Skip to main content

Tools for Measuring Bone in Children and Adolescents

  • Chapter
Bone Densitometry in Growing Patients

Abstract

This chapter provides an overview of the current densitometry techniques that are used in children. The strengths and limitations of each of the techniques are discussed. Dualenergy x-ray absorptiometry (DXA) is discussed only briefly, as the remainder of this book concentrates on this technique in detail. Table 1 provides a technical overview of costs, uses, precision, and radiation exposure associated with densitometry methods. Radiation doses associated with other imaging modalities and with natural background sources are provided for comparison in Table 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gilsanz V, Boechat MI, Roe TF, Loro ML, Sayre JW, Goodman WG. Gender differences in vertebral body sizes in children and adolescents. Radiology 1994;190:673–677.

    PubMed  CAS  Google Scholar 

  2. Hangartner T, Gilsanz V. Evaluation of cortical bone by computed tomography. J Bone Miner Res 1996;11:1518–1525.

    PubMed  CAS  Google Scholar 

  3. Kovanlikaya A, Loro ML, Hangartner TN, Reynolds RA, Roe TF, Gilsanz V. Osteopenia in children: CT assessment. Radiology 1996;198:781–784.

    PubMed  CAS  Google Scholar 

  4. Binkley T, Specker B. pQCT measurement of bone parameters in young children—Validation of technique. J Clin Densitom 2000;3:9–14.

    Article  PubMed  CAS  Google Scholar 

  5. Moyer-Mileur L, Xie B, Pratt T. Peripheral quantitative computed tomography (pQCT) assessment of tibial bone mass change in preadolescent girls. Federation of American Societies for Experimental Biology 2000: 14(4):A265. Abstract No. 183.4..

    Google Scholar 

  6. Sievanen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I. Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 1998;13:871–882.

    Article  PubMed  CAS  Google Scholar 

  7. Mughal M, Langton C, Utretch G, Morrison J, Specker B. Comparison between broad-band ultrasound attenuation of the calcaneum and total body bone mineral density in children. Acta Paediatrica 1996;85:1–3.

    Google Scholar 

  8. Wilmshurst S, Ward K, Adams J, Langton C, Mughal M. Mobility status and bone density in cerebral palsy. Arch Dis Child 1996;75:164–165.

    PubMed  CAS  Google Scholar 

  9. Schonau E. The determination of ultrasound velocity in the os calcis, thumb and patella during childhood. Eur J Pediatr 1994;153:252–256.

    Article  PubMed  CAS  Google Scholar 

  10. Lappe JM, Recker RR, Malleck MK, Stegman MR, Packard PP, Heaney RP. Patellar ultrasound transmission velocity in healthy children and adolescents. Bone 1995;16:251S–256S.

    PubMed  CAS  Google Scholar 

  11. Jaworski M, Lebiedowski M, Lorenc RS, Trempe J. Ultrasound bone measurement in pediatric subjects. Calcif Tissue Int 1995;56:368–371.

    Article  PubMed  CAS  Google Scholar 

  12. Halaba Z, Pluskiewicz W. The assessment of development of bone mass in children by quantitative ultrasound through the proximal phalanxes of the hand. Ultrasound Med Biol 1997;23:1331–1335.

    Article  PubMed  CAS  Google Scholar 

  13. Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, Stuckey S. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 2002;17:2274–2280.

    Article  PubMed  CAS  Google Scholar 

  14. Ward KA, Cotton J, Adams JE. A technical and clinical evaluation of digital x-ray radiogrammetry. Osteoporos Int 2003;14:389–395.

    Article  PubMed  CAS  Google Scholar 

  15. NRPB. (National Oncologic Protection Board, Oxon).

    Google Scholar 

  16. World Nuclear Association. Radiation and the nuclear fuel cycle. http://world-nuclear.org/info/inf05.htm, accessed March 2006.

  17. Huda W, Gkanatsios N. Radiation dosimetry for extremity radiographs. Health Phys 1998;75:492–99.

    Article  PubMed  CAS  Google Scholar 

  18. Hart D, Wall B. 31 (National Radiological Protection Board, Oxon, 2002). http://www.phls.co.uk/radiation/publications/w_series_reports/2002/nrpb_w4.pdf

  19. Ebdon-Jackson S, Hamlet R, Wall B. Diagnostic radiology: a necessary evil? The Magazine of the Health Protection Agency, 2005.

