Skip to main content

Stargardt Disease

From Gene Discovery to Therapy

  • Chapter
Retinal Degenerations

Part of the book series: Ophthalmology Research ((OPHRES))

Abstract

When the adenosine triphosphate (ATP)-binding cassette (ABC) transporter gene, ABCA4 (originally named ABCR), was cloned and characterized in 1997 as the causal gene for autosomal recessive Stargardt disease (arSTGD or STGD1) (1) it seemed as if just another missing link was added to the extensive table of genetic determinants of rare monogenic retinal dystrophies. Now, 9 yr later, the ABCA4 gene continues to emerge as the predominant determinant of a wide variety of retinal degeneration phenotypes. ABCA4 has caused exciting and sometimes intense discussions among ophthalmologists and geneticists, resulting in more than 150 publications during this time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allikmets R, Singh N, Sun H, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 1997a; 15:236–246.

    Article  PubMed  CAS  Google Scholar 

  2. Blacharski PA: Fundus flavimaculatus. In: Newsome DA, (ed.): Retinal Dystrophies and Degenerations. New York: Raven Press, 1988:135–159.

    Google Scholar 

  3. Anderson KL, Baird L, Lewis RA, et al. A YAC contig encompassing the recessive Stargardt disease gene (STGD) on chromosome 1p. Am J Hum Genet 1995;57:1351–1363.

    PubMed  CAS  Google Scholar 

  4. Stargardt K. Über familiäre, progressive Degeneration in der Maculagegend des Auges. Albrecht von Graefes Arch Ophthalmol 1909;71:534–550.

    Google Scholar 

  5. Franceschetti A. Über tapeto-retinale Degenerationen im Kindesalter. In: von Sautter, H., ed. Entwicklung und Fortschritt in der Augenheiklunde. Stuttgart: Ferdinand Enke Verlag, 1963:107–120.

    Google Scholar 

  6. Hadden OB, Gass JD. Fundus flavimaculatus and Stargardt’s disease. Am J Ophthalmol 1976;82:527–539.

    PubMed  CAS  Google Scholar 

  7. Noble KG, Carr RE. Stargardt’s disease and fundus flavimaculatus. Arch Ophthalmol 1979;97:1281–1285.

    PubMed  CAS  Google Scholar 

  8. McKusick VA. Mendelian inheritance in man: catalogs of autosomal dominant, autosomal recessive, and X-linked phenotypes. 10th ed., Baltimore, MD: Johns Hopkins University Press, 1992.

    Google Scholar 

  9. Mendelian inheritance in man: a catalog of human genes and genetic diseases. 12th ed. Johns Hopkins University Press, Baltimore, MD: Johns Hopkins University Press, 1998.

    Google Scholar 

  10. Gerber S, Rozet JM, Bonneau D, et al. A gene for late-onset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13. Am J Hum Genet 1995;56:396–399.

    PubMed  CAS  Google Scholar 

  11. Hoyng CB, Poppelaars F, van de Pol TJ, et al. Genetic fine mapping of the gene for recessive Stargardt disease. Hum Genet 1996;98:500–504.

    Article  PubMed  CAS  Google Scholar 

  12. Kaplan J, Gerber S, Larget-Piet D, et al. A gene for Stargardt’s disease (fundus flavimaculatus) maps to the short arm of chromosome 1. Nat Genet 1993;5:308–311.

    Article  PubMed  CAS  Google Scholar 

  13. Weber BH, Sander S, Kopp C, et al. Analysis of 21 Stargardt’s disease families confirms a major locus on chromosome 1p with evidence for non-allelic heterogeneity in a minority of cases. Br J Ophthalmol 1996;80:745–749.

    Article  PubMed  CAS  Google Scholar 

  14. Fishman A, Stone EM, Grover S, Derlacki DJ, Haines HL, Hockey RR. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol 1999;117:504–510.

    PubMed  CAS  Google Scholar 

  15. Azarian SM, Travis GH. The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt’s disease (ABCR). FEBS Lett 1997;409:247–252.

    Article  PubMed  CAS  Google Scholar 

  16. Illing M, Molday LL, Molday RS. The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 1997;272:10,303–10,310.

    Article  PubMed  CAS  Google Scholar 

  17. Cremers FP, van de Pol DJ, van Driel M, et al. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet 1998;7:355–362.

