Skip to main content

Summary

Conserved signaling pathways that activate the mitogen-activated protein kinases (MAPKs) are involved in a vast array of biological processes, including cell proliferation, differentiation, motility, and survival. Three subfamilies of MAPK have been extensively studied: extracellular signal-regulated kinases (ERK), p38-MAPK, and c-Jun N-terminal kinase (JNK). The ERKs play roles in cell proliferation, survival, and motility, and inhibitors of this pathway are currently being tested as potential anticancer agents. The p38-MAPKs are involved in the immune response and the response to stress, and have been suggested to contribute to diseases such as asthma and autoimmunity. The JNKs are critical regulators of transcription and apoptosis, and JNK pathway inhibitors are currently being tested for the treatment of rheumatoid arthritis and neurodegenerative diseases. This chapter reviews the biological functions of the MAPKs with an emphasis on the regulation of cell survival and proliferation by these enzymes, and will also discuss the development of MAPK pathway inhibitors for the treatment of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen Z, Gibson TB, Robinson F, et al. MAP kinases. Chem Rev 2001;101:2449–2476.

    PubMed  CAS  Google Scholar 

  2. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81:807–869.

    PubMed  CAS  Google Scholar 

  3. Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001;22:153–183.

    PubMed  CAS  Google Scholar 

  4. Tanoue T, Nishida E. Molecular recognitions in the MAP kinase cascades. Cell Signal 2003;15:455–462.

    PubMed  CAS  Google Scholar 

  5. Boulton TG, Yancopoulos GD, Gregory JS, et al. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 1990;249:64–67.

    PubMed  CAS  Google Scholar 

  6. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res 1998;74:49–139.

    PubMed  CAS  Google Scholar 

  7. Colicelli J. Human RAS superfamily proteins and related GTPases. Sci STKE 2004; 2004:RE13.

    PubMed  Google Scholar 

  8. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol 2004;5:875–885.

    PubMed  CAS  Google Scholar 

  9. Hallberg B, Rayter SI, Downward J. Interaction of Ras and Raf in intact mammalian cells upon extracellular stimulation. J Biol Chem 1994;269:3913–3916.

    PubMed  CAS  Google Scholar 

  10. Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 2001;12:397–408.

    PubMed  CAS  Google Scholar 

  11. Chen R-H, Sarnecki C, Blenis J. Nuclear localization and regulation of the erk-and rsk-encoded protein kinases. Mol Cell Biol 1992;12:915–927.

    Google Scholar 

  12. Lenormand P, Sardet C, Pages G, L’Allemain G, Brunet A, Pouyssegur J. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol 1993;122:1079–1088.

    PubMed  CAS  Google Scholar 

  13. Gonzalez FA, Seth A, Raden DL, Bowman DS, Fay FS, Davis RJ. Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J Cell Biol 1993;122:1089–1101.

    PubMed  CAS  Google Scholar 

  14. Pouyssegur J, Volmat V, Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 2002;64:755–763.

    PubMed  CAS  Google Scholar 

  15. Roux PP, Blenis J. ER Kand p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions. Microbiol Mol Biol Rev 2004;68:320–344.

    PubMed  CAS  Google Scholar 

  16. Pages G, Guerin S, Grall D, et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 1999;286:1374–1377.

    PubMed  CAS  Google Scholar 

  17. Saba-El-Leil MK, Vella FD, Vernay B, et al. An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep 2003;4:964–968.

    PubMed  CAS  Google Scholar 

  18. Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004;23:2838–2849.

    PubMed  CAS  Google Scholar 

  19. Chen J, Fujii K, Zhang L, Roberts T, Fu H. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA 2001;98:7783–7788.

    PubMed  CAS  Google Scholar 

  20. Baumann B, Weber CK, Troppmair J, et al. Raf induces NF-kappaB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci USA 2000;97:4615–4620.

    PubMed  CAS  Google Scholar 

  21. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science 1999;286:1358–1362.

    PubMed  CAS  Google Scholar 

  22. Shimamura A, Ballif BA, Richards SA, Blenis J. Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr Biol 2000;10:127–135.

    PubMed  CAS  Google Scholar 

  23. Ginty DD, Bonni A, Greenberg ME. Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 1994; 77:713–725.

    PubMed  Google Scholar 

  24. Xing J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 1996;273:959–963.

    PubMed  CAS  Google Scholar 

  25. Schouten GJ, Vertegaal ACO, Whiteside ST, et al. IkBa is a target for the mitogen-activated 90 kDa ribosomal S6 kinase. The EMBO Journal 1997;16:3133–3144.

    PubMed  CAS  Google Scholar 

  26. Ghoda L, Lin X, Greene WC. The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IkappaBalpha and stimulates its degradation in vitro. J Biol Chem 1997;272:21,281-21,288.

