Skip to main content

Aberrations of DNA Damage in Checkpoints in Cancer

  • Chapter
Book cover Apoptosis, Cell Signaling, and Human Diseases
  • 921 Accesses

Summary

Mutations in gene products controlling DNA damage checkpoints and repair pathways cause predisposition to a large number of sporadic cancers, hereditary cancer syndromes, and developmental defects. This underscores the vital need for the fidelity of checkpoint control and efficiency for the repair machineries. The checkpoint functions are ensured by multiple, often parallel, pathways and show specificity regarding the nature of the damage, cell-cycle phase, and the subsequent cellular response. The checkpoint control mechanisms also link to other cellular responses such as apoptosis to initiate a death program in the event of unsuccesful repair. It is striking that several checkpoint mutations are associated with developmental abnormalities and cancer syndromes, such as the Nijmegen breakage syndrome and Fanconi anemia, indicating that the maintenance of the genome integrity is essential throughout development. Though several critical DNA maintenance proteins have been identified and their links to tumor progression have been established, alterations of several known checkpoint-associated proteins (e.g., 53BP1, Mdc1, SMC1) in cancer are still undiscovered. Knowledge of the DNA damage checkpoint pathways and pathways sensing the damage and instigating repair will pave the way to improved diagnostics, identification of genetic susceptibility, and, in future, rational therapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedberg EC. How nucleotide excision repair protects against cancer. Nat Rev Cancer 2001;1:22–33.

    Article  PubMed  CAS  Google Scholar 

  2. Hoeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature 2001;411:366–374.

    Article  PubMed  CAS  Google Scholar 

  3. West SC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 2003;4:435–445.

    Article  PubMed  CAS  Google Scholar 

  4. Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 2003;22:5792–5812.

    Article  PubMed  CAS  Google Scholar 

  5. Kastan MB, Lim DS. The many substrates and functions of ATM. Nat Rev Mol Cell Biol 2000;1:179–186.

    Article  PubMed  CAS  Google Scholar 

  6. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004;432:316–323.

    Article  PubMed  CAS  Google Scholar 

  7. Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003;3:421–429.

    Article  PubMed  CAS  Google Scholar 

  8. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003;3:155–168.

    Article  PubMed  CAS  Google Scholar 

  9. Laiho M, Latonen L. Cell cycle control, DNA damage checkpoints and cancer. Ann Med 2003;35:391–397.

    Article  PubMed  CAS  Google Scholar 

  10. Bakkenist CJ, Kastan MB. Initiating cellular stress responses. Cell 2004;118:9–17.

    Article  PubMed  CAS  Google Scholar 

  11. Kaufmann WK, Cleaver JE, Painter RB. Ultraviolet radiation inhibits replicon initiation in S phase human cells. Biochim Biophys Acta 1980;608:191–195.

    PubMed  CAS  Google Scholar 

  12. Latonen L, Laiho M. Cellular UV damage responses-functions of tumor suppressor p53. BBA Reviews in Cancer 2005;1755:71–89.

    CAS  Google Scholar 

  13. van Vugt MA, Bras A, Medema RH. Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 2004;15:799–811.

    Article  PubMed  Google Scholar 

  14. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003;421:499–506.

    Article  PubMed  CAS  Google Scholar 

  15. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001;276:42,462–42,467.

    Article  PubMed  CAS  Google Scholar 

  16. Ward IM, Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 2001;276:47,759–47,762.

    Article  PubMed  CAS  Google Scholar 

  17. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of BRCA1 in the DNA damage response to double-strand breaks. Science 1999;286: 1162–1166.

    Article  PubMed  CAS  Google Scholar 

  18. Celeste A, Petersen S, Romanienko PJ, et al. Genomic instability in mice lacking histone H2AX. Science 2002;296:922–927.

    Article  PubMed  CAS  Google Scholar 

  19. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 2003;5:675–679.

    Article  PubMed  CAS  Google Scholar 

  20. Iwabuchi K, Bartel PL, Li B, Marraccino R, Fields S. Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci USA 1994;91:6098–6102.