    Google Scholar 

  20. Parfitt AM. A structural approach to renal bone disease. J Bone Miner Res 1998;13:1213–1220.

    Article  PubMed  CAS  Google Scholar 

  21. Nelson D, Koo W. Interpretation of absorptiometric bone mass measurements in the growing skeleton:issues and limitations. Calcif Tissue Int 1999;65:1–3.

    Article  PubMed  CAS  Google Scholar 

  22. Rauch F, Schonau E. Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J Bone Miner Res 2001;16:597–604.

    Article  PubMed  CAS  Google Scholar 

  23. Mazess RB, Barden HS. Bone densitometry for diagnosis and monitoring osteoporosis. Proc Soc Exp Biol Med 1989;191:261–271.

    PubMed  CAS  Google Scholar 

  24. Compston JE, Cooper C, Kanis JA. Fortnightly review: bone densitometry in clinical practice. BMJ 1995;310:1507–1510.

    PubMed  CAS  Google Scholar 

  25. Genant HK, Engelke K, Fuerst T, et al. Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 1996;11:707–730.

    PubMed  CAS  Google Scholar 

  26. Adams JE, Shaw N, eds. A practical guide to bone densitometry in children. Bath: National Osteoporosis Society, 2004 (position statement).

    Google Scholar 

  27. Carter D, Bouxsein M, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res 1992;7:137–145.

    PubMed  CAS  Google Scholar 

  28. Crabtree NJ, Kibirige MS, Fordham JN, et al. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 2004;35:965–972.

    Article  PubMed  CAS  Google Scholar 

  29. Hogler W, Briody J, Woodhead HJ, Chan A, Cowell CT. Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J Pediatr 2003;143:81–88.

    Article  PubMed  CAS  Google Scholar 

  30. Kroger H, Kontaniemi A, Vainio P, Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner 1992;17:75–85.

    Article  PubMed  CAS  Google Scholar 

  31. Molgaard C, Thomsen B, Prentice A, Cole T, Michealsen K. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 1997;76:9–15.

    PubMed  CAS  Google Scholar 

  32. Prentice A, Parsons T, Cole T. Uncritical use of bone mineral density in absorptiometry may lead to sizerelated artifacts in the identification of bone mineral determinants. Am J Clin Nutr 1994;60:837–842.

    PubMed  CAS  Google Scholar 

  33. Warner JT, Cowan FJ, Dunstan FD, Evans WD, Webb DK, Gregory JW. Measured and predicted bone mineral content in healthy boys and girls aged 6–18 years: adjustment for body size and puberty. Acta Paediatrica 1998;87:244–249.

    Article  PubMed  CAS  Google Scholar 

  34. Nevill AM, Holder RL, Maffulli N, Cheng JC, Leung SS, Lee WT, Lau JT. Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective. J Bone Miner Res 2002;17:703–708.

    Article  PubMed  Google Scholar 

  35. Isherwood I, Rutherford R, Pullan B, Adams P. Bone mineral estimation by computed assisted transverse axial tomography. Lancet 1976;2:712–715.

    Article  PubMed  CAS  Google Scholar 

  36. Guglielmi, G., Lang, T.F., Cammisa, M., et al. Quantitative computed tomography at the axial skeleton, in Genant HK, Guglielmi G, and Jergas M, eds. Bone Densitometry and Osteoporosis. Berlin: Springer, 1998;pp. 335–34.

    Google Scholar 

  37. van Rijn RR, van der Sluis IM, Link TM, et al. Bone densitometry in children: a critical appraisal. Eur Radiol 2003;13:700–710.

    PubMed  Google Scholar 

  38. Mughal M, Ward K, Adams J. Assessment of bone status in children by densitometric and quantitative ultrasound techniques, in Carty H, Brunelle F, Stringer DA, Kao SCS, eds. Imaging Children, Second Edition. Edinburgh: Churchill Livingstone, 2004, pp. 477–486.

    Google Scholar 

  39. Faulkner K, McClung M. Quality control of DXA instruments in multicentre trials. Osteoporos Int 1995;5: 218–227.

    Article  PubMed  CAS  Google Scholar 

  40. Genant HK, Grampp S, Gluer CC, et al. Universal standardization for dual energy-ray absorptiometry:patient and phantom cross-calibration results. J Bone Miner Res 1994;9:1503–1514.

    PubMed  CAS  Google Scholar 

  41. Kalender WA, Felsenberg D, Genant HK, Fischer M, Dequeker J, Reeve J. European Spine Phantom—a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 1995;20:83–92.

    Article  PubMed  CAS  Google Scholar 

  42. Gilsanz V. Bone density in children: a review of the available techniques and indications. Eur J Radiol 1998;26:177–182.

    Article  PubMed  CAS  Google Scholar 

  43. Kalender W. Computed Tomography. Munich: Publicis MCD Verlag, 2000.

    Google Scholar 

  44. Cann C. Low dose CT scanning for quantitative spinal bone mineral analysis. Radiology 1981;140:813–815.

    PubMed  CAS  Google Scholar 

  45. Kalender W. Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporos Int 1992;2:82–87.

    Article  PubMed  CAS  Google Scholar 

  46. Gilsanz V, Gibbens DT, Roe TF, et al. Vertebral bone density in children: effect of puberty. Radiology 1988;166:847–850.

    PubMed  CAS  Google Scholar 

  47. Mora S, Gilsanz V, eds. Bone Densitometry in Children. Berlin: Springer-Verlag, 1998.

    Google Scholar 

  48. Southard RN, Morris JD, Mahan JD, et al. Bone mass in healthy children: measurement with quantitative DXA. Radiology 1991;179:735–738.

    PubMed  CAS  Google Scholar 

  49. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA. Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int 1996;59:344–51.

    Article  PubMed  CAS  Google Scholar 

  50. Zemel, B. et al. Reference data for the whole body, lumbar spine and proximal femur for American children relative to age, gender and body size. J Bone Miner Res 2004;19(S1):S231.

    Google Scholar 

  51. Kroger H, Kotaniemi A, Kroger L, Alhava E. Development of bone mass and bone density of the spine and femoral neck—a prospective study of 65 children and adolescents. Bone Miner 1993;23:171–182.

    PubMed  CAS  Google Scholar 

  52. Lu PW, Briody JN, Ogle GD, et al. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res 1994;9:1451–1458.

    PubMed  CAS  Google Scholar 

  53. Matkovic V, Jelic T, Wardlaw GM,. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 1994;93:799–808.

    PubMed  CAS  Google Scholar 

  54. Boot AM, de Ridder MAJ, Pols HAP, Krenning EP, de Muinck Keizer-Schrama SM.. Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab 1997;82:57–62.

    Article  PubMed  CAS  Google Scholar 

  55. Maynard LM, Guo SS, Chumlea WC, et al. Total-body and regional bone mineral content and areal bone mineral density in children aged 8–18 y: The Fels Longitudinal Study. Am J Clin Nutr 1998;68:1111–1117.

    PubMed  CAS  Google Scholar 

  56. Zanchetta JR, Plotkin H, Filgueira MLA. Bone mass in children: normative values for the 2–20-yearold population. Bone 1995;16:393S–399S.

    PubMed  CAS  Google Scholar 

  57. Plotkin H, Nunez M, Alvarez Filgueira ML, Zanchetta JR. Lumbar spine bone density in Argentine children. Calcif Tissue Int 1996;58:144–149.

    PubMed  CAS  Google Scholar 

  58. Neu C, Manz F, Rauch F, Merkel A, Schonau E. Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 2001;28:227–232.

    Article  PubMed  CAS  Google Scholar 

  59. Mughal MZ, Ward KA, Qayum N, Langton C. Assessment of bone status using the contact ultrasound bone analyser. Arch Dis Child 1997;76:535–536.

    Article  PubMed  CAS  Google Scholar 

  60. Sawyer A, Moore S, Fielding KT, Nix DA, Kiratli J, Bachrach LK. Calcaneus ultrasound measurements in a convenience sample of healthy youth. J Clin Densitom 2001;4:111–120.

    Article  PubMed  CAS  Google Scholar 

  61. Barkmann R, Rohrschneider W, Vierling M, et al. German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos Int 2002;13:55–61.

    Article  PubMed  CAS  Google Scholar 

  62. Baroncelli GI, Federico G, Bertelloni S, de Terlizzi F, Cadossi R, Saggese G. Bone quality assessment by quantitative ultrasound of proximal phalanxes of the hand in healthy subjects aged 3–21 years. Pediatr Res 2001;49:713–718.

    Article  PubMed  CAS  Google Scholar 

  63. Zadik Z, Price D, Diamond G. Pediatric reference curves for multi-site quantitative ultrasound and its modulators. Osteoporos Int 2003;14:857–862.

