Skip to main content

Angiogenesis and Cancer

  • Chapter

Summary

Angiogenesis, the creation of neovasculatures from pre-existing ones, is required for various physiological processes. However, pathological angiogenesis is a hallmark of malignant tumors, metastasis and various ischemic as well as inflammatory disorders. Angiogenesis is regulated by the balance between proangiogenic factors and antiangiogenic factors, and concentrated effort in this area of research has led to the discovery of a growing number of angiogenesis-associated factors and the complex interactions among these factors. Understanding of the regulatory mechanisms of these factors in mediating the angiogenic process involved in tumor growth prompted the application of antiangiogenic factors on experimental tumor models with successful outcomes. Based on these experimental results, some antiangiogenic agents have been tested in clinical trials. In this review, the process and regulators of angiogenesis, the involvement of angiogenesis in cancer development and the application of antiangiogenic therapies on established tumors would be discussed. Among various antiangiogenic reagents, special emphasis will be given to antiangiogenic reagents derived from vascular basement membranes, a crucial regulator of angiogenesis, rather than a structural tissue component.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kalluri R, Sukhatme VP. Fibrosis and angiogenesis. Curr Opin Nephrol Hypertens 2000;9(4):413–418.

    Article  PubMed  CAS  Google Scholar 

  2. Timpl R. Macromolecular organization of basement membranes. Curr Opin Cell Biol 1996;8(5):618–624.

    Article  PubMed  CAS  Google Scholar 

  3. Hangai M, Kitaya N, Xu J, et al. Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. Am J Pathol 2002;161(4):1429–1437.

    PubMed  CAS  Google Scholar 

  4. Hynes RO. A reevaluation of integrins as regulators of angiogenesis. Nat Med 2002;8(9):918–921.

    Article  PubMed  CAS  Google Scholar 

  5. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer 2002;2(2):91–100.

    Article  PubMed  Google Scholar 

  6. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994;264(5158):569–571.

    Article  PubMed  CAS  Google Scholar 

  7. Brooks PC, Montgomery AM, Rosenfeld M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994;79(7):1157–1164.

    Article  PubMed  CAS  Google Scholar 

  8. Bader BL, Rayburn H, Crowley D, Hynes RO. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 1998;95(4): 507–519.

    Article  PubMed  CAS  Google Scholar 

  9. Hodivala-Dilke KM, McHugh KP, Tsakiris DA, et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 1999;103(2):229–238.

    PubMed  CAS  Google Scholar 

  10. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 1972;175(3):409–416.

    Article  PubMed  CAS  Google Scholar 

  11. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1(1):27–31.

    Article  PubMed  CAS  Google Scholar 

  12. O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88(2):277–285.

    Article  PubMed  CAS  Google Scholar 

  13. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma [see comments]. Cell 1994;79(2):315–328.

    Article  PubMed  CAS  Google Scholar 

  14. Ramchandran R, Dhanabal M, Volk R, et al. Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Commun 1999;255(3):735–739.

    Article  PubMed  CAS  Google Scholar 

  15. Colorado PC, Torre A, Kamphaus G, et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 2000;60(9):2520–2526.

    PubMed  CAS  Google Scholar 

  16. Kamphaus GD, Colorado PC, Panka DJ, et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 2000;275(2):1209–1215.

    Article  PubMed  CAS  Google Scholar 

  17. Maeshima Y, Colorado PC, Torre A, et al. Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem 2000;275(28):21,340–21,348.

    Article  PubMed  CAS  Google Scholar 

  18. Petitclerc E, Boutaud A, Prestayko A, et al. New Functions for Non-collagenous Domains of Human Collagen Type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J Biol Chem 2000;275(11):8051–8061.

    Article  PubMed  CAS  Google Scholar 

  19. Luttun A, Carmeliet G, Carmeliet P. Vascular progenitors: from biology to treatment. Trends Cardiovasc Med 2002;12(2):88–96.

    Article  PubMed  CAS  Google Scholar 

  20. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002;109(3):337–346.

    Article  PubMed  CAS  Google Scholar 

  21. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003;107(8):1164–1169.