    Google Scholar 

  27. Buck M, Poli V, Hunter T, Chojkier M. C/EBPbeta phosphorylation by RSK creates a functional XEXD caspase inhibitory box critical for cell survival. Mol Cell 2001; 8: 807–816.

    PubMed  CAS  Google Scholar 

  28. Buck M, Poli V, van der Geer P, Chojkier M, Hunter T. Phosphorylation of rat serine 105 or mouse threonine 217 in C/EBP beta is required for hepatocyte proliferation induced by TGF alpha. Mol Cell 1999;4:1087–1092.

    PubMed  CAS  Google Scholar 

  29. Roovers K, Assoian RK. Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 2000;22:818–826.

    PubMed  CAS  Google Scholar 

  30. Pages G, Lenormand P, L’Allemain G, Chambard JC, Meloche S, Pouyssegur J. Mitogenactivated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA 1993;90:8319–8323.

    PubMed  CAS  Google Scholar 

  31. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR. A synthetic inhibitor of the mitogenactivated protein kinase cascade. Proc Natl Acad Sci USA 1995;92:7686–7689.

    PubMed  CAS  Google Scholar 

  32. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 1995;270:27,489-27,494.

    Google Scholar 

  33. Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996;271:20,608-20,616.

    Google Scholar 

  34. Cheng M, Sexl V, Sherr CJ, Roussel MF. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci USA 1998;95:1091–1096.

    PubMed  CAS  Google Scholar 

  35. Cook SJ, Aziz N, McMahon M. The repertoire of fos and jun proteins expressed during the G1 phase of the cell cycle is determined by the duration of mitogen-activated protein kinase activation. Mol Cell Biol 1999;19:330–341.

    PubMed  CAS  Google Scholar 

  36. Murphy LO, MacKeigan JP, Blenis J. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol Cell Biol 2004;24:144–153.

    PubMed  CAS  Google Scholar 

  37. Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J. Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 2002;4:556–564.

    PubMed  CAS  Google Scholar 

  38. Okazaki K, Sagata N. The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. Embo J 1995;14:5048–5059.

    PubMed  CAS  Google Scholar 

  39. Chen RH, Juo PC, Curran T, Blenis J. Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. Oncogene 1996;12:1493–1502.

    PubMed  CAS  Google Scholar 

  40. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 2004;101:13,489-13,494.

    Google Scholar 

  41. Ballif BA, Roux PP, Gerber SA, MacKeigan JP, Blenis J, Gygi SP. Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc Natl Acad Sci USA 2005;102:667–672.

    PubMed  CAS  Google Scholar 

  42. Smith JA, Poteet-Smith CE, Xu Y, Errington TM, Hecht SM, Lannigan DA. Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res 2005;65:1027–1034.

    PubMed  CAS  Google Scholar 

  43. Clark DE, Errington TM, Smith JA, Frierson HF, Jr, Weber MJ, Lannigan DA. The Serine/Threonine Protein Kinase, p90 Ribosomal S6 Kinase, Is an Important Regulator of Prostate Cancer Cell Proliferation. Cancer Res 2005;65:3108–3116.

    PubMed  CAS  Google Scholar 

  44. Vial E, Pouyssegur J. Regulation of Tumor Cell Motility by ERK Mitogen-Activated Protein Kinases. Ann NY Acad Sci 2004;1030:208–218.

    CAS  Google Scholar 

  45. Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev 2003;22:395–403.

    PubMed  CAS  Google Scholar 

  46. Webb CP, Van Aelst L, Wigler MH, Woude GF. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci USA 1998;95:8773–8778.

    PubMed  CAS  Google Scholar 

  47. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 1997;137:481–492.

    PubMed  CAS  Google Scholar 

  48. Carragher NO, Westhoff MA, Fincham VJ, Schaller MD, Frame MC. A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src. Curr Biol 2003; 13:1442–1450.

    PubMed  CAS  Google Scholar 

  49. Mansfield PJ, Shayman JA, Boxer LA. Regulation of polymorphonuclear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase. Blood 2000;95:2407–2412.

    PubMed  CAS  Google Scholar 

  50. Vial E, Sahai E, Marshall CJ. ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 2003;4:67–79.

    PubMed  CAS  Google Scholar 

  51. Woo MS, Ohta Y, Rabinovitz I, Stossel TP, Blenis J. Ribosomal S6 Kinase (RSK) Regulates Phosphorylation of Filamin A on an Important Regulatory Site. Mol Cell Biol 2004;24: 3025–3035.