    Article  PubMed  CAS  Google Scholar 

  18. Rozet JM, Gerber S, Souied E, et al. Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur J Hum Genet 1998;6:291–295.

    Article  PubMed  CAS  Google Scholar 

  19. Martinez-Mir A, Paloma E, Allikmets R, et al. Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 1998;18:11–12.

    Article  PubMed  CAS  Google Scholar 

  20. Rozet JM, Gerber S, Ghazi I, et al. Mutations of the retinal specific ATP binding transporter gene (ABCR) in a single family segregating both autosomal recessive retinitis pigmentosa RP19 and Stargardt disease: evidence of clinical heterogeneity at this locus. J Med Genet 1999;36:447–451.

    PubMed  CAS  Google Scholar 

  21. Lewis RA, Shroyer NF, Singh N, et al. Genotype/Phenotype analysis of a photoreceptorspecific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am J Hum Genet 1999;64:422–434.

    Article  PubMed  CAS  Google Scholar 

  22. Maugeri A, van Driel MA, van de Pol DJ, et al. The 2588G->C Mutation in the ABCR Gene Is a Mild Frequent Founder Mutation in the Western European Population and Allows the Classification of ABCR Mutations in Patients with Stargardt Disease. Am J Hum Genet 1999;64:1024–1035.

    Article  PubMed  CAS  Google Scholar 

  23. Fumagalli A, Ferrari M, Soriani N, et al. Mutational scanning of the ABCR gene with double-gradient denaturing-gradient gel electrophoresis (DG-DGGE) in Italian Stargardt disease patients. Hum Genet 2001;109:326–338.

    Article  PubMed  CAS  Google Scholar 

  24. Rivera A, White K, Stohr H, et al. A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet 2000;67:800–813.

    Article  PubMed  CAS  Google Scholar 

  25. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989;245:1066–1073.

    Article  PubMed  CAS  Google Scholar 

  26. Zielenski J, Tsui LC. Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 1995;29:777–807.

    Article  PubMed  CAS  Google Scholar 

  27. Maugeri A, Klevering BJ, Rohrdchneider K, et al. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet 2000;67:960–966.

    Article  PubMed  CAS  Google Scholar 

  28. Shroyer NF, Lewis RA, Yatsenko AN, Wensel TG, Lupski JR. Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration. Hum Mol Genet 2001;10:2671–2678.

    Article  PubMed  CAS  Google Scholar 

  29. Kuroiwa S, Kojima H, Kikuchi T, Yoshimura N. ATP binding cassette transporter retina genotypes and age related macular degeneration: an analysis on exudative non-familial Japanese patients. Br J Ophthalmol 1999;83:613–615.

    Article  PubMed  CAS  Google Scholar 

  30. Allikmets R. Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am J Hum Genet 2000;67:487–491.

    Article  PubMed  CAS  Google Scholar 

  31. Guymer RH, Heon E, Lotery AJ, et al. Variation of codons 1961 and 2177 of the Stargardt disease gene is not associated with age-related macular degeneration. Arch Ophthalmol 2001;119:745–751.

    PubMed  CAS  Google Scholar 

  32. Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Hum Genet 2001;108:346–355.

    Article  PubMed  CAS  Google Scholar 

  33. Jaakson K, Zernant J, Kulm M, et al. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat 2003;22:395–403.

    Article  PubMed  CAS  Google Scholar 

  34. van Driel MA, Maugeri A, Klevering BJ, Hoyng CB, Cremers FP. ABCR unites what ophthalmologists divide(s). Ophthalmic Genet 1998;19:117–122.

    Article  PubMed  Google Scholar 

  35. Shroyer NF, Lewis RA, Allikmets R, et al. The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenic to multifactorial. Vision Res 1999;39:2537–2544.

    Article  PubMed  CAS  Google Scholar 

  36. Allikmets R. Molecular genetics of age-related macular degeneration: current status. Eur J Ophthalmol 1999;9:255–65.

    PubMed  CAS  Google Scholar 

  37. Cideciyan AV, Aleman TS, Swider M, et al. Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet 2004;13:525–534.

    Article  PubMed  CAS  Google Scholar 

  38. Sun H, Smallwood PM, Nathans J. Biochemical defects in ABCR protein variants associated with human retinopathies. Nat Genet 2000;26:242–246.

    Article  PubMed  CAS  Google Scholar 

  39. Webster AR, Heon E, Lotery AJ, et al. An analysis of allelic variation in the ABCA4 gene. Investigative Ophthalmology Visual Science 2001;42:1179–1189.

    PubMed  CAS  Google Scholar 

  40. Simonelli F, Testa F, de Crecchio G, et al. New ABCR mutations and clinical phenotype in Italian patients with Stargardt disease. Invest Ophthalmol Vis Sci 2000;41:892–897.

    PubMed  CAS  Google Scholar 

  41. Allikmets R. Simple and complex ABCR: genetic predisposition to retinal disease. Am J Hum Genet 2000;67:793–799.

    Article  PubMed  CAS  Google Scholar 

  42. Klevering BJ, Yzer S, Rohrschneider K, et al. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa. Eur J Hum Genet 2004;12:1024–1032.

    Article  PubMed  CAS  Google Scholar 

  43. Simonelli F, Testa F, Zernant J, et al. Association of a homozygous nonsense mutation in the ABCA4 (ABCR) gene with cone-rod dystrophy phenotype in an Italian family. Ophthalmic Res2004;36:82–88.

    Article  PubMed  CAS  Google Scholar 

  44. Papermaster DS, Converse CA, Zorn M. Biosynthetic and immunochemical characterization of large protein in frog and cattle rod outer segment membranes. Exp Eye Res 1976;23:105–115.

    Article  PubMed  CAS  Google Scholar 

  45. Papermaster DS, Schneider BG, Zorn MA, Kraehenbuhl JP. Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks. J Cell Biol 1978;78:415–425.

    Article  PubMed  CAS  Google Scholar 

  46. Sun H, Molday RS, Nathans J. Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem 1999;274:8269–8281.

    Article  PubMed  CAS  Google Scholar 

  47. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 1999;98:13–23.

    Article  PubMed  CAS  Google Scholar 

  48. Beharry S, Zhong M, Molday RS. N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem 2004;279:53,972–53,979.

    Article  PubMed  CAS  Google Scholar 

  49. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 1999;40:2988–2995.

    PubMed  CAS  Google Scholar 

  50. Sun H, Nathans J. ABCR, the ATP-binding cassette transporter responsible for Stargardt macular dystrophy, is an efficient target of all-trans-retinal-mediated photooxidative damage in vitro. Implications for retinal disease. J Biol Chem 2001;276:11,766–11,774.

    Article  PubMed  CAS  Google Scholar 

  51. Berson EL, Rosner B, Sandberg MA, et al. Vitamin A supplementation for retinitis pigmentosa. Arch Ophthalmol 1993;111:1456–1459.

    PubMed  CAS  Google Scholar 

  52. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 2001;119:1417–1436.

    Google Scholar 

  53. Sparrow JR, Vollmer-Snarr HR, Zhou J, et al. A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem 2003;278:18,207–18,213.

    Article  PubMed  CAS  Google Scholar 

  54. Eldred GE, Lasky MR. Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 1993;361:724–726.

    Article  PubMed  CAS  Google Scholar 

  55. Parish CA, Hashimoto M, Nakanishi K, Dillon, Sparrow J. Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci USA 1998;95:14,609–14,613.

    Article  PubMed  CAS  Google Scholar 

  56. Liu J, Itagaki Y, Ben-Shabat S, Nakanishi K, Sparrow JR. The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem 2000;275:29,354–29,360.

    Article  PubMed  CAS  Google Scholar 

  57. Mata NL, Weng J, Travis GH. Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci USA 2000;97:154–159.

    Article  Google Scholar 

  58. Ben-Shabat S, Parish CA, Vollmer HR, et al. Biosynthetic studies of A2E, a major fluorophore of retinal pigment epithelial lipofuscin. J Biol Chem 2002;277:7183–7190.

    Article  PubMed  CAS  Google Scholar 

  59. Sakai N, Decatur J, Nakanishi K, Eldred GE. Ocular age pigment “A2E”: An unprecedented pyridinium bisretinoid. J Am Chem Soc 1996;118:1559–1560.