    Article  PubMed  Google Scholar 

  22. Takakura N, Watanabe T, Suenobu S, et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell 2000;102(2):199–209.

    Article  PubMed  CAS  Google Scholar 

  23. Hattori K, Heissig B, Wu Y, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 2002;8(8):841–849.

    PubMed  CAS  Google Scholar 

  24. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001;7(11):1194–1201.

    Article  PubMed  CAS  Google Scholar 

  25. Luttun A, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002;8(8):831–840.

    PubMed  CAS  Google Scholar 

  26. Asahara T, Isner JM. Endothelial progenitor cells for vascular regeneration. J Hematother Stem Cell Res 2002;11(2):171–178.

    Article  PubMed  Google Scholar 

  27. Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003;9(6):702–712.

    Article  PubMed  CAS  Google Scholar 

  28. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18(1):4–25.

    Article  PubMed  CAS  Google Scholar 

  29. Karkkainen MJ, Makinen T, Alitalo K. Lymphatic endothelium: a new frontier of metastasis research. Nat Cell Biol 2002;4(1):E2–E5.

    Article  PubMed  CAS  Google Scholar 

  30. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380(6573):439–442.

    Article  PubMed  CAS  Google Scholar 

  31. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380(6573):435–439.

    Article  PubMed  CAS  Google Scholar 

  32. Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001;7(5):575–583.

    Article  PubMed  CAS  Google Scholar 

  33. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246(4935):1306–1309.

    Article  PubMed  CAS  Google Scholar 

  34. Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998;273(46): 30,336–30,343.

    Article  PubMed  CAS  Google Scholar 

  35. Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 1998;273(21):13,313–13,316.

    Article  PubMed  CAS  Google Scholar 

  36. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219(4587):983–985.

    Article  PubMed  CAS  Google Scholar 

  37. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995;146(5):1029–1039.

    PubMed  CAS  Google Scholar 

  38. Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 1995;108(Pt 6):2369–2379.

    PubMed  CAS  Google Scholar 

  39. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991;5(12):1806–1814.

    PubMed  CAS  Google Scholar 

  40. Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991;266(18):11,947–11,954.

    PubMed  CAS  Google Scholar 

  41. Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 1993;4(12):1317–1326.

    PubMed  CAS  Google Scholar 

  42. Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 2002; 64(5-6):993–998.

    Article  PubMed  CAS  Google Scholar 

  43. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992;255(5047):989–991.

    Article  PubMed  Google Scholar 

  44. Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 1993;90(22): 10,705–10,709.

    Article  PubMed  CAS  Google Scholar 

  45. Fong GH, Zhang L, Bryce DM, Peng J. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 1999;126(13): 3015–3025.

    PubMed  CAS  Google Scholar 

  46. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9(6):669–676.

    Article  PubMed  CAS  Google Scholar 

  47. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995;376(6535):62–66.

    Article  PubMed  CAS  Google Scholar 

  48. Guo D, Jia Q, Song HY, Warren RS, Donner DB. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 1995;270(12):6729–6733.

    Article  PubMed  CAS  Google Scholar 

  49. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999;4(6):915–924.

    Article  PubMed  CAS  Google Scholar 

  50. Takahashi T, Ueno H, Shibuya M. VEGF activates protein kinase C-dependent, but Rasindependent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 1999;18(13):2221–2230.

    Article  PubMed  CAS  Google Scholar 

  51. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92(6):735–745.

    Article  PubMed  CAS  Google Scholar 

  52. Kawasaki T, Kitsukawa T, Bekku Y, et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 1999;126(21):4895–4902.

    PubMed  CAS  Google Scholar 

  53. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407(6801):242–248.

    Article  PubMed  CAS  Google Scholar 

  54. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997;277(5322):55–60.

    Article  PubMed  CAS  Google Scholar 

  55. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996;87(7):1171–1180.

    Article  PubMed  CAS  Google Scholar 

  56. Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 2002;3(3):411–423.

    Article  PubMed  CAS  Google Scholar 

  57. Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 1999;274(22):15,732–15,739.

    Article  PubMed  CAS  Google Scholar 

  58. Mandriota SJ, Pepper MS. Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 1998;83(8):852–859.

    PubMed  CAS  Google Scholar 

  59. Thurston G, Rudge JS, Ioffe E, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000;6(4):460–463.

    Article  PubMed  CAS  Google Scholar 

  60. Shim WS, Teh M, Bapna A, et al. Angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice. Exp Cell Res 2002;279(2):299–309.

    Article  PubMed  CAS  Google Scholar 

  61. Hattori K, Dias S, Heissig B, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001;193(9):1005–1014.

    Article  PubMed  CAS  Google Scholar 

  62. Visconti RP, Richardson CD, Sato TN. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci USA 2002;99(12):8219–8224.

    Article  PubMed  CAS  Google Scholar 

  63. Ahmad SA, Liu W, Jung YD, et al. The effects of angiopoietin-1 and-2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 2001;61(4):1255–1259.

    PubMed  CAS  Google Scholar 

  64. Luttun A, Dewerchin M, Collen D, Carmeliet P. The role of proteinases in angiogenesis, heart development, restenosis, atherosclerosis, myocardial ischemia, and stroke: insights from genetic studies. Curr Atheroscler Rep 2000;2(5):407–416.

    Article  PubMed  CAS  Google Scholar 

  65. Jackson C. Matrix metalloproteinases and angiogenesis. Curr Opin Nephrol Hypertens 2002;11(3):295–299.

    Article  PubMed  Google Scholar 

  66. Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000;2(10):737–744.

    Article  PubMed  CAS  Google Scholar 

  67. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420(6917):860–867.

    Article  PubMed  CAS  Google Scholar 

  68. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003;3(6):422–433.

    Article  PubMed  CAS  Google Scholar 

  69. Xu J, Rodriguez D, Petitclerc E, et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 2001;154(5): 1069–1079.

    Article  PubMed  CAS  Google Scholar 

  70. Hamano Y, Zeisberg M, Sugimoto H, et al. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 2003;3(6):589–601.

    Article  PubMed  CAS  Google Scholar 

  71. Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem 2003;278(6): 4238–4249.

    Article  PubMed  CAS  Google Scholar 

  72. Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA. Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci USA 2000;97(5):2202–2207.

    Article  PubMed  CAS  Google Scholar 

  73. Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 1998;92(3):391–400.

    Article  PubMed  CAS  Google Scholar 

  74. Holder N, Klein R. Eph receptors and ephrins: effectors of morphogenesis. Development 1999;126(10):2033–2044.

    PubMed  CAS  Google Scholar 

  75. Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 2002;3(7):475–486.

    Article  PubMed  CAS  Google Scholar 

  76. Gerety SS, Wang HU, Chen ZF, Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 1999;4(3):403–414.

    Article  PubMed  CAS  Google Scholar 

  77. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998;93(5):741–753.

    Article  PubMed  CAS  Google Scholar 

  78. Adams RH, Wilkinson GA, Weiss C, et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 1999;13(3):295–306.

    PubMed  CAS  Google Scholar 

  79. Marme D. The impact of anti-angiogenic agents on cancer therapy. J Cancer Res Clin Oncol 2003;129(11):607–620.

    Article  PubMed  Google Scholar 

  80. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999;285(5430):1028–1032.

    Article  PubMed  CAS  Google Scholar 

  81. Varner JA, Brooks PC, Cheresh DA. REVIEW: the integrin alpha V beta 3: angiogenesis and apoptosis. Cell Adhes Commun 1995;3(4):367–374.

    PubMed  CAS  Google Scholar 

  82. Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995;96(4):1815–1822.

    PubMed  CAS  Google Scholar 

  83. Friedlander M, Theesfeld CL, Sugita M, et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci USA 1996;93(18): 9764–9769.

    Article  PubMed  CAS  Google Scholar 

  84. Huang X, Griffiths M, Wu J, Farese RV, Jr, Sheppard D. Normal development, wound healing, and adenovirus susceptibility in beta5-deficient mice. Mol Cell Biol 2000;20(3):755–759.

    Article  PubMed  CAS  Google Scholar 

  85. Reynolds LE, Wyder L, Lively JC, et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 2002;8(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  86. Diaz-Gonzalez F, Forsyth J, Steiner B, Ginsberg MH. Trans-dominant inhibition of integrin function. Mol Biol Cell 1996;7(12):1939–1951.

    PubMed  CAS  Google Scholar 

  87. Reynolds AR, Reynolds LE, Nagel TE, et al. Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in beta3-integrin-deficient mice. Cancer Res 2004;64(23):8643–8650.

    Article  PubMed  CAS  Google Scholar 

  88. Carmeliet P, Lampugnani MG, Moons L, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999;98(2):147–157.

    Article  PubMed  CAS  Google Scholar 

  89. Liao F, Li Y, O’Connor W, et al. Monoclonal antibody to vascular endothelial-cadherin is a potent inhibitor of angiogenesis, tumor growth, and metastasis. Cancer Res 2000;60(24): 6805–6810.

    PubMed  CAS  Google Scholar 

  90. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86(3):353–364.

    Article  PubMed  CAS  Google Scholar 

  91. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995;1(2):149–153.

    Article  PubMed  CAS  Google Scholar 

  92. Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol 2003;13(2):159–167.

    Article  PubMed  CAS  Google Scholar 

  93. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999;284(5422):1994–1998.

    Article  PubMed  CAS  Google Scholar 

  94. Belotti D, Vergani V, Drudis T, et al. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 1996;2(11):1843–1849.

    PubMed  CAS  Google Scholar 

  95. Browder T, Butterfield CE, Kraling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000;60(7): 1878–1886.

    PubMed  CAS  Google Scholar 

  96. Rehn M, Pihlajaniemi T. Alpha 1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen. Proc Natl Acad Sci USA 1994;91(10):4234–4238.

    Article  PubMed  CAS  Google Scholar 

  97. Halfter W, Dong S, Schurer B, Cole GJ. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 1998;273(39):25,404–25,412.

    Article  PubMed  CAS  Google Scholar 

  98. Sasaki T, Fukai N, Mann K, Gohring W, Olsen BR, Timpl R. Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. Embo J 1998;17(15):4249–4256.

    Article  PubMed  CAS  Google Scholar 

  99. Suzuki OT, Sertie AL, Der Kaloustian VM, et al. Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am J Hum Genet 2002;71(6):1320–1329.

    Article  PubMed  CAS  Google Scholar 

  100. Muragaki Y, Abe N, Ninomiya Y, Olsen BR, Ooshima A. The human alpha 1(XV) collagen chain contains a large amino-terminal non-triple helical domain with a tandem repeat structure and homology to alpha 1(XVIII) collagen. J Biol Chem 1994;269(6):4042–4046.

    PubMed  CAS  Google Scholar 

  101. Myers JC, Kivirikko S, Gordon MK, Dion AS, Pihlajaniemi T. Identification of a previously unknown human collagen chain, alpha 1(XV), characterized by extensive interruptions in the triple-helical region. Proc Natl Acad Sci USA 1992;89(21):10,144–10,148.

    Article  PubMed  CAS  Google Scholar 

  102. Eklund L, Piuhola J, Komulainen J, et al. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc Natl Acad Sci USA 2001;98(3): 1194–1199.

    Article  PubMed  CAS  Google Scholar 

  103. Sasaki T, Larsson H, Tisi D, Claesson-Welsh L, Hohenester E, Timpl R. Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. J Mol Biol 2000;301(5):1179–1190.

    Article  PubMed  CAS  Google Scholar 

  104. Yamaguchi N, Anand-Apte B, Lee M, et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. Embo J 1999;18(16): 4414–4423.

    Article  PubMed  CAS  Google Scholar 

  105. Dhanabal M, Volk R, Ramchandran R, Simons M, Sukhatme VP. Cloning, expression, and in vitro activity of human endostatin. Biochem Biophys Res Commun 1999;258(2):345–352.

    Article  PubMed  CAS  Google Scholar 

  106. Hanai J, Dhanabal M, Karumanchi SA, et al. Endostatin causes G1 arrest of endothelial cells through inhibition of cyclin D1. J Biol Chem 2002;277(19):16,464–16,469.

    Article  PubMed  CAS  Google Scholar 

  107. Dhanabal M, Ramchandran R, Volk R, et al. Endostatin: yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res 1999;59(1):189–197.

    PubMed  CAS  Google Scholar 

  108. Hajitou A, Grignet C, Devy L, et al. The antitumoral effect of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cells. Faseb J 2002;16(13):1802–1804.

    PubMed  CAS  Google Scholar 

  109. Kim YM, Hwang S, Pyun BJ, et al. Endostatin blocks vascular endothelial growth factormediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 2002;277(31): 27,872–27,879.

    Article  PubMed  CAS  Google Scholar 

  110. Matsuno H, Yudoh K, Uzuki M, et al. Treatment with the angiogenesis inhibitor endostatin: a novel therapy in rheumatoid arthritis. J Rheumatol 2002;29(5):890–895.

    PubMed  CAS  Google Scholar 

  111. Takahashi K, Saishin Y, Silva RL, et al. Intraocular expression of endostatin reduces VEGF-induced retinal vascular permeability, neovascularization, and retinal detachment. Faseb J 2003;17(8):896–898.

    PubMed  CAS  Google Scholar 

  112. Cattaneo MG, Pola S, Francescato P, Chillemi F, Vicentini LM. Human endostatin-derived synthetic peptides possess potent antiangiogenic properties in vitro and in vivo. Exp Cell Res 2003;283(2):230–236.

    Article  PubMed  CAS  Google Scholar 

  113. Rehn M, Veikkola T, Kukk-Valdre E, et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 2001;98(3):1024–1029.

    Article  PubMed  CAS  Google Scholar 

  114. Wickstrom SA, Alitalo K, Keski-Oja J. Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 2002;62(19):5580–5589.

    PubMed  CAS  Google Scholar 

  115. Wickstrom SA, Alitalo K, Keski-Oja J. Endostatin associates with lipid rafts and induces reorganization of the actin cytoskeleton via down-regulation of RhoA activity. J Biol Chem 2003;278(39):37,895–37,901.

    Article  PubMed  Google Scholar 

  116. Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, Kalluri R. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA 2003;100(8):4766–4771.

    Article  PubMed  CAS  Google Scholar 

  117. Karumanchi SA, Jha V, Ramchandran R, et al. Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 2001;7(4):811–822.

    Article  PubMed  CAS  Google Scholar 

  118. Yu Y, Moulton KS, Khan MK, et al. E-selectin is required for the antiangiogenic activity of endostatin. Proc Natl Acad Sci USA 2004;101(21):8005–8010.

    Article  PubMed  CAS  Google Scholar 

  119. Abdollahi A, Hahnfeldt P, Maercker C, et al. Endostatin’s antiangiogenic signaling network. Mol Cell 2004;13(5):649–663.

    Article  PubMed  CAS  Google Scholar 

  120. Prockop DJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 1995;64:403–434.

    Article  PubMed  CAS  Google Scholar 

  121. Madri JA. Extracellular matrix modulation of vascular cell behaviour. Transpl Immunol 1997;5(3):179–183.

    Article  PubMed  CAS  Google Scholar 

  122. Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 2004;20(1):33–43.

    Article  PubMed  CAS  Google Scholar 

  123. Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 1992;27(1-2):93–127.

    Article  PubMed  CAS  Google Scholar 

  124. Kalluri R, Shield CF, Todd P, Hudson BG, Neilson EG. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J Clin Invest 1997;99(10):2470–2478.

    PubMed  CAS  Google Scholar 

  125. Kashtan CE. Alport syndrome and thin glomerular basement membrane disease. J Am Soc Nephrol 1998;9(9):1736–1750.

    PubMed  CAS  Google Scholar 

  126. Frojdman K, Pelliniemi LJ, Virtanen I. Differential distribution of type IV collagen chains in the developing rat testis and ovary. Differentiation 1998;63(3):125–130.

    PubMed  CAS  Google Scholar 

  127. Hudson BG, Reeders ST, Tryggvason K. Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem 1993;268(35):26,033–26,036.

    PubMed  CAS  Google Scholar 

  128. Kalluri R, Sun MJ, Hudson BG, Neilson EG. The Goodpasture autoantigen. Structural delineation of two immunologically privileged epitopes on alpha3(IV) chain of type IV collagen. J Biol Chem 1996;271(15):9062–9068.

    Article  PubMed  CAS  Google Scholar 

  129. Hellmark T, Segelmark M, Unger C, Burkhardt H, Saus J, Wieslander J. Identification of a clinically relevant immunodominant region of collagen IV in Goodpasture disease [see comments]. Kidney Int 1999;55(3):936–944.

    Article  PubMed  CAS  Google Scholar 

  130. Hellmark T, Burkhardt H, Wieslander J. Goodpasture disease. Characterization of a single conformational epitope as the target of pathogenic autoantibodies. J Biol Chem 1999;274(36):25,862–25,868.

    Article  PubMed  CAS  Google Scholar 

  131. Netzer KO, Leinonen A, Boutaud A, et al. The goodpasture autoantigen. Mapping the major conformational epitope(s) of alpha3(iv) collagen to residues 17-31 and 127-141 of the nc1 domain [In Process Citation]. J Biol Chem 1999;274(16):11,267–11,274.

    Article  PubMed  CAS  Google Scholar 

  132. Han J, Ohno N, Pasco S, Monboisse JC, Borel JP, Kefalides NA. A cell binding domain from the alpha3 chain of type IV collagen inhibits proliferation of melanoma cells. J Biol Chem 1997;272(33):20,395–20,401.

    Article  PubMed  CAS  Google Scholar 

  133. Panka DJ, Mier JW. Canstatin inhibits Akt activation and induces Fas-dependent apoptosis in endothelial cells. J Biol Chem 2003;278(39):37,632–37,636.

    Article  PubMed  CAS  Google Scholar 

  134. Shahan TA, Ziaie Z, Pasco S, et al. Identification of CD47/integrin-associated protein and alpha(v)beta3 as two receptors for the alpha3(IV) chain of type IV collagen on tumor cells. Cancer Res 1999;59(18):4584–4590.

    PubMed  CAS  Google Scholar 

  135. Maeshima Y, Colorado PC, Kalluri R. Two RGD-independent alpha vbeta 3 integrin binding sites on tumstatin regulate distinct anti-tumor properties. J Biol Chem 2000;275(31): 23,745–23,750.

    Article  PubMed  CAS  Google Scholar 

  136. Maeshima Y, Manfredi M, Reimer C, et al. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J Biol Chem 2001;276(18):15,240–15,248.

    Article  PubMed  CAS  Google Scholar 

  137. Maeshima Y, Yerramalla UL, Dhanabal M, et al. Extracellular matrix-derived peptide binds to alpha(v)beta(3) integrin and inhibits angiogenesis. J Biol Chem 2001;276(34):31,959–31,968.

    Article  PubMed  CAS  Google Scholar 

  138. Brown EJ, Schreiber SL. A signaling pathway to translational control. Cell 1996;86(4): 517–520.

    Article  PubMed  CAS  Google Scholar 

  139. Bushell M, McKendrick L, Janicke RU, Clemens MJ, Morley SJ. Caspase-3 is necessary and sufficient for cleavage of protein synthesis eukaryotic initiation factor 4G during apoptosis. FEBS Lett 1999;451(3):332–336.

    Article  PubMed  CAS  Google Scholar 

  140. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001;15(7):807–826.

    Article  PubMed  CAS  Google Scholar 

  141. Maeshima Y, Sudhakar A, Lively JC, et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 2002;295(5552):140–143.

    Article  PubMed  CAS  Google Scholar 

  142. Vuori K. Integrin signaling: tyrosine phosphorylation events in focal adhesions. J Membr Biol 1998;165(3):191–199.

    Article  PubMed  CAS  Google Scholar 

  143. Ruoslahti E. Fibronectin and its integrin receptors in cancer. Adv Cancer Res 1999;76:1–20.

    Article  PubMed  CAS  Google Scholar 

  144. Chen HC, Guan JL. Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 1994;91(21):10,148–10,152.

    Article  PubMed  CAS  Google Scholar 

  145. Vinals F, Chambard JC, Pouyssegur J. p70 S6 kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation. J Biol Chem 1999;274(38):26,776–26,782.

    Article  PubMed  CAS  Google Scholar 

  146. Brunn GJ, Hudson CC, Sekulic A, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997;277(5322):99–101.

    Article  PubMed  CAS  Google Scholar 

  147. Gingras AC, Gygi SP, Raught B, et al. Regulation of 4E-BP1 phosphorylation: a novel twostep mechanism. Genes Dev 1999;13(11):1422–1437.

    PubMed  CAS  Google Scholar 

  148. Pause A, Belsham GJ, Gingras AC, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 1994;371(6500):762–767.

    Article  PubMed  CAS  Google Scholar 

  149. Sund M, Hamano Y, Sugimoto H, et al. Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc Natl Acad Sci USA 2005;102(8):2934–2939.

    Article  PubMed  CAS  Google Scholar 

  150. Ritz E, Rychlik I, Locatelli F, Halimi S. End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions. Am J Kidney Dis 1999;34(5):795–808.

    PubMed  CAS  Google Scholar 

  151. Osterby R, Parving HH, Nyberg G, et al. A strong correlation between glomerular filtration rate and filtration surface in diabetic nephropathy. Diabetologia 1988;31(5):265–270.

    PubMed  CAS  Google Scholar 

  152. Makino H, Yamasaki Y, Haramoto T, et al. Ultrastructural changes of extracellular matrices in diabetic nephropathy revealed by high resolution scanning and immunoelectron microscopy. Lab Invest 1993;68(1):45–55.

    PubMed  CAS  Google Scholar 

  153. Makino H, Kashihara N, Sugiyama H, et al. Phenotypic modulation of the mesangium reflected by contractile proteins in diabetes. Diabetes 1996;45(4):488–495.

    Article  PubMed  CAS  Google Scholar 

  154. Yamamoto Y, Maeshima Y, Kitayama H, et al. Tumstatin Peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes 2004;53(7):1831–1840.

    Article  PubMed  CAS  Google Scholar 

  155. Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998;67:609–652.

    Article  PubMed  CAS  Google Scholar 

  156. Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y. Perlecan is essential for cartilage and cephalic development. Nat Genet 1999;23(3):354–358.

    Article  PubMed  CAS  Google Scholar 

  157. Costell M, Carmona R, Gustafsson E, Gonzalez-Iriarte M, Fassler R, Munoz-Chapuli R. Hyperplastic conotruncal endocardial cushions and transposition of great arteries in perlecan-null mice. Circ Res 2002;91(2):158–164.

    Article  PubMed  CAS  Google Scholar 

  158. Arikawa-Hirasawa E, Wilcox WR, Le AH, et al. Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet 2001;27(4):431–434.

    Article  PubMed  CAS  Google Scholar 

  159. Nicole S, Davoine CS, Topaloglu H, et al. Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nat Genet 2000;26(4):480–483.

    Article  PubMed  CAS  Google Scholar 

  160. Bix G, Iozzo RV. Matrix revolutions: ‘tails’ of basement-membrane components with angiostatic functions. Trends Cell Biol 2005;15(1):52–60.

    Article  PubMed  CAS  Google Scholar 

  161. Bix G, Fu J, Gonzalez EM, et al. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through alpha2beta1 integrin. J Cell Biol 2004; 166(1):97–109.

    Article  PubMed  CAS  Google Scholar 

  162. Sugimoto H, Hamano Y, Charytan D, et al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 2003;278(15):12,605–12,608.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Maeshima, Y. (2007). Angiogenesis and Cancer. In: Srivastava, R. (eds) Apoptosis, Cell Signaling, and Human Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-200-7_2

Download citation

Publish with us

Policies and ethics