191–194.

    Article  PubMed  Google Scholar 

  14. Binkley TL, Specker BL, Wittig TA. Centile curves for bone densitometry measurements in healthy males and females aged 5–22 years. J Clin Densitom 2002;5:343–353.

    Article  PubMed  Google Scholar 

  15. De Schepper J, Derde MP, Van den Broeck M, Piepsz A, Jonckheer MH. Normative data for lumbar spine bone mineral content in children: influence of age, height, weight, and pubertal stage. J Nucl Med 1991;32:216–220.

    PubMed  Google Scholar 

  16. DePriester JA, Cole TJ, Bishop NJ. Bone growth and mineraliation in children aged 4 to 10 years. Bone Miner 1991;12:57–65.

    Article  PubMed  CAS  Google Scholar 

  17. Drake AJ, Armstrong DW, Shakir KMM. Bone mineral density and total body bone mineral content in 18-to 22-year-old women. Bone 2004;34:1037–1043.

    Article  PubMed  Google Scholar 

  18. Kroger H, Kotaniemi A, Kroger L, Alhava E. Development of bone mass and bone density of the spine and femoral neck. A prospective study of 65 children and adolescents. Bone Miner 1993;23:171–182.

    Article  PubMed  CAS  Google Scholar 

  19. Lazcano-Ponce E, Tamayo J, Cruz-Valdez A, et al. Peak bone mineral determinants among females aged 9 to 24 years in mexico. Osteoporos Int 2003;14:539–547.

    Article  PubMed  Google Scholar 

  20. Magarey AM, Boulton TJC, Chatterton BE, Schultz C, Nordin BEC, Cockington RA. Bone growth from 11–17 years: relationship to growth, gender and changes with pubertal status including timing of menarch. Acta Paediatr 1999;88:139–146.

    Article  PubMed  CAS  Google Scholar 

  21. Ponder SW, McCormick DP, Fawcett D, Palmer JL, McKernan MG. Spinal bone mineral density in children aged 5 through 11.99 years. Amer J Dis Children 1990;144:1346–1348.

    CAS  Google Scholar 

  22. Sabatier J-P, Guaydier-Souquieres G, Laroche D, et al. Bone mineral acquisition during adolescence and early adulthood: a study in 574 healthy 10–24 years of age. Osteoporos Int. 1996;6:141–148

    Article  PubMed  CAS  Google Scholar 

  23. Unsi-Rasi K, Haapasalo H, Kannus P, et al. Determinants of bone mineralization in 8 to 20 year old Finnish females. Eur J Clin Nutr 1997;51:54–59.

    Article  Google Scholar 

  24. van der Sluis IM, De Ridder MAJ, Boot AM, Krenning EP, De Muinck Keizer-Schrama SMPF. Reference data for bone mineral density and body composition measured with dual energy x-ray absorptiometry in white children and young adults. Arch Dis Child 2002;87:341–347.

    Article  PubMed  Google Scholar 

  25. Wen Lu P, Cowell CT, Lloyd-Jones SA, Briody JN, Howman-Giles R. Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 1996;81:1586–1590.

    Article  Google Scholar 

  26. Specker B, Wosje K. A critical appraisal of the evidence relating calcium and dairy intake to bone health early in life, in Burkhardt P, Dawson-Hughes B, Heaney R, eds. Nutritional Aspects of Osteoporosis, San Diego: Academic, 2001;107–123.

    Google Scholar 

  27. Lu WP, Briody JN, Ogle GD, et al. Bone mineral density of total body: spine femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res 1994;9:1451–1458.

    PubMed  CAS  Google Scholar 

  28. Mazess RB, Barden HS. Evaluation of differences between fan-beam and pencil-beam densitometers. Calcif Tissue Int 2000;67:291–296.

    Article  PubMed  CAS  Google Scholar 

  29. Kiebzak GM, Leamy LJ, Pierson LM, Nord RH, Zhang ZY. Measurement precision of body composition variables using the Lunar DPX-l densitometer. J Clin Densitom 2000;3:35–41.

