Skip to main content
  • 994 Accesses

Summary

Programmed cell death (PCD) is a vital part of the normal development of metazoans. PCD requires a conserved class of cysteine proteases, termed caspases, to affect the controlled demise of cells. When the regulatory pathways controlling cell death are perturbed through mutation, disease states, including cancers and neurodegenerative disorders, can occur. Therefore, caspases and the molecules regulating their function are potential candidates for therapeutic targets. This chapter describes caspase structure, regulation, and function in the context of biological function and the specific roles they play in the protection of living systems. A section is also dedicated to the emerging field concerning the nonapoptotic functions of “apoptotic” caspases in development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vaux DL, Flavell RA. Apoptosis genes and autoimmunity. Curr Opin Immunol 2000;12(6):719–724.

    Article  PubMed  CAS  Google Scholar 

  2. Fearnhead HO. Getting back on track, or what to do when apoptosis is de-railed: recoupling oncogenes to the apoptotic machinery. Cancer Biol Ther 2004;3(1):21–28.

    PubMed  Google Scholar 

  3. Bickler PE, Donohoe PH. Adaptive responses of vertebrate neurons to hypoxia. J Exp Biol 2002;205(Pt 23):3579–3586.

    PubMed  CAS  Google Scholar 

  4. Waldmeier PC, Tatton WG. Interrupting apoptosis in neurodegenerative disease: potential for effective therapy? Drug Discov Today 2004;9(5):210–218.

    Article  PubMed  CAS  Google Scholar 

  5. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000;407(6805):802–809.

    Article  PubMed  CAS  Google Scholar 

  6. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986;44(6):817–829.

    Article  PubMed  CAS  Google Scholar 

  7. Yuan J, Shaham S, Ledoux S, et al. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993;75(4):641–652.

    Article  PubMed  CAS  Google Scholar 

  8. Lamkanfi M, Declercq W, Kalai M, et al. Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 2002;9(4):358–361.

    Article  PubMed  CAS  Google Scholar 

  9. Kumar S. Mechanisms mediating caspase activation in cell death. Cell Death Differ 1999;6(11):1060–1066.

    Article  PubMed  CAS  Google Scholar 

  10. Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002;9(3):459–470.

    Article  PubMed  CAS  Google Scholar 

  11. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999;6(11):1028–1042.

    Article  PubMed  CAS  Google Scholar 

  12. Kumar S, Doumanis J. The fly caspases. Cell Death Differ 2000;7(11):1039–1044.

    Article  PubMed  CAS  Google Scholar 

  13. Doumanis J, Quinn L, Richardson H, et al. STRICA, a novel Drosophila melanogaster caspase with an unusual serine/threonine-rich prodomain, interacts with DIAP1 and DIAP2. Cell Death Differ 2001;8(4):387–394.

    Article  PubMed  CAS  Google Scholar 

  14. Shi Y. A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 2001;8(5):394–401.

    Article  PubMed  CAS  Google Scholar 

  15. Salvesen GS, Dixit VM. Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 1999;96(20):10,964–10,967.

    Article  PubMed  CAS  Google Scholar 

  16. Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol 2003;15(6):725–731.

    Article  PubMed  CAS  Google Scholar 

  17. Boatright KM, Renatus M, Scott FL, et al. A unified model for apical caspase activation. Mol Cell 2003;11(2):529–541.

    Article  PubMed  CAS  Google Scholar 

  18. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003;10(1):26–35.

    Article  PubMed  CAS  Google Scholar 

  19. Donepudi M, Mac Sweeney A, Briand C, et al. Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 2003;11(2):543–549.

    Article  PubMed  CAS  Google Scholar 

  20. Wei MC, Lindsten T, Mootha VK, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 2000;14(16):2060–2071.

    PubMed  CAS  Google Scholar 

  21. Rodriguez J, Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 1999;13(24):3179–3184.

    Article  PubMed  CAS  Google Scholar 

  22. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91(4):479–489.

    Article  PubMed  CAS  Google Scholar 

  23. Hegde R, Srinivasula SM, Zhang Z, et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 2002;277(1):432–438.

    Article  PubMed  CAS  Google Scholar 

  24. Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102(1):33–42.