    PubMed  CAS  Google Scholar 

  52. Chong H, Vikis HG, Guan KL. Mechanisms of regulating the Raf kinase family. Cell Signal 2003;15:463–469.

    PubMed  CAS  Google Scholar 

  53. Mitsuuchi Y, Testa JR. Cytogenetics and molecular genetics of lung cancer. Am J Med Genet 2002;115:183–188.

    PubMed  Google Scholar 

  54. Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet 2002;3:101–128.

    PubMed  CAS  Google Scholar 

  55. Jaffee EM, Hruban RH, Canto M, Kern SE. Focus on pancreas cancer. Cancer Cell 2002; 2:25–28.

    PubMed  CAS  Google Scholar 

  56. Garcia-Rostan G, Zhao H, Camp RL, et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 2003;21:3226–3235.

    PubMed  CAS  Google Scholar 

  57. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949–954.

    PubMed  CAS  Google Scholar 

  58. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 2004;4:937–947.

    PubMed  CAS  Google Scholar 

  59. Janes PW, Daly RJ, deFazio A, Sutherland RL. Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene 1994;9:3601–3608.

    PubMed  CAS  Google Scholar 

  60. Clark GJ, Der CJ. Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res Treat 1995;35:133–144.

    PubMed  CAS  Google Scholar 

  61. Kohno M, Pouyssegur J. Pharmacological inhibitors of the ERK signaling pathway: application as anticancer drugs. Prog Cell Cycle Res 2003;5:219–224.

    PubMed  Google Scholar 

  62. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994;265:808–811.

    PubMed  CAS  Google Scholar 

  63. Lee JC, Laydon JT, McDonnell PC, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994;372:739–746.

    PubMed  CAS  Google Scholar 

  64. Rouse J, Cohen P, Trigon S, et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell1994;78:1027–1037.

    PubMed  CAS  Google Scholar 

  65. Allen M, Svensson L, Roach M, Hambor J, McNeish J, Gabel CA. Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J Exp Med 2000;191: 859–870.

    PubMed  CAS  Google Scholar 

  66. Adams RH, Porras A, Alonso G, et al. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 2000;6:109–1160.

    PubMed  CAS  Google Scholar 

  67. Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M. Requirement_for p38alpha in erythropoietin expression: a rolefor stresskinases inerythropoiesis. Cell 2000; 102:221–231.

    PubMed  CAS  Google Scholar 

  68. Mudgett JS, Ding J, Guh-Siesel L, et al. Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci USA 2000;397: 10,454-10,459.

    Google Scholar 

  69. Takenaka K, Moriguchi T, Nishida E. Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 1998;280:599–602.

    PubMed  CAS  Google Scholar 

  70. Engelberg D. Stress-activated protein kinases-tumor suppressors or tumor initiators? Semin Cancer Biol 2004;14:271–282.

    PubMed  CAS  Google Scholar 

  71. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal 2000;12:1–13.

    PubMed  CAS  Google Scholar 

  72. Kontoyiannis D, Kotlyarov A, Carballo E, et al. Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology. EMBO J 2001;20:3760–3770.

    PubMed  CAS  Google Scholar 

  73. Vasudevan S, Peltz SW. Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell 2001;7:1191–1200.

    PubMed  CAS  Google Scholar 

  74. Winzen R, Kracht M, Ritter B, et al. The p38 MAP kinase pathway signals for cytokineinduced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. Embo J 1999;18:4969–4980.

    PubMed  CAS  Google Scholar 

  75. Kotlyarov A, Yannoni Y, Fritz S, et al. Distinct cellular functions of MK2. Mol Cell Biol 2002;22:4827–4835.

    PubMed  CAS  Google Scholar 

  76. Rousseau S, Morrice N, Peggie M, Campbell DG, Gaestel M, Cohen P. Inhibition of SAPK2a/p38 prevents hnRNP A0 phosphorylation by MAPKAP-K2 and its interaction with cytokine mRNAs. Embo J 2002;21:6505–6514.

    PubMed  CAS  Google Scholar 

  77. Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, Clark AR. Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 2001; 21:6461–6469.

    PubMed  CAS  Google Scholar 

  78. Bollig F, Winzen R, Gaestel M, Kostka S, Resch K, Holtmann H. Affinity purification of ARE-binding proteins identifies polyA-binding protein 1 as a potential substrate in MK2-induced mRNA stabilization. Biochem Biophys Res Commun 2003;301:665–670.

    PubMed  CAS  Google Scholar 

  79. Han Q, Leng J, Bian D, et al. Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem 2002; 277:48,379-48,385.

    Google Scholar 

  80. Tran H, Maurer F, Nagamine Y. Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol Cell Biol 2003;23:7177–7188.

    PubMed  CAS  Google Scholar 

  81. Porras A, Zuluaga S, Black E, et al. P38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell 2004;15:922–933.

    PubMed  CAS  Google Scholar 

  82. Park JM, Greten FR, Li ZW, Karin M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 2002;297:2048–2051.

    PubMed  CAS  Google Scholar 

  83. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995;270:1326–1331.