    Article  PubMed  CAS  Google Scholar 

  30. Lark RK, Henderson RC, Renner JB, et al. Dual energy x-ray absorptiometry assessment of body composition in children with altered body posture. J Clin Densitom 2001;4(4):325–335.

    Article  PubMed  Google Scholar 

  31. Van der Meulen CMH, Moro M, Kiratli BJ, Marcus R, Bachrach LK. Mechanobiology of femoral neck structure during adolescence. J Rehab Res Devel 2000;37:201–208.

    Google Scholar 

  32. Beck TJ, Ruff C, B, Warden KE, Scott WW, Rao G. Predicting femoral neck strength from bone mineral data. Invest Radiol 1990;25:6–18.

    Article  PubMed  CAS  Google Scholar 

  33. Beck TJ, Oreskovic TL, Stone KL, et al. Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res 2001;16:1108–1119.

    Article  PubMed  CAS  Google Scholar 

  34. Beck TJ, Looker A, Ruff C, B, Sievanen H, Wahner HW. Structural trends in the aging femoral neck and proximal shaft: analysis of the third national health and nutrition examination survey dual-energy x-ray absorptiometry. J Bone Miner Res 2000;15:2297–2304.

    Article  PubMed  CAS  Google Scholar 

  35. Mazess RB, Nord RH, Hanson JA, Barden HS. Bilateral measurement of femoral bone mineral density. J Clin Densitom 2000;3:133–140.

    Article  PubMed  CAS  Google Scholar 

  36. Faulkner KG. Improving femoral bone density measurements. J Clin Densitom 2003;6:353–358.

    Article  PubMed  Google Scholar 

  37. White J, Harris S, Dallal G, Dawson-Hughes B. Precision of single vs. bilateral hip bone mineral density scans. J Clin Densitom 2003;6:159–162.

    Article  PubMed  Google Scholar 

  38. Lekamwasam S, Lenora RSJ. Effect of leg rotation on hip bone mineral density measurements. J Clin Densitom 2003;6:331–336.

    Article  PubMed  Google Scholar 

  39. McKay HA, Petit MA. Analysis of proximal femur DXA scans in growing children: comparison of different protocols for cross-sectional 8-month and 7-year longitudinal data. J Bone Miner Res 2000;15:1181–1188.

    Article  PubMed  CAS  Google Scholar 

  40. Ellis KJ. Selected body composition methods can be used in field studies. J Nutr 2001;131:S1589–1595.

    Google Scholar 

  41. Henderson RC, Lark RK, Newman JE, et al. Pediatric reference data for dual x-ray absorptiometric measures of normal bone density in the distal femur. AJR 2002;178(2):439–443.

    PubMed  Google Scholar 

  42. Leonard MB, Feldman HI, Zemel BS, Berlin JA, Barden EM, Stallings VA. Evaluation of low density spine software for the assessment of bone mineral density in children. J Bone Miner Res 1998;13:1687–1690.

    Article  PubMed  CAS  Google Scholar 

  43. Simpson DE, Dontu VS, Stephens SE, Archbold LJ, et al. Large variations occur in bone density measurements of children when using different software. Nucl Med Commun 2005;26:483–487.

    Article  PubMed  Google Scholar 

  44. Hangartner TN. Influence of fat on bone measurements with dual-energy absorptiometry. Bone Miner1990;9:71–78.

    Article  PubMed  CAS  Google Scholar 

  45. Pietrobelli A, Wang Z, Formica C, and Heymsfield SB. Dual-energy x-ray absorptiometry: fat estimation errors due to variation in soft tissue hydration. Am J Physiol 1998;274:E808–E816.

    PubMed  CAS  Google Scholar 

  46. Koo WWK, Walters J, Bush AJ. Technical considerations of dual-energy x-ray absorptiometry-based bone mineral measurements for paediatric studies. J Bone Miner Res 1995;10:1998–2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Crabtree, N.J., Kent, K., Zemel, B.S. (2007). Acquisition of DXA in Children and Adolescents. In: Sawyer, A.J., Bachrach, L.K., Fung, E.B. (eds) Bone Densitometry in Growing Patients. Current Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-59745-211-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-211-3_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-634-4

  • Online ISBN: 978-1-59745-211-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics