Skip to main content

Opioid Antagonists in Traumatic Shock: Animal and Human Studies

  • Chapter
Opiate Receptors and Antagonists

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 1004 Accesses

Abstract

Since the opioid antagonist, naloxone, was found to be beneficial in reducing the effects of traumatic shock in 1978, a series of work on the roles of endogenous opioid peptides (EOPs) and their antagonists in circulatory shock was conducted. It was demonstrated that EOPs played very important roles in the pathogenesis of circulatory shock. Naloxone, naltrexone, and nalbuphine had positive effect on many types of shock, such as hemorrhagic and endotoxic shock. But these opioid antagonists are not highly selective for specific opioid receptor subtypes. Because they can act on μ-opioid receptors to affect the pain threshold of shock patients, their application has been greatly limited, especially for traumatic shock. To solve this issue, many laboratories studied the type of shock associated with opioid receptors, and attempted to use their specific receptor antagonists to treat them. Research showed thyrotropin-releasing hormone (TRH), a physiological opioid antagonist, and δ- and κ-opioid receptor antagonists ICI 174,864 and nor-binaltorphimine (nor-BNI) have good beneficial effect on shock parameters without affecting the pain threshold of traumatic shock victims.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson SP, Klein RL, Chang KJ, Gasparis MS, Viveros OH, Yang WH. Are opioid peptides co-transmitters in neuro-adrenergic vesicles of sympathetic nerve? Nature 1980; 288:707–709.

    Article  CAS  PubMed  Google Scholar 

  2. Hughes J, Kosterlitz HW, Smith TW. The distribution of methionine-enkaphalin and leucine-enkaphalin in the brain and periperal tissues. Br J Pharmacol 1977; 61:639–647.

    CAS  PubMed  Google Scholar 

  3. Gordon FJ. Central opioid receptors and barreflex control of sympathetic and cardiovascular function. J Pharmacol Exp Ther 1986; 237:428–436.

    CAS  PubMed  Google Scholar 

  4. Feuerstein G, Faden AI. Differential cardiovascular effects of μ., δ and κ opiate agonists at discrete hypothalamic sites in the anesthetized rats. Life Sci 1982; 31:2197–2200.

    Article  CAS  PubMed  Google Scholar 

  5. Holaday JW, Faden AI. Naloxone reversal of endotoxin hypotension suggests role of endorphins in shock. Nature 1978; 275:450–451.

    Article  CAS  PubMed  Google Scholar 

  6. Isoyama T, Tanaka J, Sato T, Shatney CH. Effect of naloxone and morphine in hemorrhagic shock. Circ Shock 1982; 9:375–382.

    CAS  PubMed  Google Scholar 

  7. Gurll NJ, Reynolds DG, Holaday JW. Evidence for a role of endorphins in the cardiovascular pathophysiology of primate shock. Crit Care Med 1988; 16:521–530.

    Article  CAS  PubMed  Google Scholar 

  8. Murray MJ, Offord KP, Yaksh TL. Physiologic and plasma hormone correlates of survival in endotoxic dogs: effects of opiate antagonists. Crit Care Med 1989; 17:39–47.

    Article  CAS  PubMed  Google Scholar 

  9. Reynolds DG, Gurll NJ, Holaday JW, Lechner RB. The therapeutic efficacy of opiate antagonist in hemorrhagic shock. Resuscitation 1989; 18:343–357.

    Article  Google Scholar 

  10. Dziki AJ, Lynch WH, Ramsey CB, Law WR. β-adrenergic dependent and independent actions of naloxone on perfusion during endotoxic shock. Circ Shock 1993; 39:29–38.

    CAS  PubMed  Google Scholar 

  11. Molina PE. Endogenous opioid analgesia in hemorrhagic shock. J Trauma 2003; 54:S126–S132.

    CAS  PubMed  Google Scholar 

  12. Molina PE. Opiate modulation of hemodynamic, hormonal and cytokine response to hemorrhage. Shock 2001; 15:471–478.

    Article  CAS  PubMed  Google Scholar 

  13. Liu LM, Hu DY, Pan XK, Lu RQ, Dan FJ. Subclass opioid receptors associated with the cardiovascular depression after traumatic shock and the antishock effects of its specific receptor antagonist. Shock 2005; 24:470–475.

    Article  CAS  PubMed  Google Scholar 

  14. Roy S, Charboneau RG, Barke RA. Morphine synergizes with lipopolysaccharide in a chronic endotoxemia model. J Neuroimmunol 1999; 95:107–114.

    Article  CAS  PubMed  Google Scholar 

  15. Liu LM, Chen HS, Hu DY, Lu RQ, Chen Y, Dan FJ. Role of opioid receptors in the cardiovascular depression following hemorrhagic shock in rats. Chin J Traumatol 1999; 2:48–52.