    Article  PubMed  Google Scholar 

  64. Cann C. Quantitative CT applications: comparison of current scanners. Radiology 1987;pp162:(pp257–261).

    Google Scholar 

  65. Genant H, Cann C, Ettinger B, Gordan G. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 1982;97:699–705.

    PubMed  CAS  Google Scholar 

  66. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 2004;19:360–369.

    Article  PubMed  Google Scholar 

  67. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-standing spaceflight. J Bone Miner Res 2004;19:1006–1012.

    Article  PubMed  Google Scholar 

  68. Schneider P, Borner W. Peripheral quantitative computed tomography for bone mineral measurement using a new special QCT-scanner. Methodology, normal values, comparison with manifest osteoporosis. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 1991;154:292–299.

    PubMed  CAS  Google Scholar 

  69. Ruegsegger P, Durand E, Dambacher MA. Localization of regional forearm bone loss from high resolution computed tomographic images. Osteoporos Int 1991;1:76–80.

    Article  PubMed  CAS  Google Scholar 

  70. Ruegsegger P, Durand EP, Dambacher MA. Differential effects of aging and disease on trabecular and compact bone density of the radius. Bone 1991;12:99–105.

    Article  PubMed  CAS  Google Scholar 

  71. Fujita T, Fujii Y, Goto B. Measurement of forearm bone in children by peripheral computed tomography. Calcif Tissue Int 1999;64:34–39.

    Article  PubMed  CAS  Google Scholar 

  72. Schiessl H, Ferretti J, Tysarczyk-Niemeyer G, Willnecker J. Noninvasive bone strength index as analysed by peripheral quantitative computed tomography, in: Schoenau E, ed. Paediatric Osteology: New Developments in Diagnostics and Therapy. Amsterdam: Elsevier, 1996;141–146.

    Google Scholar 

  73. Augat P, Iida H, Jiang Y, Diao E, Genant HK. Distal radius fractures: mechanisms of injury and strength prediction by bone mineral assessment. J Orthop Res 1998;16:629–635.

    Article  PubMed  CAS  Google Scholar 

  74. Schonau E, Neu C, Beck B, Manz F, Rauch F. Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 2002;17:1095–1101.

    Article  Google Scholar 

  75. Schonau E. The development of the skeletal system in children and the influence of muscular strength. Horm Res 1998;47:27–31.

    Google Scholar 

  76. Schonau E, Neu C, Rauch F, Manz F. Gender-specific pubertal changes in volumetric cortical bone mineral density at the proximal radius. Bone 2002;31:110–113.

    Article  Google Scholar 

  77. Leonard MB, Shults J, Elliott DM, Stallings VA, Zemel BS. Interpretation of whole body dual energy x-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography. Bone 2004;34:1044–1052.

    Article  PubMed  Google Scholar 

  78. Schonau E, Matkovic V. The funcitonal muscle-bone-unit in health and disease. In Schonau E, Matkovic V, eds. Paediatric Osteology. Prevention of Osteoporosis—A Paediatric Task. Singapore: Elsevier, 1998;191–2

    Google Scholar 

  79. Schweizer R, Martin DD, Schwarze CP, et al. Cortical bone density is normal in prepubertal children with growth hormone (GH) deficiency, but initially decreases during GH replacement due to early bone remodelling. J Clin Endocrinol Metab 2003;88:5266–5272.

    Article  PubMed  CAS  Google Scholar 

  80. Lima EM, Goodman WG, Kuizon BD, et al. Bone density measurements in pediatric patients with renal osteodystrophy. Pediatr Nephrol 2003;18:554–559.

    PubMed  Google Scholar 

  81. Moyer-Mileur LJ, Dixon SB, Quick JL, Askew EW, Murray MA. Bone mineral acquisition in adolescents with type 1 diabetes. J Pediatr 2004;145:662–669.

    Article  PubMed  Google Scholar 

  82. Brennan BM, Mughal Z, Roberts SA, et al. Bone mineral density in childhood survivors of acute lymphoblastic leukemia treated without cranial irradiation. J Clin Endocrinol Metab 2005;90:689–694.

    Article  PubMed  CAS  Google Scholar 

  83. Roth J, Palm C, Scheunemann I, Ranke MB, Schweizer R, Dannecker GE. Musculoskeletal abnormalities of the forearm in patients with juvenile idiopathic arthritis relate mainly to bone geometry. Arthritis Rheum 2004;50:1277–1285.

    Article  PubMed  Google Scholar 

  84. Bechtold S, Ripperger P, Bonfig W, Pozza RD, Haefner R, Schwarz HP. Growth hormone changes bone geometry and body composition in patients with juvenile idiopathic arthritis requiring glucocorticoid treatment: a controlled study using peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005;90:3168–3173.

    Article  PubMed  CAS  Google Scholar 

  85. Heinonen A, Sievanen H, Kannus P, et al. High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporosis International 2000;11:1010–1017.

    Article  PubMed  CAS  Google Scholar 

  86. Specker BL, Binkley TL. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3-to 5-year-old children. J Bone Miner Res 2003;18:885–892.

    Article  PubMed  CAS  Google Scholar 

  87. Ward KA, Roberts SA, Adams JE, Mughal MZ. Bone geometry and density in the skeleton of prepubertal gymnasts and school children. Bone 2005;36:1012–1018.

    Article  PubMed  CAS  Google Scholar 

  88. Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 1984;13:89–91.

    PubMed  CAS  Google Scholar 

  89. Wunsche K, Wunsche B, Fahnrich H, et al. Ultrasound bone densitometry of the os calcis in children and adolescents. Calcif Tissue Int 2000;67:349–355.

    Article  PubMed  CAS  Google Scholar 

  90. Damilakis J, Galanakis E, Mamoulakis D, Sbyrakis S, Gourtsoyiannis N. Quantitative ultrasound measurements in children and adolescents with type 1 diabetes. Calcif Tissue Int 2004;75:424–428.

    Article  CAS  Google Scholar 

  91. Hartman C, Brik R, Tamir A, Merrick J, Shamir R. Bone quantitative ultrasound and nutritional status in severely handicapped institutionalized children and adolescents. Clin Nutr 2004;23:89–98.

    Article  PubMed  CAS  Google Scholar 

  92. Eliakim A, Nemet D, Wolach B. Quantitative ultrasound measurements of bone strength in obese children and adolescents. J Pediatr Endocrinol Metab 2001;14:159–164.

    PubMed  CAS  Google Scholar 

  93. Khaw KT, Reeve J, Luben R, et al. Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 2004;363:197–202.

    Article  PubMed  Google Scholar 

  94. Bauer DC, Gluer CC, Cauley JA, et al. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 1997;157:629–634.

    Article  PubMed  CAS  Google Scholar 

  95. Pluijm SM, Graafmans WC, Bouter LM, Lips P. Ultrasound measurements for the prediction of osteoporotic fractures in elderly people. Osteoporos Int 1999;9:550–556.

    Article  PubMed  CAS  Google Scholar 

  96. Stewart A, Torgerson DJ, Reid DM. Prediction of fractures in perimenopausal women: a comparison of dual energy x-ray absorptiometry and broadband ultrasound attenuation. Ann Rheum Dis 1996;55:140–142.

    PubMed  CAS  Google Scholar 

  97. Fielding KT, Nix DA, Bachrach LK. Comparison of calcaneus ultrasound and dual x-ray absorptiometry in children at risk of osteopenia. J Clin Densitom 2003;6:7–15.

    Article  PubMed  Google Scholar 

  98. Hong J, Hipp JA, Mulkern RV, Jaramillo D, Snyder BD. Magnetic resonance imaging measurements of bone density and cross-sectional geometry. Calcif Tissue Int 2000;66:74–8.

    Article  PubMed  CAS  Google Scholar 

  99. Hogler W, Blimkie CJ, Cowell CT, et al. A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging. Bone 2003;33:771–778.

    Article  PubMed  CAS  Google Scholar 

  100. Macdonald HM, Heinonen H, Khan KM, et al. Geometric characteristics of the developing tibia in early pubertal girls; a qualitative MRI study. J Bone Miner Res 2003: 18(suppl 1): S66, Abstract #F091.

    Google Scholar 

  101. Kroger H, Vainio P, Nieminen J, Kotaniemi A. Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone 1995;17:157–159.

    Article  PubMed  CAS  Google Scholar 

  102. Heinonen A, McKay H, Whithall K, Forster B, Khan K. Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone 2001;29:388–392.

    Article  PubMed  CAS  Google Scholar 

  103. Daly RM, Saxon L, Turner CH, Robling AG, Bass SL. The relationship between muscle size and bone geometry during growth and in response to exercise. Bone 2004;34::281–287.