    PubMed  CAS  Google Scholar 

  84. Brancho D, Tanaka N, Jaeschke A, et al. Mechanism of p38 MAP kinase activation in vivo. Genes Dev 2003;17:1969–1978.

    PubMed  CAS  Google Scholar 

  85. Bulavin DV, Higashimoto Y, Popoff IJ, et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 2001;411:102–107.

    PubMed  CAS  Google Scholar 

  86. Garner AP, Weston CR, Todd DE, Balmanno K, Cook SJ. Delta MEKK3:ER* activation induces a p38 alpha/beta 2-dependent cell cycle arrest at the G2 checkpoint. Oncogene 2002;21:8089–8104.

    PubMed  CAS  Google Scholar 

  87. Todd DE, Densham RM, Molton SA, et al. ERK1/2 and p38 cooperate to induce a p21CIP1-dependent G1 cell cycle arrest. Oncogene 2004;23:3284–3295.

    PubMed  CAS  Google Scholar 

  88. Schultz RM. Potential of p38 MAP kinase inhibitors in the treatment of cancer. Prog Drug Res 2003;60:59–92.

    PubMed  CAS  Google Scholar 

  89. Kyriakis JM, Avruch J. pp54 microtubule-associated protein 2 kinase. A novel serine/threonine protein kinase regulated by phosphorylation and stimulated by poly-L-lysine. J Biol Chem 1990;265:17,355-17,363.

    Google Scholar 

  90. Kyriakis JM, Banarjee P, Nikolakaki E, et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 1994;369:156–160.

    PubMed  CAS  Google Scholar 

  91. Derijard B, Hibi M, Wu I-H, et al. JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 1994;76:1025–1037.

    PubMed  CAS  Google Scholar 

  92. Gupta S, Barrett T, Whitmarsh AJ, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. Embo J 1996;15:2760–2770.

    PubMed  CAS  Google Scholar 

  93. McDonald PH, Chow CW, Miller WE, et al. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 2000;290:1574–1577.

    PubMed  CAS  Google Scholar 

  94. Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ. A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 1998;281:1671–1674.

    PubMed  CAS  Google Scholar 

  95. It M, Yoshioka K, Akechi M, et al. JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol Cell Biol 1999;19:7539–7548.

    Google Scholar 

  96. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Genet Dev 2002; 12:14–21.

    PubMed  CAS  Google Scholar 

  97. Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA. Defective T cell differentiation in the absence of Jnk1. Science 1998;282:2092–2095.

    PubMed  CAS  Google Scholar 

  98. Yang DD, Conze D, Whitmarsh AJ, et al. Differentiation of CD4??T cells to Th1 cells requires MAP kinase JNK2. Immunity 1998;9:575–585.

    PubMed  CAS  Google Scholar 

  99. Sabapathy K, Hu Y, Kallunki T, et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr Biol 1999;9:116–125.

    PubMed  CAS  Google Scholar 

  100. Yang DD, Kuan CY, Whitmarsh AJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 1997;389:865–870.

    PubMed  CAS  Google Scholar 

  101. Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999;22:667–676.

    PubMed  CAS  Google Scholar 

  102. Verheij M, Bose R, Lin XH, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996;380:75–79.

    PubMed  CAS  Google Scholar 

  103. Resnick L, Fennell M. Targeting JNK3 for the treatment of neurodegenerative disorders. Drug Discov Today 2004;9:932–939.

    PubMed  CAS  Google Scholar 

  104. Yoshida S, Fukino K, Harada H, et al. The c-Jun NH2-terminal kinase3 (JNK3) gene: genomic structure, chromosomal assignment, and loss of expression in brain tumors. J Hum Genet 2001;46:182–187.

    PubMed  CAS  Google Scholar 

  105. Kim HL, Vander Griend DJ, Yang X, et al. Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostatic cancers. Cancer Res 2001;61:2833–2837.

    PubMed  CAS  Google Scholar 

  106. Han Z, Boyle DL, Chang L, et al. c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 2001;108:73–81.

    PubMed  CAS  Google Scholar 

  107. Yan L, Carr J, Ashby PRE, et al. Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev Biol2003;3:11.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Roux, P.P., Blenis, J. (2006). MAPK Signaling in Human Diseases. In: Srivastava, R. (eds) Apoptosis, Cell Signaling, and Human Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-199-4_6

Download citation

Publish with us

Policies and ethics