    Article  PubMed  CAS  Google Scholar 

  21. Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 2000;151:1381–1390.

    Article  PubMed  CAS  Google Scholar 

  22. Mochan TA, Venere M, DiTullio RA, Jr, Halazonetis TD. 53BP1, an activator of ATM in response to DNA damage. DNA Repair 2004;3:945–952.

    Article  PubMed  CAS  Google Scholar 

  23. Lee JS, Collins KM, Brown AL, Lee CH, Chung JH. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 2000;404:201–204.

    Article  PubMed  CAS  Google Scholar 

  24. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. Ataxia telangiectasiamutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 2000;97: 10,389–10,394.

    Article  PubMed  CAS  Google Scholar 

  25. Wang B, Matsuoka S, Carpenter PB, Elledge SJ. 53BP1, a mediator of the DNA damage checkpoint. Science 2002;298:1435–1438.

    Article  PubMed  CAS  Google Scholar 

  26. Fernandez-Capetillo O, Chen H-T, Celeste A, et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol 2002;4:993–997.

    Article  PubMed  CAS  Google Scholar 

  27. DiTullio RA, Jr, Mochan TA, Verene M, Bartkova J, Sehested M, Bartek J, Halazonetis TD. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 2002;4:998–1002.

    Article  PubMed  CAS  Google Scholar 

  28. Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 2004;18: 1423–1438.

    Article  PubMed  CAS  Google Scholar 

  29. Cline SD, Hanawalt PC. Who’s on first in the cellular response to DNA damage? Nat Rev Mol Cell Biol 2003;4:361–372.

    Article  PubMed  CAS  Google Scholar 

  30. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003;426:194–198.

    Article  CAS  Google Scholar 

  31. Lukas C, Melander F, Stucki M, et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J 2004;23:2674–2683.

    Article  PubMed  CAS  Google Scholar 

  32. Liu Q, Guntuku S, Cui XS, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000;14:1448–1459.

    Article  PubMed  CAS  Google Scholar 

  33. Brown EJ, Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 2000;14:397–402.

    PubMed  CAS  Google Scholar 

  34. Cortez D, Guntuku S, Qin J, Elledge SJ. ATR and ATRIP: partners in checkpoint signaling. Science 2001;294:1713–1716.

    Article  PubMed  CAS  Google Scholar 

  35. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003;300:1542–1548.

    Article  PubMed  CAS  Google Scholar 

  36. Sørensen CS, Syljuåsen RG, Lukas J, Bartek J. ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle 2004;3: 941–945.

    PubMed  Google Scholar 

  37. Takata M, Sasaki MS, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998;17:5497–5508.

    Article  PubMed  CAS  Google Scholar 

  38. Sørensen CS, Hansen LT, Dziegielewski J, et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 2005;7:195–201.

    Article  PubMed  CAS  Google Scholar 

  39. de Laat WL, Jaspers NG, Hoeijmakers JH. Molecular mechanism of nucleotide excision repair. Genes Dev 1999;13:768–785.

    PubMed  Google Scholar 

  40. Hanawalt PC. Subpathways of nucleotide excision repair and their regulation. Oncogene 2002;21:8949–8956.

    Article  PubMed  CAS  Google Scholar 

  41. Svejstrup JQ. Mechanisms of transcription-coupled DNA repair. Nat Rev Mol Cell Biol 2002;3:21–29.

    Article  PubMed  CAS  Google Scholar 

  42. Tornaletti S, Hanawalt PC. Effect of DNA lesions on transcription elongation. Biochimie 1999;81:139–146.

    Article  PubMed  CAS  Google Scholar 

  43. Sugasawa K, Ng JM, Masutani C, et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 1998;2:223–232.

    Article  PubMed  CAS  Google Scholar 

  44. McKay BC, Stubbert LJ, Fowler CC, Smith JM, Cardamore RA, Spronck JC. Regulation of ultraviolet light-induced gene expression by gene size. Proc Natl Acad Sci USA 2004;101:6582–6586.

    Article  PubMed  CAS  Google Scholar 

  45. Ratner JN, Balasubramanian B, Corden J, Warren SL, Bregman DB. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J Biol Chem 1998; 273:5184–5189.

    Article  PubMed  CAS  Google Scholar 

  46. Rockx DA, Mason R, van Hoffen A, et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc Natl Acad Sci USA 2000;97:10,503–10,508.

    Article  PubMed  CAS  Google Scholar 

  47. Venema J, Mullenders LH, Natarajan AT, van Zeeland AA, Mayne LV. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci USA 1990;87:4707–4711.

    Article  PubMed  CAS  Google Scholar 

  48. Mone MJ, Bernas T, Dinant C, et al. In vivo dynamics of chromatin-associated complex formation in mammalian nucleotide excision repair. Proc Natl Acad Sci USA 2004;101: 15,933–15,937.

    Article  PubMed  CAS  Google Scholar 

  49. Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science 1989;246:629–634.

    Article  PubMed  CAS  Google Scholar 

  50. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994;266:1821–1828.

    Article  PubMed  CAS  Google Scholar 

  51. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000;408:433–439.

    Article  PubMed  CAS  Google Scholar 

  52. Paulovich AG, Toczyski DP, Hartwell LH. When checkpoints fail. Cell 1997;88:315–321.

    Article  PubMed  CAS  Google Scholar 

  53. Wahl GM, Carr AM. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 2001;3:277–286.

    Article  CAS  Google Scholar 

  54. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323–331.

    Article  PubMed  CAS  Google Scholar 

  55. Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997;420:25–27.

    Article  PubMed  CAS  Google Scholar 

  56. Leng RP, Lin Y, Ma W, et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003;112:779–791.

    Article  PubMed  CAS  Google Scholar 

  57. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O’Rourke K, Koeppen H, Dixit VM. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 2004; 429:86–92.

    Article  PubMed  CAS  Google Scholar 

  58. Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998;281:1674–1677.

    Article  PubMed  CAS  Google Scholar 

  59. Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998;281:1677–1679.

    Article  PubMed  CAS  Google Scholar 

  60. Tibbetts RS, Brumbaugh KM, Williams JM, et al. A role for ATR in the DNA damageinduced phosphorylation of p53. Genes Dev 1999;13:152–157.

    PubMed  CAS  Google Scholar 

  61. Meek DW. The p53 response to DNA damage. DNA Repair 2004;3:1049–1056.

    Article  PubMed  CAS  Google Scholar 

  62. Chehab NH, Malikzay A, Appel M, Halazonetis TD. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 2000;14:278–288.

    PubMed  CAS  Google Scholar 

  63. Shieh SY, Ahn J, Tamai K, Taya Y, Prives C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 2000;14:289–300.

    PubMed  CAS  Google Scholar 

  64. Lakin N, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene 1999;18: 7644–7655.

    Article  PubMed  CAS  Google Scholar 

  65. Hirao A, Kong YY, Matsuoka S, et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 2000;287:1824–1827.

    Article  PubMed  CAS  Google Scholar 

  66. Zhao R, Gish K, Murphy M, et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 2000;14:981–993.

    Article  PubMed  CAS  Google Scholar 

  67. el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817–825.

    Article  PubMed  CAS  Google Scholar 

  68. Dulic V, Kaufmann WK, Wilson SJ, et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 1994;76: 1013–1023.

    Article  PubMed  CAS  Google Scholar 

  69. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer 2002;2:594–604.

    Article  PubMed  CAS  Google Scholar 

  70. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003;11:577–590.

    Article  PubMed  CAS  Google Scholar 

  71. Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 2004;6:443–450.

    Article  PubMed  CAS  Google Scholar 

  72. Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004;303:1010–1014.

    Article  PubMed  CAS  Google Scholar 

  73. Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 2003;3:117–129.

    Article  PubMed  CAS  Google Scholar 

  74. Fei P, El-Deiry WS. P53 and radiation responses. Oncogene 2003;22:5774–83.

    Article  PubMed  CAS  Google Scholar 

  75. El-Deiry WS. The role of p53 in chemosensitivity and radiosensitivity. Oncogene 2003;22:7486–7495.

    Article  PubMed  CAS  Google Scholar 

  76. Brodsky MH, Weinert BT, Tsang G, et al. Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 2004;24:1219–1231.

    Article  PubMed  CAS  Google Scholar 

  77. Nilsson I, Hoffmann I. Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 2000;4:107–114.

    PubMed  CAS  Google Scholar 

  78. Shimuta K, Nakajo N, Uto K, Hayano Y, Okazaki K, Sagata N. Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J 2002;21:3694–3703.

    Article  PubMed  CAS  Google Scholar 

  79. Bartek J, Lukas C, Lukas J. Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 2004;5:792–804.

    Article  PubMed  CAS  Google Scholar 

  80. Mailand N, Falck J, Lukas C, et al. Rapid destruction of human Cdc25A in response to DNA damage. Science 2000;288:1425–1429.

    Article  PubMed  CAS  Google Scholar 

  81. Molinari M, Mercurio C, Dominguez J, Goubin F, Draetta GF. Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep 2000;1:71–79.

    Article  PubMed  CAS  Google Scholar 

  82. Hassepass I, Voit R, Hoffmann I. Phosphorylation at serine 75 is required for UV-mediated degradation of human Cdc25A phosphatase at the S-phase checkpoint. J Biol Chem 2003;278:29,824–29,829.

    Article  PubMed  CAS  Google Scholar 

  83. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001;410:842–847.

    Article  PubMed  CAS  Google Scholar 

  84. Sørensen CS, Syljuåsen RG, Falck J, et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 2003;3:247–258.

    Article  PubMed  Google Scholar 

  85. Falck J, Petrini JH, Williams BR, Lukas J, Bartek J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 2002;30:290–294.

    Article  PubMed  Google Scholar 

  86. Zhao H, Watkins JL, Piwnica-Worms H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci USA 2002;99:14,795–14,800.

    Article  PubMed  CAS  Google Scholar 

  87. Hong Y, Stambrook PJ. Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci USA 2004;101: 14,443–14,448.

    Article  PubMed  CAS  Google Scholar 

  88. Krämer A, Mailand N, Lukas C, et al. Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 2004;6:884–891.

    Article  PubMed  CAS  Google Scholar 

  89. Yang S, Kuo C, Bisi JE, Kim MK. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 2002;4:865–870.

    Article  PubMed  CAS  Google Scholar 

  90. Stevens C, Smith L, La Thangue NB. Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 2003;5:401–409.

    Article  PubMed  CAS  Google Scholar 

  91. Urist M, Tanaka T, Poyurovsky MV, Prives C. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 2004;18:3041–3054.

    Article  PubMed  CAS  Google Scholar 

  92. Painter RB, Young BR. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci USA 1980;77:7315–7317.

    Article  PubMed  CAS  Google Scholar 

  93. Stevens C, La Thangue NB. The emerging role of E2F-1 in the DNA damage response and checkpoint control. DNA Repair 2004;3:1071–1079.

    Article  PubMed  CAS  Google Scholar 

  94. Liu K, Luo Y, Lin FT, Lin WC. TopBP1 recruits Brg1/Brm to repress E2F1-induced apoptosis, a novel pRb-independent and E2F1-specific control for cell survival. Genes Dev 2004;18:673–686.

    Article  PubMed  CAS  Google Scholar 

  95. D’Amours D, Jackson SP. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 2002;3:317–327.

    Article  PubMed  CAS  Google Scholar 

  96. Goldberg M, Stucki M, Falck J, et al. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 2003;421:952–956.

    Article  PubMed  CAS  Google Scholar 

  97. Lou Z, Minter-Dykhouse K, Wu X, Chen J. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 2003;421:957–961.

    Article  PubMed  CAS  Google Scholar 

  98. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003;421:961–966.