    Article  PubMed  CAS  Google Scholar 

  104. McKay HA, Sievanen H, Petit MA, et al. Application of magnetic resonance imaging to evaluation of femoral neck structure in growing girls. J Clin Densitom 2004;7:161–168.

    Article  PubMed  Google Scholar 

  105. Herlidou S, Grebe R, Grados F, Leuyer N, Fardellone P, Meyer ME. Influence of age and osteoporosis on calcaneus trabecular bone structure: a preliminary in vivo MRI study by quantitative texture analysis. Magn Reson Imaging 2004;22:237–243.

    Article  PubMed  CAS  Google Scholar 

  106. Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A. Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 2003;227:708–717.

    Article  PubMed  Google Scholar 

  107. Link TM, Vieth V, Stehling C, et al. High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best? Eur Radiol 2003;13:663–671.

    PubMed  Google Scholar 

  108. Newitt DC, van Rietbergen B, Majumdar S. Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and microfinite element analysis derived mechanical properties. Osteoporos Int 2002;13:278–287.

    Article  PubMed  CAS  Google Scholar 

  109. Laib A, Newitt DC, Lu Y, Majumdar S. New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 2002;13:130–136.

    Article  PubMed  CAS  Google Scholar 

  110. Wehrli FW, Hilaire L, Fernandez-Seara M, et al. Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res 2002;17:2265–2273.

    Article  PubMed  Google Scholar 

  111. Wehrli FW, Saha PK, Gomberg BR, et al. Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging 2002;13:335–355.

    Article  PubMed  Google Scholar 

  112. Wehrli FW, Leonard MB, Saha PK, Gomberg BR. Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 2004;20:83–89.

    Article  PubMed  Google Scholar 

  113. Barnett E, Nordin B. The radiological diagnosis of osteoporosis. Clin Radiol 1960;11:166–174.

    Article  PubMed  CAS  Google Scholar 

  114. Meema H. The occurrence of cortical bone atrophy in old age and osteoporosis. J Can Assoc Radiol. 1962;13:27–32.

    PubMed  CAS  Google Scholar 

  115. Meema H, Meema S. Measurable roentgenologic changes in some peripheral bones in senile osteoporosis. J Am Geriatr Soc 1963;11::1170–1182.

    PubMed  CAS  Google Scholar 

  116. Garn S, Poznanski A, Nagy J. Bone measurement in the differential diagnosis of osteopenia and osteoporosis. Radiology 1971;100:509–518.

    PubMed  CAS  Google Scholar 

  117. Ashby R, Ward K, Mughal M, Adams J. Age related changes in metacarpal morphometry and areal bone mineral density in children assessed by digital x-ray radiogrammetry (DXR). J Bone Miner Res 2002;17:S297.

    Google Scholar 

  118. Adams P, Davies G, Sweetnam P. Observer error and measurements of the metacarpal. Br J Radiol 1969;42:192–197.

    Article  PubMed  CAS  Google Scholar 

  119. Dequeker J. Quantitative radiology: radiogrammetry of cortical bone. Br J Radiol 1976;49:912–920.

    PubMed  CAS  Google Scholar 

  120. Saville PD, Heaney RP, Recker RR. Radiogrammetry at four bone sites in normal middle-aged women. Their relation to each other, to calcium metabolism and to other biological variables. Clin Orthop Relat Res 1976;307–315.

    Google Scholar 

  121. Cootes T, Hill A, Taylor C, Haslam J. The use of active shape models for locating structures in medical images. Image Vision Comput 1994;6:276–285.

    Google Scholar 

  122. Cootes T, Taylor C, Cooper D, Graham J. Active shape models: their training and application. Comput Vision Image Understanding 1995;1:38–59.

    Article  Google Scholar 

  123. Derisquebourg T, Dubois P, Devogelaer JP, et al. Automated computerized radiogrammetry of the second metacarpal and its correlation with absorptiometry of the forearm and spine. Calcif Tiss Int 1994;54:461–465.

    Article  CAS  Google Scholar 

  124. Kalla A, Meyers O, Parkyn N, Kotze T. Osteoporosis screening-radiogrammetry revisited. Br J Rheumatol 1989;28:511–517.

    Article  PubMed  CAS  Google Scholar 

  125. Mentzel HJ, John U, Boettcher J, et al. Evaluation of bone-mineral density by digital x-ray radiogrammetry (DXR) in pediatric renal transplant recipients. Pediatr Radiol 2004;35:489–494.