    CAS  PubMed  Google Scholar 

  16. Bellamy RF. The cause of death in conventional land warfare: implication for combat casualty care research. Mil Med 1984; 149:55–62.

    CAS  PubMed  Google Scholar 

  17. Champion HR, Bellamy RF, Roberts CP, Leppaniemi A. A profile of combat injury. J Trauma 2003; 54:S13–S19.

    PubMed  Google Scholar 

  18. Champion HR. Combat fluid resuscitation and overview of conferences. J Trauma 2003; 54: S7–S12.

    PubMed  Google Scholar 

  19. Nolan J. Fluid resuscitation for the trauma patient. Resuscitation 2001; 48:57–69.

    Article  CAS  PubMed  Google Scholar 

  20. Horton JW, White J, Maass D, Sanders B, Thompson M, Girroir B. Calcium antagonists improve cardiac mechanical performance after thermal trauma. J Surg Res 1999; 87:39–50.

    Article  CAS  PubMed  Google Scholar 

  21. Buttemeyer RA, Schlenzka PW, Mall LJ. Epigallocatechin gallate can significantly decrease free oxygen radicals in the reperfusion injury in vivo. Transpl Proc 2003; 35:3116–3120.

    Article  Google Scholar 

  22. Bergman M, Perelman A, Dubinsky Z, Grossman S. Scavenging of reactive oxygen species by a novel glucuronated flavonoid antioxidant isolated and purified from spinach. Phytochemistry 2003; 62:753–762.

    Article  CAS  PubMed  Google Scholar 

  23. Chamberlain JM, Klein BL. A comprehensive review of naloxone for the emergency physician. Am Emerg Med 1994; 12:650–660.

    Article  CAS  Google Scholar 

  24. Akin MZ, Tuncel N, Gurer F, Kural N, Uslu S. Effects of vasoactive intestinal peptide and naloxone combination on urinary N-acetyl-b-d-glucosaminidase level and kidney histology of rats exposed to severe hemorrhage. Pharmacology 1993; 47:194–199.

    Article  CAS  PubMed  Google Scholar 

  25. Greeneltch KM, Haudenschild CC, Keegan AD, Shi YF. The opioid antagonist naltrexone blocks acute endotoxic shock by inhibiting tumor necrosis factor-a production. Brain Behav Immun 2004; 18:476–484.

    Article  CAS  PubMed  Google Scholar 

  26. Hu DY, Pan XK, Liu LM, Lu RQ. The effects of δ and κ opioid receptor antagonists on traumatic shock. Chin Crit Care Med. 2000; 12:101–104.

    Google Scholar 

  27. Albert EP, Paola S. β-endorphin in the immune system: a role at last. Immunology Today 1997; 18:317–319

    Article  Google Scholar 

  28. Refojo D, Kovalovsky D, Young JI, Rubinstein M, Holsboer F, Reul JM, Low MJ, Arzt E. Increased splenocyte proliferative response and cytokine production in beta-endorphin-deficient mice. J Neuroimmunol 2002; 131:126–134.

    Article  CAS  PubMed  Google Scholar 

  29. Levy EM, Mcintosh T, Black PH. Elevation of circulating beta-endorphin levels with concomitant depression of immune parameters after traumatic injury. J Trauma 1986; 26:246–249.

    Article  CAS  PubMed  Google Scholar 

  30. Nerlich ML, Holch M, Stalp M, Dwenger A, Fauler J. Neuropeptide levels early after trauma: immunomodulatory. J Trauma 1994; 37:759–768.

    Article  CAS  PubMed  Google Scholar 

  31. Wen AQ, Liu LM, Hu DY. Role of β-endorphin in con-A induced spleen cell proliferation in rats with traumatic hemorrhagic shock. Acta Acad Med Militaris Tertiae 2001; 23:404–406.

    CAS  Google Scholar 

  32. Wang J, When AQ, Liu LM. Role of β-endorphin in the regulation of con-A induced IL-2R expression and IL-2 production in rat splenic cells following traumatic hemorrhagic shock. Acta Acad Med Militaris Tertiae 2003; 25:657–659.

    CAS  Google Scholar 

  33. Feuerstein G, Faden AI, Krumins SA. Alteration in opiate receptors binding after hemorrhagic shock. Eur J Pharmacol 1984; 100:245–246.

    Article  CAS  PubMed  Google Scholar 

  34. Liu LM, Chen HS, Hu DY. Effect of TRH on brain μ, δ and κ opioid receptors following hemorrhagic shock in rats. Chin J Pharmacol Toxicol 1995; 47:268–270.