    Article  PubMed  CAS  Google Scholar 

  99. Lukas C, Falck J, Bartkova J, Bartek J, Lukas J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 2003;5: 255–260.

    Article  PubMed  CAS  Google Scholar 

  100. Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 2002;108:171–182.

    Article  PubMed  CAS  Google Scholar 

  101. Taniguchi T, Garcia-Higuera I, Xu B, et al. Convergence of the Fanconi anemia and Ataxia telangiectasia signaling pathways. Cell 2002;109:459–472.

    Article  PubMed  CAS  Google Scholar 

  102. Nakanishi K, Taniguchi T, Ranganathan V, et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nat Cell Biol 2002;4:913–920.

    Article  PubMed  CAS  Google Scholar 

  103. Ward IM, Minn K, van Deursen J, Chen J. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol 2003;23:2556–2563.

    Article  PubMed  CAS  Google Scholar 

  104. Lupardus PJ, Byun T, Yee MC, Hekmat-Nejad M, Cimprich KA. A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. Genes Dev 2002;16: 2327–2332.

    Article  PubMed  CAS  Google Scholar 

  105. Heffernan TP, Simpson DA, Frank AR, et al. An ATR-and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol Cell Biol 2002;22: 8552–8561.

    Article  PubMed  CAS  Google Scholar 

  106. Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2001;2:21–32.

    Article  PubMed  CAS  Google Scholar 

  107. Donzelli M, Draetta GF. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 2003;4:671–677.

    Article  PubMed  CAS  Google Scholar 

  108. Conklin DS, Galaktionov K, Beach D. 14-3-3 proteins associate with cdc25 phosphatases. Proc Natl Acad Sci USA 1995;92:7892–7896.

    Article  PubMed  CAS  Google Scholar 

  109. Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1997;1:3–11.

    Article  PubMed  CAS  Google Scholar 

  110. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J. Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J 2002;21:5911–5920.

    Article  PubMed  CAS  Google Scholar 

  111. Smits VA, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH. Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol 2000;2:672–676.

    Article  PubMed  CAS  Google Scholar 

  112. Manke IA, Lowery DM, Nguyen A, Yaffe MB. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 2003;302:636–639.

    Article  PubMed  CAS  Google Scholar 

  113. Yu X, Chini CC, He M, Mer G, Chen J. The BRCT domain is a phospho-protein binding domain. Science 2003;302:639–642.

    Article  PubMed  CAS  Google Scholar 

  114. Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 2002;30:285–289.

    Article  PubMed  Google Scholar 

  115. Risinger MA, Groden J. Crosslinks and crosstalk: human cancer syndromes and DNA repair defects. Cancer Cell 2004;6:539–545.

    PubMed  CAS  Google Scholar 

  116. Musacchio A, Hardwick KG. The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol 2002;3:731–741.

    Article  PubMed  CAS  Google Scholar 

  117. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B. Mutations of mitotic checkpoint genes in human cancers. Nature 1998;392: 300–303.

    Article  PubMed  CAS  Google Scholar 

  118. Tauchi H, Matsuura S, Kobayashi J, Sakamoto S, Komatsu K. Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene 2002;21: 8967–8980.

    Article  PubMed  CAS  Google Scholar 

  119. D’Andrea AD. The Fanconi road to cancer. Genes Dev 2003;17:1933–1936.

    Article  PubMed  CAS  Google Scholar 

  120. Varley J. TP53, hChk2, and the Li-Fraumeni syndrome. Methods Mol Biol 2003;222: 117–129.

    PubMed  CAS  Google Scholar 

  121. Li Y, Sun X, LaMont JT, Pardee AB, Li CJ. Selective killing of cancer cells by beta-lapachone: direct checkpoint activation as a strategy against cancer. Proc Natl Acad Sci USA 2003; 100:2674–2678.

    Article  PubMed  CAS  Google Scholar 

  122. Zhou BB, Bartek J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat Rev Cancer 2004;4:216–225.

    Article  PubMed  CAS  Google Scholar 

  123. Collis SJ, Swartz MJ, Nelson WG, DeWeese TL. Enhanced radiation and chemotherapymediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res 2003;63:1550–1554.