    Article  PubMed  Google Scholar 

  126. van Rijn RR, Grootfaam DS, Lequin MH, et al. Digital radiogrammetry of the hand in a pediatric and adolescent Dutch Caucasian population: normative data and measurements in children with inflammatory bowel disease and juvenile chronic arthritis. Calcif Tissue Int 2004;74:342–350.

    Article  PubMed  CAS  Google Scholar 

  127. Malich A, Freesmeyer MG, Mentzel HJ, et al. Normative values of bone parameters of children and adolescents using digital computer-assisted radiogrammetry (DXR). J Clin Densitom 2003;6:103–111.

    Article  PubMed  Google Scholar 

  128. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996;312:1254–1259.

    PubMed  CAS  Google Scholar 

  129. Martin JC, Campbell MK, Reid DM. A comparison of radial peripheral quantitative computed tomography, calcaneal ultrasound, and axial dual energy x-ray absorptiometry measurements in women aged 45–55 yr. J Clin Densitom 1999;2::265–273.

    Article  PubMed  CAS  Google Scholar 

  130. Kroger H, Lunt M, Reeve J, et al. Bone density reduction in various measurement sites in men and women with osteoporotic fractures of spine and hip: The European quantitation of osteoporosis study. Calcif Tissue Int 1999;64:191–199.

    Article  PubMed  CAS  Google Scholar 

  131. Grampp S, Genant HK, Mathur A, et al. Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 1997;12:697–711.

    Article  PubMed  CAS  Google Scholar 

  132. Eastell R, Wahner HW, O’Fallon WM, Amadio PC, Melton LJ 3rd, Riggs BL. Unequal decrease in bone density of lumbar spine and ultradistal radius in Colles’ and vertebral fracture syndromes. J Clin Invest 1989;83:168–174.

    Article  PubMed  CAS  Google Scholar 

  133. Faulkner KG, Gluer CC, Majumdar S, Lang P, Engelke K, Genant HK. Noninvasive measurements of bone mass, structure, and strength: current methods and experimental techniques. AJR 1991;157:1229–1237.

    PubMed  CAS  Google Scholar 

  134. Elsasser U, Wilkins B, Hesp R, Thurnham DI, Reeve J, Ansell BM. Bone rarefaction and crush fractures in juvenile chronic arthritis. Arch Dis Child 1982;57:377–380.

    PubMed  CAS  Google Scholar 

  135. Varonos S, Ansell B, Reeve J. Vertebral collapse in juvenile chronic arthritis: its relationship with glucocorticoid therapy. Calcif Tiss Int 1987;41:75–78.

    Article  CAS  Google Scholar 

  136. Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W. Axial and appendicular bone density predict fractures in older women. J Bone Miner Res 1992;7:633–638.

    Article  PubMed  CAS  Google Scholar 

  137. Gardsell P, Johnell O, Nilsson BE, Gullberg B. Predicting fractures in women by using forearm bone densitometry. Calcif Tiss Int 1989;44:235–242.

    Article  CAS  Google Scholar 

  138. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res 1998;13:143–148.

    Article  PubMed  CAS  Google Scholar 

  139. Ma D, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. J Clin Endocrinol Metab 2003;88:1486–1491.

    Article  PubMed  CAS  Google Scholar 

  140. Kalkwarf H, Laor T, Bean J. Bone mass, density, and dimensions and forearm fracture risk among injured children. Bone 2005;36:S40.

    Google Scholar 

  141. Mobley S, et al. Children and bone fragility fractures have reduced bone mineral areal density at the forearm and hip and higher percent body fat. J Bone Miner Res 2005;20.

    Google Scholar 

  142. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM. More broken bones; A 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 2000; 15: 2011–2018.

    Article  PubMed  CAS  Google Scholar 

  143. The Writing Group for the ISCD Position Development Conference. Diagnosis of osteoporosis in men, premenopausal women, and children. J Clin Densitometry 2004;7: 17–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ward, K.A., Mughal, Z., Adams, J.E. (2007). Tools for Measuring Bone in Children and Adolescents. In: Sawyer, A.J., Bachrach, L.K., Fung, E.B. (eds) Bone Densitometry in Growing Patients. Current Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-59745-211-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-211-3_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-634-4

  • Online ISBN: 978-1-59745-211-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics