Skip to main content

Medicinal Chemistry of Kappa Opioid Receptor Antagonists

  • Chapter

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

The kappa opioid receptor (KOR), a member of the opioid receptor family, was initially studied for its involvement in the mediation of pain. More recently, there has been growing interest in selective KOR agents for their potential effects on mood and reward. In particular, selective KOR antagonists may offer a novel approach to relieve symptoms of depression. In this chapter, we describe the structure–activity relationships (SAR) of nonpeptidic KOR antagonists. Specifically, we review the SAR of norbinaltorphimine (norBNI) and its structur ally simplified derivative GNTI. We present the SAR of JDTic and the recently developed MTHQ. The SAR patterns of norBNI have been extensively studied, but there have been relatively fewer studies on the SAR of JDTic and MTHQ. While the overall SAR trends of these structurally distinct agents differ, there appears to be a common requirement for KOR inhibition: the presence of a phenol unit and a basic nitrogen. In the second part of this chapter, we discuss the unusually long duration of action of the available KOR antagonists and make suggestions on pos sibilities for the design of additional KOR antagonists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science 1973;179(77):1011–4.

    Article  CAS  PubMed  Google Scholar 

  2. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976;197(3):517–32.

    CAS  PubMed  Google Scholar 

  3. Gilbert PE, Martin WR. The effects of morphine and nalorphine-like drugs in the nondepend ent, morphine-dependent and cyclazocine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976;198(1):66–82.

    CAS  PubMed  Google Scholar 

  4. Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW. Endogenous opioid peptides: multiple agonists and receptors. Nature 1977;267(5611):495–9.

    Article  CAS  PubMed  Google Scholar 

  5. Zukin RS, Eghbali M, Olive D, Unterwald EM, Tempel A. Characterization and visualization of rat and guinea pig brain kappa opioid receptors: evidence for kappa 1 and kappa 2 opioid receptors. Proc Natl Acad Sci USA 1988;85(11):4061–5.

    Article  CAS  PubMed  Google Scholar 

  6. Clark JA, Liu L, Price M, Hersh B, Edelson M, Pasternak GW. Kappa opiate receptor mul tiplicity: evidence for two U50,488-sensitive kappa 1 subtypes and a novel kappa 3 subtype. J Pharmacol Exp Ther 1989;251(2):461–8.

    CAS  PubMed  Google Scholar 

  7. Yasuda K, Raynor K, Kong H, et al. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc Natl Acad Sci USA 1993;90(14):6736–40.

    Article  CAS  PubMed  Google Scholar 

  8. Gaveriaux-Ruff C, Peluso J, Befort K, Simonin F, Zilliox C, Kieffer BL. Detection of opioid receptor mRNA by RT-PCR reveals alternative splicing for the delta- and kappa-opioid recep tors. Brain Res Mol Brain Res 1997;48(2):298–304.

    Article  CAS  PubMed  Google Scholar 

  9. Rusovici DE, Negus SS, Mello NK, Bidlack JM. Kappa-opioid receptors are differentially labeled by arylacetamides and benzomorphans. Eur J Pharmacol 2004;485(1–3):119–25.

    Article  CAS  PubMed  Google Scholar 

  10. Pogozheva ID, Przydzial MJ, Mosberg HI. Homology modeling of opioid receptor-ligand complexes using experimental constraints. AAPS J 2005;7(2):E434–48.

    Article  CAS  PubMed  Google Scholar 

  11. Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 1999;399(6737):697–700.

    Article  CAS  PubMed  Google Scholar 

  12. Wang D, Sun X, Bohn LM, Sadee W. Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Mol Pharmacol 2005;67(6): 2173–84.

    Article  CAS  PubMed  Google Scholar 

  13. Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA. Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci USA 2001;98(1):343–8.

    Article  CAS  PubMed  Google Scholar 

  14. Olianas MC, Concas D, Onali P. Agonist activity of naloxone benzoylhydrazone at recom binant and native opioid receptors. Br J Pharmacol 2006;147(4):360–70.

    Article  CAS  PubMed  Google Scholar 

  15. Mague SD, Pliakas AM, Todtenkopf MS, et al. Antidepressant-like effects of kappa-opioid recep tor antagonists in the forced swim test in rats. J Pharmacol Exp Ther 2003;305(1):323–30.

    Article  CAS  PubMed  Google Scholar 

  16. Prisinzano TE, Tidgewell K, Harding WW. Kappa opioids as potential treatments for stimu lant dependence. AAPS J 2005;7(3):E592–9.

    Article  CAS  PubMed  Google Scholar 

  17. Jewett DC, Grace MK, Jones RM, Billington CJ, Portoghese PS, Levine AS. The kappa- opioid antagonist GNTI reduces U50,488-, DAMGO-, and deprivation-induced feeding, but not butorphanol- and neuropeptide Y-induced feeding in rats. Brain Res 2001;909(1–2):75–80.

    Article  CAS  PubMed  Google Scholar 

  18. Lu Y, Nguyen TM, Weltrowska G, et al. [2′,6′-Dimethyltyrosine]dynorphin A(1–11)-NH2 analogues lacking an N-terminal amino group: potent and selective kappa opioid antagonists. J Med Chem 2001;44(19):3048–53.

    Article  CAS  PubMed  Google Scholar 

  19. Bennett MA, Murray TF, Aldrich JV. Identification of arodyn, a novel acetylated dynor phin A-(1–11) analogue, as a kappa opioid receptor antagonist. J Med Chem 2002;45(26): 5617–9.

    Article  CAS  PubMed  Google Scholar 

  20. Xue JC, Chen C, Zhu J, et al. Differential binding domains of peptide and non-peptide ligands in the cloned rat kappa opioid receptor. J Biol Chem 1994;269(48):30195–9.

    CAS  PubMed  Google Scholar 

  21. Portoghese AS, Lipkowski AW, Takemori AE. Bimorphinans as highly selective, potent kappa opioid receptor antagonists. J Med Chem 1987;30(2):238–9.

    Article  CAS  PubMed  Google Scholar 

  22. Thomas JB, Atkinson RN, Rothman RB, et al. Identification of the first trans-(3R,4R)- dime thyl-4-(3-hydroxyphenyl)piperidine derivative to possess highly potent and selective opioid kappa receptor antagonist activity. J Med Chem 2001;44(17):2687–90.

    Article  CAS  PubMed  Google Scholar 

  23. Carroll FI, Melvin MS, Nuckols MC, Mascarella SW, Navarro HA, Thomas JB. N-substituted 4beta-methyl-5-(3-hydroxyphenyl)-7alpha-amidomorphans are potent, selective kappa opioid receptor antagonists. J Med Chem 2006;49(5):1781–91.

    Article  CAS  PubMed  Google Scholar 

  24. Portoghese PS, Garzon-Aburbeh A, Nagase H, Lin CE, Takemori AE. Role of the spacer in conferring kappa opioid receptor selectivity to bivalent ligands related to norbinaltorphimine. J Med Chem 1991;34(4):1292–6.

    Article  CAS  PubMed  Google Scholar 

  25. Portoghese PS, Nagase H, Lipkowski AW, Larson DL, Takemori AE. Binaltorphimine related bivalent ligands and their kappa opioid receptor antagonist selectivity. J Med Chem 1988;31(4):836–41.

    Article  CAS  PubMed  Google Scholar 

  26. Chauvignac C, Miller CN, Srivastava SK, Lewis JW, Husbands SM, Traynor JR. Major effect of pyrrolic N-benzylation in norbinaltorphimine, the selective kappa-opioid receptor antago nist. J Med Chem 2005;48(5):1676–9.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas JB, Fix SE, Rothman RB, et al. Importance of phenolic address groups in opioid kappa receptor selective antagonists. J Med Chem 2004;47(4):1070–3.

    Article  CAS  PubMed  Google Scholar 

  28. Portoghese PS, Lin CE, Farouz-Grant F, Takemori AE. Structure-activity relationship of N17′ substituted norbinaltorphimine congeners. Role of the N17′ basic group in the interaction with a putative address subsite on the kappa opioid receptor. J Med Chem 1994;37(10):1495–500.

    Article  CAS  PubMed  Google Scholar 

  29. Portoghese PS, Sultana M, Nagase H, Takemori AE. Application of the message-address con cept in the design of highly potent and selective non-peptide delta opioid receptor antagonists. J Med Chem 1988;31(2):281–2.

    Article  CAS  PubMed  Google Scholar 

  30. Portoghese PS, Nagase H, Takemori AE. Only one pharmacophore is required for the kappa opioid antagonist selectivity of norbinaltorphimine. J Med Chem 1988;31(7):1344–7.

    Article  CAS  PubMed  Google Scholar 

  31. Lin CE, Takemori AE, Portoghese PS. Synthesis and kappa-opioid antagonist selectivity of a norbinaltorphimine congener. Identification of the address moiety required for kappa antagonist activity. J Med Chem 1993;36(16):2412–5.

    Article  CAS  PubMed  Google Scholar 

  32. Sharma SK, Jones RM, Metzger TG, Ferguson DM, Portoghese PS. Transformation of a kappa-opioid receptor antagonist to a kappa-agonist by transfer of a guanidinium group from the 5′- to 6′-position of naltrindole. J Med Chem 2001;44(13):2073–9.

    Article  CAS  PubMed  Google Scholar 

  33. Stevens WC, Jr., Jones RM, Subramanian G, Metzger TG, Ferguson DM, Portoghese PS. Potent and selective indolomorphinan antagonists of the kappa-opioid receptor. J Med Chem 2000;43(14):2759–69.

    Article  CAS  PubMed  Google Scholar 

  34. Black SL, Chauvignac C, Grundt P, et al. Guanidino N-substituted and N,N-disubstituted derivatives of the kappa-opioid antagonist GNTI. J Med Chem 2003;46(25):5505–11.

    Article  CAS  PubMed  Google Scholar 

  35. Thomas JB, Atkinson RN, Vinson NA, et al. Identification of (3R)-7-hydroxy-N-( (1S)-1-[ [(3R,4R) 4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl]-2-methylpropyl)-1,2,3,4-tetrahydro 3-isoquinolinecarboxamide as a novel potent and selective opioid kappa receptor antagonist. J Med Chem 2003;46(14):3127–37.

    Article  CAS  PubMed  Google Scholar 

  36. Thomas JB, Atkinson RN, Namdev N, et al. Discovery of an opioid kappa receptor selective pure antagonist from a library of N-substituted 4 β-methyl-5-(3-hydroxyphenyl)morphans. J Med Chem 2002;45(16):3524–30.

    Article  CAS  PubMed  Google Scholar 

  37. Metcalf MD, Coop A. Kappa opioid antagonists: past successes and future prospects. AAPS J 2005;7(3):E704–22.

    Article  CAS  PubMed  Google Scholar 

  38. Takemori AE, Portoghese PS. Selective naltrexone-derived opioid receptor antagonists. Annu Rev Pharmacol Toxicol 1992;32:239–69.

    Article  CAS  PubMed  Google Scholar 

  39. Portoghese PS. From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. J Med Chem 2001;44(14):2259–69.

    Article  CAS  PubMed  Google Scholar 

  40. Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Mutational evidence for a common kappa antagonist binding pocket in the wild-type kappa and mutant mu[K303E] opioid recep tors. J Med Chem 1998;41(25):4911–4.

    Article  CAS  PubMed  Google Scholar 

  41. Larson DL, Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Binding of norbinaltor phimine (norBNI) congeners to wild-type and mutant mu and kappa opioid receptors: molecu lar recognition loci for the pharmacophore and address components of kappa antagonists. J Med Chem 2000;43(8):1573–6.

    Article  CAS  PubMed  Google Scholar 

  42. Metzger TG, Paterlini MG, Ferguson DM, Portoghese PS. Investigation of the selectivity of oxymorphone- and naltrexone-derived ligands via site-directed mutagenesis of opioid recep tors: exploring the “address” recognition locus. J Med Chem 2001;44(6):857–62.

    Article  CAS  PubMed  Google Scholar 

  43. Jales AR, Husbands SM, Lewis JW. Selective kappa-opioid antagonists related to naltrin dole. Effect of side-chain spacer in the 5′-amidinoalkyl series. Bioorg Med Chem Lett 2000;10(20):2259–61.

    Article  CAS  PubMed  Google Scholar 

  44. Black SL, Jales AR, Brandt W, Lewis JW, Husbands SM. The role of the side chain in deter mining relative delta- and kappa-affinity in C5′-substituted analogues of naltrindole. J Med Chem 2003;46(2):314–7.

    Article  CAS  PubMed  Google Scholar 

  45. Grundt P, Jales AR, Traynor JR, Lewis JW, Husbands SM. 14-amino, 14-alkylamino, and 14-acylamino analogs of oxymorphindole. Differential effects on opioid receptor binding and functional profiles. J Med Chem 2003;46(8):1563–6.

    Article  CAS  PubMed  Google Scholar 

  46. RM, Portoghese PS. 5′-Guanidinonaltrindole, a highly selective and potent kappa-opioid receptor antagonist. Eur J Pharmacol 2000;396(1):49–52.

    Article  PubMed  Google Scholar 

  47. Portoghese PS, Larson DL, Sayre LM, et al. Opioid agonist and antagonist bivalent ligands. The relationship between spacer length and selectivity at multiple opioid receptors. J Med Chem 1986;29(10):1855–61.

    Article  CAS  PubMed  Google Scholar 

  48. Chavkin C, Sud S, Jin W, et al. Salvinorin A, an active component of the hallucinogenic sage salvia divinorum is a highly efficacious kappa-opioid receptor agonist: structural and func tional considerations. J Pharmacol Exp Ther 2004;308(3):1197–203.

    Article  CAS  PubMed  Google Scholar 

  49. Schwyzer R. ACTH: a short introductory review. Ann N Y Acad Sci 1977;297:3–26.

    Article  CAS  PubMed  Google Scholar 

  50. Olmsted SL, Takemori AE, Portoghese PS. A remarkable change of opioid receptor selectivity on the attachment of a peptidomimetic kappa address element to the delta antagonist, natrin dole: 5′-[N2-alkylamidino)methyl]naltrindole derivatives as a novel class of kappa opioid receptor antagonists. J Med Chem 1993;36(1):179–80.

    Article  CAS  PubMed  Google Scholar 

  51. Waldhoer M, Fong J, Jones RM, et al. A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proc Natl Acad Sci USA 2005;102(25):9050–5.

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka H, Moriwaki M, Takahashi T. Efficient solid-phase synthesis of symmetric norbinal torphimine derivatives. Org Lett 2003;5(21):3807–9.

    Article  CAS  PubMed  Google Scholar 

  53. Hjorth SA, Thirstrup K, Grandy DK, Schwartz TW. Analysis of selective binding epitopes for the kappa-opioid receptor antagonist nor-binaltorphimine. Mol Pharmacol 1995;47(6):1089–94.

    CAS  PubMed  Google Scholar 

  54. Ferguson DM, Kramer S, Metzger TG, Law PY, Portoghese PS. Isosteric replacement of acidic with neutral residues in extracellular loop-2 of the kappa-opioid receptor does not affect dynorphin A(1–13) affinity and function. J Med Chem 2000;43(7):1251–2.

    Article  CAS  PubMed  Google Scholar 

  55. Zimmerman DM, Nickander R, Horng JS, Wong DT. New structural concepts for narcotic antagonists defined in a 4-phenylpiperidine series. Nature 1978;275(5678):332–4.

    Article  CAS  PubMed  Google Scholar 

  56. Mitch CH, Leander JD, Mendelsohn LG, et al. 3,4-Dimethyl-4-(3-hydroxyphenyl)piperidines: opioid antagonists with potent anorectant activity. J Med Chem 1993;36(20):2842–50.

    Article  CAS  PubMed  Google Scholar 

  57. Zimmerman DM, Leander JD, Cantrell BE, et al. Structure-activity relationships of trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine antagonists for mu- and kappa-opioid recep tors. J Med Chem 1993;36(20):2833–41.

    Article  CAS  PubMed  Google Scholar 

  58. Thomas JB, Mascarella SW, Rothman RB, et al. Investigation of the N-substituent conforma tion governing potency and mu receptor subtype-selectivity in (+)-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine opioid antagonists. J Med Chem 1998;41(11):1980–90.

    Article  CAS  PubMed  Google Scholar 

  59. Thomas JB, Fall MJ, Cooper JB, et al. Identification of an opioid kappa receptor subtype selective N-substituent for (+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine. J Med Chem 1998;41(26):5188–97.

    Article  CAS  PubMed  Google Scholar 

  60. Thomas JB, Zheng X, Mascarella SW, et al. N-Substituted 9β-methyl-5-(3-hydroxyphenyl) morphans are opioid receptor pure antagonists. J Med Chem 1998;41(21):4143–9.

    Article  CAS  PubMed  Google Scholar 

  61. Portoghese PS. A new concept on the mode of interaction of narcotic analgesics with recep tors. J Med Chem 1965;8(5):609–16.

    Article  CAS  PubMed  Google Scholar 

  62. Portoghese PS, Alreja BD, Larson DL. Allylprodine analogues as receptor probes. Evidence that phenolic and nonphenolic ligands interact with different subsites on identical opioid receptors. J Med Chem 1981;24(7):782–7.

    Article  CAS  PubMed  Google Scholar 

  63. Butelman ER, Negus SS, Ai Y, de Costa BR, Woods JH. Kappa opioid antagonist effects of systemically administered nor-binaltorphimine in a thermal antinociception assay in rhesus monkeys. J Pharmacol Exp Ther 1993;267(3):1269–76.

    CAS  PubMed  Google Scholar 

  64. Negus SS, Mello NK, Linsenmayer DC, Jones R, Portoghese PS. Kappa opioid antagonist effects of the novel kappa antagonist 5′-guanidinonaltrindole (GNTI) in an assay of schedule controlled behavior in rhesus monkeys. Psychopharmacology 2002;163(3–4):412–9.

    Article  CAS  PubMed  Google Scholar 

  65. Carroll I, Thomas JB, Dykstra LA, et al. Pharmacological properties of JDTic: a novel kappa opioid receptor antagonist. Eur J Pharmacol 2004;501(1–3):111–9.

    Article  CAS  PubMed  Google Scholar 

  66. Beardsley PM, Howard JL, Shelton KL, Carroll FI. Differential effects of the novel kappa opioid receptor antagonist, JDTic, on reinstatement of cocaine-seeking induced by footshock stressors vs cocaine primes and its antidepressant-like effects in rats. Psychopharmacology (Berl) 2005;183(1):118–26.

    Article  CAS  Google Scholar 

  67. Chang AC, Takemori AE, Ojala WH, Gleason WB, Portoghese PS. Kappa opioid receptor selective affinity labels: electrophilic benzeneacetamides as kappa-selective opioid antago nists. J Med Chem 1994;37(26):4490–8.

    Article  CAS  PubMed  Google Scholar 

  68. Horan P, Taylor J, Yamamura HI, Porreca F. Extremely long-lasting antagonistic actions of nor-binaltorphimine (nor-BNI) in the mouse tail-flick test. J Pharmacol Exp Ther 1992;260(3): 1237–43.

    CAS  PubMed  Google Scholar 

  69. Fantegrossi WE, Kugle KM, Valdes LJ, 3rd, Koreeda M, Woods JH. Kappa-opioid receptor mediated effects of the plant-derived hallucinogen, salvinorin A, on inverted screen performance in the mouse. Behav Pharmacol 2005;16(8):627–33.

    Article  CAS  PubMed  Google Scholar 

  70. Cohen BM, Tsuneizumi T, Baldessarini RJ, Campbell A, Babb SM. Differences between antipsychotic drugs in persistence of brain levels and behavioral effects. Psychopharmacology (Berl) 1992;108(3):338–44.

    Article  CAS  Google Scholar 

  71. Endoh T, Matsuura H, Tanaka C, Nagase H. Nor-binaltorphimine: a potent and selective kappa-opioid receptor antagonist with long-lasting activity in vivo. Arch Int Pharmacodyn Ther 1992;316:30–42.

    CAS  PubMed  Google Scholar 

  72. Broadbear JH, Negus SS, Butelman ER, de Costa BR, Woods JH. Differential effects of sys temically administered nor-binaltorphimine (nor-BNI) on kappa-opioid agonists in the mouse writhing assay. Psychopharmacology (Berl) 1994;115(3):311–9.

    Article  CAS  Google Scholar 

  73. Grundt P, Williams IA, Lewis JW, Husbands SM. Identification of a new scaffold for opioid receptor antagonism based on the 2-amino-1,1-dimethyl-7-hydroxytetralin pharmacophore. J Med Chem 2004;47(21):5069–75.

    Article  CAS  PubMed  Google Scholar 

  74. Ananthan S, Kezar HSIII, Saini SK, et al. Synthesis, opioid receptor binding, and functional activity of 5′-substituted 17-cyclopropylmethylpyrido[2′,3′:6,7]morphinans. Bioorg Med Chem Lett 2003;13(3):529–32.

    Article  CAS  PubMed  Google Scholar 

  75. Beguin C, Richards MR, Wang Y, et al. Synthesis and in vitro pharmacological evaluation of salvinorin A analogues modified at C(2). Bioorg Med Chem Lett 2005;15(11):2761–5.

    Article  CAS  PubMed  Google Scholar 

  76. Beguin C, Richards MR, Li JG, et al. Synthesis and in vitro evaluation of salvinorin A analogues: effect of configuration at C(2) and substitution at C(18). Bioorg Med Chem Lett 2006;16(17):4679–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Béguin, C., Cohen, B.M. (2009). Medicinal Chemistry of Kappa Opioid Receptor Antagonists. In: Dean, R.L., Bilsky, E.J., Negus, S.S. (eds) Opiate Receptors and Antagonists. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-197-0_6

Download citation

Publish with us

Policies and ethics