    PubMed  CAS  Google Scholar 

  124. Xu B, O’Donnell AH, Kim ST, Kastan MB. Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res 2002;62:4588–4591.

    PubMed  CAS  Google Scholar 

  125. Shi L, Nishioka WK, Th’ng J, Bradbury EM, Litchfield DW, Greenberg AH. Premature p34cdc2 activation required for apoptosis. Science 1994;263:1143–1145.

    Article  PubMed  CAS  Google Scholar 

  126. Wang Y, Li J, Booher RN, et al. Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res 2001;61:8211–8217.

    PubMed  CAS  Google Scholar 

  127. Bridges AJ. The rationale and strategy used to develop a series of highly potent, irreversible, inhibitors of the epidermal growth factor receptor family of tyrosine kinases. Curr Med Chem 1999;6:825–843.

    PubMed  CAS  Google Scholar 

  128. Mizenina OA, Moasser MM. S-phase inhibition of cell cycle progression by a novel class of pyridopyrimidine tyrosine kinase inhibitors. Cell Cycle 2004;3:796–803.

    PubMed  CAS  Google Scholar 

  129. Wolff NC, Veach DR, Tong WP, Bornmann WG, Clarkson B, Ilaria RL. PD166326, a novel tyrosine kinase inhibitor, has greater anti-leukemic activity than imatinib in a murine model of chronic myeloid leukemia. Blood2005;105:3995–4003.

    Article  PubMed  CAS  Google Scholar 

  130. Ljungman M, Paulsen MT. The cyclin-dependent kinase inhibitor roscovitine inhibits RNA synthesis and triggers nuclear accumulation of p53 that is unmodified at Ser15 and Lys382. Mol Pharmacol 2001;60:785–789.

    PubMed  CAS  Google Scholar 

  131. Ljungman M, Lane DP. Transcription-guarding the genome by sensing DNA damage. Nat Rev Cancer 2004;4:727–737.

    Article  PubMed  CAS  Google Scholar 

  132. Lane DP, Hupp TR. Drug discovery and p53. Drug Discov Today 2003;8:347–355.

    Article  PubMed  CAS  Google Scholar 

  133. Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303:844–848.

    Article  PubMed  CAS  Google Scholar 

  134. Bykov VJ, Issaeva N, Shilov A, et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 2002;8:282–288.

    Article  PubMed  CAS  Google Scholar 

  135. Komarov PG, Komarova EA, Kondratov RV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 1999;285:1733–1737.

    Article  PubMed  CAS  Google Scholar 

  136. Schul W, Jans J, Rijksen YM, et al. Enhanced repair of cyclobutane pyrimidine dimers and improved UV resistance in photolyase transgenic mice. EMBO J 2002;21:4719–4729.

    Article  PubMed  CAS  Google Scholar 

  137. Jans J, Schul W, Sert YG, et al. Powerful skin cancer protection by a CPD-photolyase transgene. Curr Biol 2005;15:105–115.

    Article  PubMed  CAS  Google Scholar 

  138. Eller MS, Maeda T, Magnoni C, Atwal D, Gilchrest BA. Enhancement of DNA repair in human skin cells by thymidine dinucleotides: evidence for a p53-mediated mammalian SOS response. Proc Natl Acad Sci USA 1997;94:12,627–12,632.

    Article  PubMed  CAS  Google Scholar 

  139. Goukassian DA, Helms E, van Steeg H, van Oostrom C, Bhawan J, Gilchrest BA. Topical DNA oligonucleotide therapy reduces UV-induced mutations and photocarcinogenesis in hairless mice. Proc Natl Acad Sci USA 2004;101:3933–3938.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Laiho, M. (2007). Aberrations of DNA Damage in Checkpoints in Cancer. In: Srivastava, R. (eds) Apoptosis, Cell Signaling, and Human Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-200-7_5

Download citation

Publish with us

Policies and ethics