    Google Scholar 

  35. Fan L. Role of brain endogenous opioid peptides during hemorrhagic shock in rats. J Beijing Med Univ 1988; 20:5–8.

    Google Scholar 

  36. Hock CE, Curtis MT, Jaffe JS, Lefer AM. Beneficial actions of nalorphine during hemorrhagic shock in cats. Pro Soc Exp Bio Med 1983; 173 (1):176–181.

    Google Scholar 

  37. Curtis MT, Lefer AM. Actions of opiate antagonist with selective receptor interactions in hemorrhagic shock. Circ Shock 1983; 10:131–145.

    CAS  PubMed  Google Scholar 

  38. Holaday JW, D'Amato RJ. Multiple opioid receptors: evidence for mu-delta binding site interactions in endotoxic shock. Life Sci 1983;33:703–706.

    Article  CAS  PubMed  Google Scholar 

  39. Long TB, Ruvio BA, Glatt CE, Holaday JW. ICI 174864, a putative delta opioid antagonist, reverses endotoxemic hypotension: pretreatment with dynorphin 1–13, a kappa agonist, blocks this action. Neuropeptides 1984; 5:291–294.

    Article  CAS  PubMed  Google Scholar 

  40. Holaday JW, Pasternak GW, D'Amato RJ, Ruvio BA, Faden AI. Naloxazone lacks therapeutic effects in endotoxic shock yet blocks the effects of naloxone. Eur J Pharmacol. 1983; 89: 293–296.

    Article  CAS  PubMed  Google Scholar 

  41. Hong XR. Role of β-endorphin in hypothalamic nuclei paraventricularis during burn shock and its receptors mechanisms. Prog Physiol Sci 1993; 24:242–244.

    Google Scholar 

  42. Wen AQ, Wang J, Liu LM, Hu DY. Role of opioid receptors δ, K and μ in suppression of cellular immunity following traumatic hemorrhagic shock in rats. Chin J Traumatol 2002; 18:692–695.

    CAS  Google Scholar 

  43. Holaday JW, Faden AI. Naloxone acts at central opiate receptors to reverse hypotension, hypothermia and hypoventilation in spinal shock. Brain Res 1980;189:295–300.

    Article  CAS  PubMed  Google Scholar 

  44. Lin BC. Effects of naloxone on burn shock in rats. Chin J Appl Phsiol 1985; 1:212–216.

    Google Scholar 

  45. Faden AI, Jacobs TP, Holaday JW. Endorphin-parasympathetic interaction in spinal shock. J Auton Nerv Syst 1980; 2:295–304.

    Article  CAS  PubMed  Google Scholar 

  46. Koyama S, Santiesteban HL, Ammons WS, Manning JW. The effects of naloxone on the peripheral sympathetics in cat endotoxic shock. Circ Shock 1983; 10:7–13.

    CAS  PubMed  Google Scholar 

  47. Lechner RB, Gurll NJ, Reynolds DG. Intracoronary naloxone in hemorrhagic shock: dose-dependent sterospecific effects. Am J Physiol 1985; 249 (Pt. 2):H272–H277.

    CAS  PubMed  Google Scholar 

  48. Tuggle DW, Horton JW. Naloxone improves myocardial perfusion in hypovolemic shock. Curr Surg. 1985; 42:195–198.

    CAS  PubMed  Google Scholar 

  49. Curtis MT, Lefer AM. Protection actions of naloxone in hemorrhagic shock. Am J Physiol 1980; 239:H416–H421.

    CAS  PubMed  Google Scholar 

  50. Chen CJ, Cheng FC, Liao SL, Chen WY, Lin NN, Kuo JS. Effects of naloxone on lactate pyruvate, pyruvate metabolism and antioxidant enzyme activity in rat cerebral ischemia/perfusion. Nurosci Lett 2000; 287:113–116.

    Article  CAS  Google Scholar 

  51. Ekstrom BF, Kuenzig M, Schwartz SI. Pulmonary platelet trapping in escherichia coli endotoxin injected dogs treated with methylprednisolone ibuprofen and naloxone. Acta Chir Scand 1986; 152:181–185.

    CAS  PubMed  Google Scholar 

  52. Li SK, Cui ZJ. High dose naloxone in septic shock patients refractory to dopamine. J Postgrad Med 2003; 26:18–19.

    Google Scholar 

  53. Putterman C, Halpern P, Leykin Y, Sorkine P, Geller E, Bursztein S. Early use of naloxone in shock: a clinical trial. Resuscitation 1986; 13:185–190.

    Article  CAS  PubMed  Google Scholar 

  54. Boeuf B, Gauvin F, Guerguerian AM, Farrell CA, Lacoroix J, Jenicek M. Therapy of shock with naloxone: a meta-analysis. Crit Care Med. 1988; 26:1910–1916.

    Google Scholar 

  55. Muldoon SM, McKenzie JE, Collins FJ. Pressor effect of nalbuphine in hemorrhagic shock is dependent on the sympathoadrenal system. Circ Shock 1988; 26:89–98.

    CAS  PubMed  Google Scholar 

  56. Reynolds DG, Gurll NJ, Holaday JW, Lechner RB. The therapeutic efficacy of opiate antagonists in hemorrhagic shock. Resuscitation 1989; 18:243–251.

    Article  CAS  PubMed  Google Scholar 

  57. Hu YG, Li Z, Guo JX, Cheng MZ, Xu T, Han JS. Clinical study on the antishock effects of naltrexone, a long lasting opioid antagonist. J Beijing Med Univ 1992; 24:81–84.

    Google Scholar 

  58. Greeneltch KM, Haudenschild CC, Keegan AD, Shi YF. The opioid antagonist naltrexone blocks acute endotocxic shock by inhibiting tumor necrosis factor-a production. Brain Behav Immun 2004; 18:476–484.

    Article  CAS  PubMed  Google Scholar 

  59. Liu LM, Chen HS, Hu DY, Lu RQ, Li TX. Effects of TRH on cardiac adrenoceptors and dopaminergic receptors following hemorrhagic shock in the rat. Shock 1995; 3:430–433.

    CAS  PubMed  Google Scholar 

  60. Liu LM, Chen HS, Hu DY, Lu RQ, Wu Y. The importance of δ- and κ-opioid receptor in the property of TRH against hemorrhagic shock. Shock 1997; 7:60–64.

    Article  CAS  PubMed  Google Scholar 

  61. Hu DY, Liu LM, Zhou XW, Lu RQ, He FC, Chen HS. The preclinical study of thyrotroping-releasing hormon. Chin J Pharacol Toxicol 2000; 14:241–246.

    CAS  Google Scholar 

  62. Hu DY, Liu LM, Li P, Liu JC, He XP, Xiao N, Shi QG, Tian KL, Zhou XW. Benefical effect of TRH on hemorrhagic shock with pulmonary edema at high altitude in the rat. Chin J Mod Appl Pharmacol 2004; 21:349–353.

    Google Scholar 

  63. Tian KL, Liu LM, Lu RQ. Beneficial effects of ICI174864 on traumatic shock is related to pituitary. Chongqing Med 2003; 32:1340–1342.

    Google Scholar 

  64. Tian KL, Liu LM, Lu RQ. Beneficial effects of ICI174864 on traumatic shock is related to adrenal medulla. J Traumatic Surg 2003; 5:52–54.

    Google Scholar 

  65. Liu LM, Hu DY, Chen HS, LU RQ, Wu Y, Zhou XW. ICI174,864, nor-binaltorphimine improve the hemodynamics of hypovolemic rabbits. Mod Appl Pharm 1996; 13:1–4.

    Google Scholar 

  66. Liu LM, Ward JA, Dubick MA. Hemorrhagic shock induced vascular hyporeactivity to norepinephrine in select vasculatures of rats and the roles of nitric oxide and endothelin. Shock 2003; 19:208–214.

    Article  CAS  PubMed  Google Scholar 

  67. Kai L, Hu DY, Liu LM. Effects of opioid antagonists on vascular reactivity following hemorrhagic shock in rats. Acta Acad Med Militaris Tertiae 2002; 24:1185–1188.

    Google Scholar 

  68. Kai L, Wang ZF, Hu DY, Shi YL, Liu LM. Opioid receptor antagonists modulate Ca2+-activated K+ channels in mesenteric arterial smooth muscle cells of rats in hemorrhagic shock. Shock 2003; 19:85–90.

    Article  PubMed  Google Scholar 

  69. Zhou R, Liu LM, Hu DY. Involvement of BKCa α subunit tyrosine phosphorylation in vascular hyporesponsiveness following hemorrhagic shock in rat. Cardiovasc Res 2005; 68: 327–335.

    Article  CAS  PubMed  Google Scholar 

  70. Kai L, Hu DY, Liu LM, et al. Modulation of Ca2+ by opioid receptor antagonists in mesenteric arterial smooth muscle cells of rats in hemorrhagic shock. J Cardiovasc Pharmacol 2002; 40:618–624.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, L. (2009). Opioid Antagonists in Traumatic Shock: Animal and Human Studies. In: Dean, R.L., Bilsky, E.J., Negus, S.S. (eds) Opiate Receptors and Antagonists. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-197-0_32

Download citation

Publish with us

Policies and ethics