    Article  PubMed  CAS  Google Scholar 

  25. van Gurp M, Festjens N, van Loo G, et al. Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 2003;304(3):487–497.

    Article  PubMed  CAS  Google Scholar 

  26. Chinnaiyan AM, Ot’Rourke K, Lane BR, et al. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 1997;275(5303):1122–1126.

    Article  PubMed  CAS  Google Scholar 

  27. Chinnaiyan AM, Chaudhary D, O’Rourke K, et al. Role of CED-4 in the activation of CED-3. Nature 1997;388(6644):728–729.

    Article  PubMed  CAS  Google Scholar 

  28. Quinn LM, Dorstyn L, Mills K, et al. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J Biol Chem 2000;275(51):40,416–40,424.

    Article  PubMed  CAS  Google Scholar 

  29. Dorstyn L, Read S, Cakouros D, et al. The role of cytochrome c in caspase activation in Drosophila melanogaster cells. J Cell Biol 2002;156(6):1089–1098.

    Article  PubMed  CAS  Google Scholar 

  30. Wilson R, Goyal L, Ditzel M, et al. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nat Cell Biol 2002;4(6):445–450.

    Article  PubMed  CAS  Google Scholar 

  31. Hay BA. Understanding IAP function and regulation: a view from Drosophila. Cell Death Differ 2000;7(11):1045–1056.

    Article  PubMed  CAS  Google Scholar 

  32. Wang SL, Hawkins CJ, Yoo SJ, et al. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 1999;98(4):453–463.

    Article  PubMed  CAS  Google Scholar 

  33. Goyal L, McCall K, Agapite J, et al. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 2000;19(4):589–597.

    Article  PubMed  CAS  Google Scholar 

  34. Chai J, Du C, Wu JW, et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 2000;406(6798):855–862.

    Article  PubMed  CAS  Google Scholar 

  35. Hawkins CJ, Yoo SJ, Peterson EP, et al. The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J Biol Chem 2000;275(35):27,084–27,093.

    PubMed  CAS  Google Scholar 

  36. Hengartner MO, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994;76(4):665–676.

    Article  PubMed  CAS  Google Scholar 

  37. Puthalakath H, Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 2002;9(5):505–512.

    Article  PubMed  CAS  Google Scholar 

  38. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001;292(5517):727–730.

    Article  PubMed  CAS  Google Scholar 

  39. Cheng EH, Wei MC, Weiler S, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol Cell 2001;8(3):705–711.

    Article  PubMed  CAS  Google Scholar 

  40. Lindsten T, Ross AJ, King A, et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 2000;6(6):1389–1399.

    Article  PubMed  CAS  Google Scholar 

  41. Zong WX, Lindsten T, Ross AJ, et al. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 2001;15(12):1481–1486.

    Article  PubMed  CAS  Google Scholar 

  42. Degenhardt K, Sundararajan R, Lindsten T, et al. Bax and Bak independently promote cytochrome c release from mitochondria. J Biol Chem 2002;277(16):14,127–14,134.

    Article  PubMed  CAS  Google Scholar 

  43. Degenhardt K, Chen G, Lindsten T, et al. BAX and BAK mediate p53-independent suppression of tumorigenesis. Cancer Cell 2002;2(3):193–203.

    Article  PubMed  CAS  Google Scholar 

  44. Cuconati A, Mukherjee C, Perez D, et al. DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 2003;17(23):2922–2932.

    Article  PubMed  CAS  Google Scholar 

  45. Willis SN, Chen L, Dewson G, et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005;19(11):1294–1305.

    Article  PubMed  CAS  Google Scholar 

  46. Nijhawan D, Fang M, Traer E, et al. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 2003;17(12):1475–1486.

    Article  PubMed  CAS  Google Scholar 

  47. Chen L, Willis SN, Wei A, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005;17(3):393–403.

    Article  PubMed  CAS  Google Scholar 

  48. Kuwana T, Bouchier-Hayes L, Chipuk JE, et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 2005;17(4):525–535.

    Article  PubMed  CAS  Google Scholar 

  49. Letai A, Bassik MC, Walensky LD, et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002;2(3):183–192.

    Article  PubMed  CAS  Google Scholar 

  50. Micheau O, Thome M, Schneider P, et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002;277(47):45,162–45,171.

    Article  PubMed  CAS  Google Scholar 

  51. Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 2002;21(14):3704–3714.

    Article  PubMed  CAS  Google Scholar 

  52. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004;5(11):897–907.

    Article  PubMed  CAS  Google Scholar 

  53. Shiozaki EN, Shi Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci 2004;29(9):486–494.

    Article  PubMed  CAS  Google Scholar 

  54. Martin SJ. Destabilizing influences in apoptosis: sowing the seeds of IAP destruction. Cell 2002;109(7):793–796.

    Article  PubMed  CAS  Google Scholar 

  55. Yan N, Wu JW, Chai J, et al. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim. Nat Struct Mol Biol 2004;11(5):420–428.

    Article  PubMed  CAS  Google Scholar 

  56. Chai J, Yan N, Huh JR, et al. Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination. Nat Struct Biol 2003;10(11):892–898.

    Article  PubMed  CAS  Google Scholar 

  57. Wing J, Zhou L, Schwartz L, et al. Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes. Cell Death Differ 1999;6(2):212–213.

    Article  PubMed  CAS  Google Scholar 

  58. Christich A, Kauppila S, Chen P, et al. The damage-responsive Drosophila gene sickle encodes a novel IAP binding protein similar to but distinct from reaper, grim, and hid. Curr Biol 2002;12(2):137–140.

    Article  PubMed  CAS  Google Scholar 

  59. Hay BA, Wassarman DA, Rubin GM. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 1995;83(7):1253–1262.

    Article  PubMed  CAS  Google Scholar 

  60. Muro I, Hay BA, Clem RJ. The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC. J Biol Chem 2002;277(51):49,644–49,650.

    Article  PubMed  CAS  Google Scholar 

  61. Yin VP, Thummel CS. A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila. Proc Natl Acad Sci USA 2004;101(21):8022–8027.

    Article  PubMed  CAS  Google Scholar 

  62. Bolton DL, Hahn BI, Park EA, et al. Death of CD4(+) T-cell lines caused by human immunodeficiency virus type 1 does not depend on caspases or apoptosis. J Virol 2002;76(10):5094–5107.

    Article  PubMed  CAS  Google Scholar 

  63. Harlin H, Reffey SB, Duckett CS, et al. Characterization of XIAP-deficient mice. Mol Cell Biol 2001;21(10):3604–3608.

    Article  PubMed  CAS  Google Scholar 

  64. Shiozaki EN, Chai J, Rigotti DJ, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 2003;11(2):519–527.

    Article  PubMed  CAS  Google Scholar 

  65. Sun C, Cai M, Meadows RP, et al. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 2000;275(43):33,777–33,781.

    Article  PubMed  CAS  Google Scholar 

  66. Deveraux QL, Roy N, Stennicke HR, et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998;17(8):2215–2223.

    Article  PubMed  CAS  Google Scholar 

  67. Chai J, Shiozaki E, Srinivasula SM, et al. Structural basis of caspase-7 inhibition by XIAP. Cell 2001;104(5):769–780.

    Article  PubMed  CAS  Google Scholar 

  68. Huang Y, Park YC, Rich RL, et al Structural basis of caspase inhibition by XIAP: differential roles of The linker versus the BIR domain. Cell 2001;104(5):781–790.

    PubMed  CAS  Google Scholar 

  69. Riedl SJ, Renatus M, Schwarzenbacher R, et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001;104(5):791–800.

    Article  PubMed  CAS  Google Scholar 

  70. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  71. Kumar S, Cakouros D. Transcriptional control of the core cell-death machinery. Trends Biochem Sci 2004;29(4):193–199.

    Article  PubMed  CAS  Google Scholar 

  72. Daish TJ, Cakouros D, Kumar S. Distinct promoter regions regulate spatial and temporal expression of the Drosophila caspase dronc. Cell Death Differ 2003;10(12):1348–1356.

    Article  PubMed  CAS  Google Scholar 

  73. Daish TJ, Mills K, Kumar S. Drosophila Caspase DRONC is Required for Specific Developmental Cell Death Pathways and Stress-Induced Apoptosis. Developmental Cell 2004;7.

    Google Scholar 

  74. Thummel CS. Files on steroids-Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet 1996;12(8):306–310.

    Article  PubMed  CAS  Google Scholar 

  75. Baehrecke EH. Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ 2000;7(11):1057–1062.

    Article  PubMed  CAS  Google Scholar 

  76. Lee CY, Simon CR, Woodard CT, et al. Genetic mechanism for the stage-and tissuespecific regulation of steroid triggered programmed cell death in Drosophila. Dev Biol 2002;252(1):138–148.

    Article  PubMed  CAS  Google Scholar 

  77. Lee CY, Cooksey BA, Baehrecke EH. Steroid regulation of midgut cell death during Drosophila development. Dev Biol 2002;250(1):101–111.

    Article  PubMed  CAS  Google Scholar 

  78. Bodenstein D. The postembryonic development of Drosophila. In: Biology of Drosophila. Demerec M, ed. Hafner Publishing Company: New York, 1965, p. 275–267.

    Google Scholar 

  79. Robertson CW. The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principle morphological changes. J Morphol 1936;59:351–399.

    Article  Google Scholar 

  80. Riddiford LM. Hormone receptors and the regulation of insect metamorphosis. Receptor 1993;3(3):203–209.

    PubMed  CAS  Google Scholar 

  81. Lee CY, Wendel DP, Reid P, et al. E93 directs steroid-triggered programmed cell death in Drosophila. Mol Cell 2000;6(2):433–443.

    Article  PubMed  CAS  Google Scholar 

  82. Talbot WS, Swyryd EA, Hogness DS. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 1993;73(7):1323–1337.

    Article  PubMed  CAS  Google Scholar 

  83. Hall BL, Thummel CS. The RXR homolog ultraspiracle is an essential component of the Drosophila ecdysone receptor. Development 1998;125(23):4709–4717.

    PubMed  CAS  Google Scholar 

  84. DiBello PR, Withers DA, Bayer CA, et al. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics 1991;129(2):385–397.

    PubMed  CAS  Google Scholar 

  85. Burtis KC, Thummel CS, Jones CW, et al. The Drosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell 1990;61(1):85–99.

    Article  PubMed  CAS  Google Scholar 

  86. Segraves WA, Hogness DS. The E75 ecdysone-inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes Dev 1990;4(2):204–219.

    Article  PubMed  CAS  Google Scholar 

  87. Jiang C, Lamblin AF, Steller H, et al. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 2000;5(3):445–455.

    Article  PubMed  CAS  Google Scholar 

  88. Broadus J, McCabe JR, Endrizzi B, et al. The Drosophila beta FTZ-F1 orphan nuclear receptor provides competence for stage-specific responses to the steroid hormone ecdysone. Mol Cell 1999;3(2):143–149.

    Article  PubMed  CAS  Google Scholar 

  89. Lee CY, Clough EA, Yellon P, et al. Genome-wide analyses of steroid-and radiationtriggered programmed cell death in Drosophila. Curr Biol 2003;13(4):350–357.

    Article  PubMed  CAS  Google Scholar 

  90. Lee CY, Baehrecke EH. Genetic regulation of programmed cell death in Drosophila. Cell Res 2000;10(3):193–204.

    Article  PubMed  CAS  Google Scholar 

  91. Restifo LL, White K. Mutations in a steroid hormone-regulated gene disrupt the metamorphosis of the central nervous system in Drosophila. Dev Biol 1991;148(1):174–194.

    Article  PubMed  CAS  Google Scholar 

  92. Jiang C, Baehrecke EH, Thummel CS. Steroid regulated programmed cell death during Drosophila metamorphosis. Development 1997;124(22):4673–4683.

    PubMed  CAS  Google Scholar 

  93. Stergiou L, Hengartner MO. Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ 2004;11(1):21–28.

    Article  PubMed  CAS  Google Scholar 

  94. Chew SK, Akdemir F, Chen P, et al. The Apical Caspase dronc Governs Programmed and Unprogrammed Cell Death in Drosophila. Developmental Cell 2004;7(December):1–20.

    Google Scholar 

  95. Xu D, Li Y, Arcaro M, et al. The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 2005;132(9):2125–2134.

    Article  PubMed  CAS  Google Scholar 

  96. Laundrie B, Peterson JS, Baum JS, et al. Germline cell death is inhibited by P-element insertions disrupting the dcp-1/pita nested gene pair in Drosophila. Genetics 2003;165(4):1881–1888.

    PubMed  CAS  Google Scholar 

  97. Elrod-Erickson M, Mishra S, Schneider D. Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol 2000;10(13):781–784.

    Article  PubMed  CAS  Google Scholar 

  98. Leulier F, Rodriguez A, Khush RS, et al. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep 2000;1(4):353–358.

    Article  PubMed  CAS  Google Scholar 

  99. Doumanis J. Characterisation of a novel caspase STRICA and the Bcl-2 homologues BUFFY and DEBCL in Drosophila melanogaster., in PhD Thesis. 2004.

    Google Scholar 

  100. Fraser AG, McCarthy NJ, Evan GI. drICE is an essential caspase required for apoptotic activity in Drosophila cells. EMBO J 1997;16(20):6192–6199.

    Article  PubMed  CAS  Google Scholar 

  101. Martin DN, Baehrecke EH. Caspases function in autophagic programmed cell death in Drosophila. Development 2004;131(2):275–284.

    Article  PubMed  CAS  Google Scholar 

  102. Dorstyn L, Read SH, Quinn LM, et al. DECAY, a novel Drosophila caspase related to mammalian caspase-3 and caspase-7. J Biol Chem 1999;274(43):30,778–30,783.

    Article  PubMed  CAS  Google Scholar 

  103. Harvey NL, Daish T, Mills K, et al. Characterization of the Drosophila caspase, DAMM. J Biol Chem 2001;276(27):25,342–25,350.

    Article  PubMed  CAS  Google Scholar 

  104. Bergeron L, Perez GI, Macdonald G, et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 1998;12(9):1304–1314.

    PubMed  CAS  Google Scholar 

  105. O®eilly LA, Ekert P, Harvey N, et al. Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death Differ 2002;9(8):832–841.

    Article  CAS  Google Scholar 

  106. Troy CM, Rabacchi SA, Hohl JB, et al. Death in the balance: alternative participation of the caspase-2 and-9 pathways in neuronal death induced by nerve growth factor deprivation. J Neurosci 2001;21(14):5007–5016.

    PubMed  CAS  Google Scholar 

  107. Morita Y, Maravei DV, Bergeron L, et al. Caspase-2 deficiency prevents programmed germ cell death resulting from cytokine insufficiency but not meiotic defects caused by loss of ataxia telangiectasia-mutated (Atm) gene function. Cell Death Differ 2001;8(6):614–620.

    Article  PubMed  CAS  Google Scholar 

  108. Kuida K, Zheng TS, Na S, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996;384(6607):368–372.

    Article  PubMed  CAS  Google Scholar 

  109. Kuida K, Haydar TF, Kuan CY, et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998;94(3):325–337.

    Article  PubMed  CAS  Google Scholar 

  110. Woo M, Hakem R, Soengas MS, et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 1998;12(6):806–819.

    PubMed  CAS  Google Scholar 

  111. Leonard JR, Klocke BJ, D’Sa C, et al. Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice. J Neuropathol Exp Neurol 2002;61(8):673–677.

    PubMed  Google Scholar 

  112. Kuida K, Lippke JA, Ku G, et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 1995;267(5206):2000–2003.

    Article  PubMed  CAS  Google Scholar 

  113. Gu Y, Kuida K, Tsutsui H, et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 1997;275(5297):206–209.

    Article  PubMed  CAS  Google Scholar 

  114. Fantuzzi G, Puren AJ, Harding MW, et al. Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice. Blood 1998;91(6):2118–2125.

    PubMed  CAS  Google Scholar 

  115. Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 1997;386(6625):619–623.

    Article  PubMed  CAS  Google Scholar 

  116. Li P, Allen H, Banerjee S, et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 1995;80(3):401–411.

    Article  PubMed  CAS  Google Scholar 

  117. Wang S, Miura M, Jung YK, et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 1998;92(4):501–509.

    Article  PubMed  CAS  Google Scholar 

  118. Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 1998;9(2):267–276.

    Article  PubMed  CAS  Google Scholar 

  119. Kang TB, Ben-Moshe T, Varfolomeev EE, et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 2004;173(5):2976–2984.

    PubMed  CAS  Google Scholar 

  120. Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 2003;10(1):76–100.

    Article  PubMed  CAS  Google Scholar 

  121. Kothakota S, Azuma T, Reinhard C, et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 1997;278(5336):294–298.

    Article  PubMed  CAS  Google Scholar 

  122. Coleman ML, Sahai EA, Yeo M, et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 2001;3(4):339–345.

    Article  PubMed  CAS  Google Scholar 

  123. Steinhusen U, Weiske J, Badock V, et al. Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 2001;276(7):4972–4980.

    Article  PubMed  CAS  Google Scholar 

  124. Brancolini C, Sgorbissa A, Schneider C. Proteolytic processing of the adherens junctions components beta-catenin and gamma-catenin/plakoglobin during apoptosis. Cell Death Differ 1998;5(12):1042–1050.

    Article  PubMed  CAS  Google Scholar 

  125. Weiske J, Schoneberg T, Schroder W, et al. The fate of desmosomal proteins in apoptotic cells. J Biol Chem 2001;276(44):41,175–41,181.

    Article  PubMed  CAS  Google Scholar 

  126. Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998;391(6662):43–50.

    Article  PubMed  CAS  Google Scholar 

  127. Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 1998;391(6662):96–99.

    Article  PubMed  CAS  Google Scholar 

  128. Liu X, Zou H, Slaughter C, et al. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997;89(2):175–184.

    Article  PubMed  CAS  Google Scholar 

  129. Sahara S, Aoto M, Eguchi Y, et al. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 1999;401(6749):168–173.

    Article  PubMed  CAS  Google Scholar 

  130. Kovacsovics M, Martinon F, Micheau O, et al. Overexpression of Helicard, a CARDcontaining helicase cleaved during apoptosis, accelerates DNA degradation. Curr Biol 2002;12(10):838–843.

    Article  PubMed  CAS  Google Scholar 

  131. Lazebnik YA, Kaufmann SH, Desnoyers S, et al. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994;371(6495):346–347.

    Article  PubMed  CAS  Google Scholar 

  132. Clem RJ, Cheng EH, Karp CL, et al. Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci USA 1998;95(2):554–559.

    Article  PubMed  CAS  Google Scholar 

  133. Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94(4):491–501.

    Article  PubMed  CAS  Google Scholar 

  134. Alam A, Cohen LY, Aouad S, et al. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J Exp Med 1999;190(12):1879–1890.

    Article  PubMed  CAS  Google Scholar 

  135. Kennedy NJ, Kataoka T, Tschopp J, et al. Caspase activation is required for T cell proliferation. J Exp Med 1999;190(12):1891–1896.

    Article  PubMed  CAS  Google Scholar 

  136. Chun HJ, Zheng L, Ahmad M, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 2002;419(6905):395–399.

    Article  PubMed  CAS  Google Scholar 

  137. Zhou BB, Li H, Yuan J, et al. Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Proc Natl Acad Sci USA 1998;95(12):6785–6790.

    Article  PubMed  CAS  Google Scholar 

  138. Schwerk C, Schulze-Osthoff K. Non-apoptotic functions of caspases in cellular proliferation and differentiation. Biochem Pharmacol 2003;66(8):1453–1458.

    Article  PubMed  CAS  Google Scholar 

  139. Eckhart L, Declercq W, Ban J, et al. Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J Invest Dermatol 2000;115(6):1148–1151.

    Article  PubMed  CAS  Google Scholar 

  140. Robles R, Tao XJ, Trbovich AM, et al. Localization, regulation and possible consequences of apoptotic protease-activating factor-1 (Apaf-1) expression in granulosa cells of the mouse ovary. Endocrinology 1999;140(6):2641–2644.

    Article  PubMed  CAS  Google Scholar 

  141. Geisbrecht ER, Montell DJ. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 2004;118(1):111–125.

    Article  PubMed  CAS  Google Scholar 

  142. Fernando P, Kelly JF, Balazsi K, et al. Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci USA 2002;99(17):11,025–11,030.

    Article  PubMed  CAS  Google Scholar 

  143. Socolovsky M, Fallon AE, Wang S, et al. Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/-mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999;98(2):181–191.

    Article  PubMed  CAS  Google Scholar 

  144. Nosaka T, Kawashima T, Misawa K, et al. STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 1999;18(17):4754–4765.

    Article  PubMed  CAS  Google Scholar 

  145. Chida D, Miura O, Yoshimura A, et al. Role of cytokine signaling molecules in erythroid differentiation of mouse fetal liver hematopoietic cells: functional analysis of signaling molecules by retrovirus-mediated expression. Blood 1999;93(5):1567–1578.

    PubMed  CAS  Google Scholar 

  146. Gregoli PA, Bondurant MC. The roles of Bcl-X(L) and apopain in the control of erythropoiesis by erythropoietin. Blood 1997;90(2):630–640.

    PubMed  CAS  Google Scholar 

  147. Gregoli PA, Bondurant MC. Function of caspases in regulating apoptosis caused by erythropoietin deprivation in erythroid progenitors. J Cell Physiol 1999;178(2):133–143.

    Article  PubMed  CAS  Google Scholar 

  148. Negoro S, Oh H, Tone E, et al. Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation 2001;103(4):555–561.

    PubMed  CAS  Google Scholar 

  149. Sordet O, Rebe C, Plenchette S, et al. Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 2002;100(13):4446–4453.

    Article  PubMed  CAS  Google Scholar 

  150. De Botton S, Sabri S, Daugas E, et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 2002;100(4):1310–1317.

    Article  PubMed  CAS  Google Scholar 

  151. Ishizaki Y, Jacobson MD, Raff MC. A role for caspases in lens fiber differentiation. J Cell Biol 1998;140(1):153–158.

    Article  PubMed  CAS  Google Scholar 

  152. Testa U. Apoptotic mechanisms in the control of erythropoiesis. Leukemia 2004;18(7):1176–1199.

    Article  PubMed  CAS  Google Scholar 

  153. De Maria R, Zeuner A, Eramo A, et al. Negative regulation of erythropoiesis by caspasemediated cleavage of GATA-1. Nature 1999;401(6752):489–493.

    Article  PubMed  CAS  Google Scholar 

  154. Zermati Y, Garrido C, Amsellem S, et al. Caspase activation is required for terminal erythroid differentiation. J Exp Med 2001;193(2):247–254.

    Article  PubMed  CAS  Google Scholar 

  155. Fabrizio JJ, Hime G, Lemmon SK, et al. Genetic dissection of sperm individualization in Drosophila melanogaster. Development 1998;125(10):1833–1843.

    PubMed  CAS  Google Scholar 

  156. Fuller MT. Spermatogenesis in Drosophila. In: The Development of Drosophila melanogaster. Bate M, Arias AM, eds., New York: Cold Spring Harbor Laboratory Press, 1993, p. 71–147.

    Google Scholar 

  157. Huh JR, Vernooy SY, Yu H, et al. Multiple apoptotic caspase cascades are required in nonapoptotic roles for Drosophila spermatid individualization. PLoS Biol 2004;2(1):E15.

    Article  PubMed  CAS  Google Scholar 

  158. Arama E, Agapite J, Steller H. Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 2003;4(5):687–697.

    Article  PubMed  CAS  Google Scholar 

  159. Haynie JL, Bryant PJ. The effects of X-rays on the proliferation dynamics of cells in the imaginal wing disc of Drosophila melanogaster. Wilhelm Roux’s Archives of Developmental Biology, 1977;183:85–100.

    Article  Google Scholar 

  160. Milan M, Campuzano S, Garcia-Bellido A. Developmental parameters of cell death in the wing disc of Drosophila. Proc Natl Acad Sci USA 1997;94(11):5691–5696.

    Article  PubMed  CAS  Google Scholar 

  161. Huh JR, Guo M, Hay BA. Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol 2004;14(14):1262–1266.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Daish, T.J., Kumar, S. (2006). The Biology of Caspases. In: Srivastava, R. (eds) Apoptosis, Cell Signaling, and Human Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-199-4_17

Download citation

Publish with us

Policies and ethics