    Article  CAS  Google Scholar 

  60. Suter M, Reme C, Grimm C, et al. Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 2000;275:39,625–39,630.

    Article  PubMed  CAS  Google Scholar 

  61. Sparrow JR, Nakanishi K, Parish CA. The lipofuscin fluorophore A2E mediates blue lightinduced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 2000;41: 1981–1989.

    PubMed  CAS  Google Scholar 

  62. Schutt F, Davies S, Kopitz J, Holz FG, Boulton ME. Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 2000;41:2303–2308.

    PubMed  CAS  Google Scholar 

  63. Sparrow JR, Zhou J, Cai B. DNA is a target of the photodynamic effects elicited in A2Eladen RPE by blue-light illumination. Invest Ophthalmol Vis Sci 2003;44:2245–2251.

    Article  PubMed  Google Scholar 

  64. Holz FG, Schutt F, Kopitz J, et al. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 1999;40:737–743.

    PubMed  CAS  Google Scholar 

  65. Katz ML, Norberg M. Influence of dietary vitamin A on autofluorescence of leupeptininduced inclusions in the retinal pigment epithelium. Exp Eye Res 1992;54:239–246.

    Article  PubMed  CAS  Google Scholar 

  66. Katz ML, Redmond TM. Effect of Rpe65 knockout on accumulation of lipofuscin fluorophores in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 2001;42: 3023–3030.

    PubMed  CAS  Google Scholar 

  67. Radu RA, Mata NL, Bagla A, Travis GH. Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci USA 2004;101:5928–3593.

    Article  PubMed  CAS  Google Scholar 

  68. Radu RA, Mata NL, Nusinowitz S, Liu X, Sieving PA, Travis GH. Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Natl Acad Sci USA 2003;100:4742–4747.

    Article  PubMed  CAS  Google Scholar 

  69. Sieving PA, Chaudhry P, Kondo M, et al. Inhibition of the visual cycle in vivo by 13-cis retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy. Proc Natl Acad Sci USA 2001;98:1835–1840.

    Article  PubMed  CAS  Google Scholar 

  70. Guzzo CA, Lazarus GS, Werth VP. Dermatological pharmacology. In: Hardman JG, Limbird LE, eds. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 9th ed. New York, NY: McGraw-Hill, Health Professions Division; 1996;1593–1616.

    Google Scholar 

  71. Law WC, Rando RR. The molecular basis of retinoic acid induced night blindness. Biochem Biophys Res Commun 1989;161:825–829.

    Article  PubMed  CAS  Google Scholar 

  72. Gollapalli DR, Rando RR. The specific binding of retinoic acid to RPE65 and approaches to the treatment of macular degeneration. Proc Natl Acad Sci USA 2004;101:10,030–10,035.

    Article  PubMed  CAS  Google Scholar 

  73. Kim SR, Fishkin N, Kong J, Nakanishi K, Allikmets R, Sparrow JR. Rpe65 Leu450Met variant is associated with reduced levels of the retinal pigment epithelium lipofuscin fluorophores A2E and iso-A2E. Proc Natl Acad Sci USA 2004;101:11,668–11,672.

    Article  PubMed  CAS  Google Scholar 

  74. Maiti P, Kong J, Kim SR, Sparrow JR, Allikmets R, Rando RR. Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochemistry 2006;45: 852–860.

    Article  PubMed  CAS  Google Scholar 

  75. Gouze E, Pawlyk B, Pilapil C, et al. In vivo gene delivery to synovium by lentiviral vectors. Mol Ther 2002;5:397–404.

    Article  PubMed  CAS  Google Scholar 

  76. Kostic C, Chiodini F, Salmon P, et al. Activity analysis of housekeeping promoters using selfinactivating lentiviral vector delivery into the mouse retina. Gene Ther 2003;10:818–821.

    Article  PubMed  CAS  Google Scholar 

  77. Miyoshi H, Takahashi M, Gage FH, Verma IM. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 1997;94:10,319–10,323.

    Article  PubMed  CAS  Google Scholar 

  78. Kingsman SM. Lentivirus: a vector for nervous system applications. Ernst Schering Res Found Workshop, Oxford, UK, 2003;179–207.

    Google Scholar 

  79. Mazarakis ND, Azzouz M, Rohll JB, et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 2001;10:2109–2121.

    Article  PubMed  CAS  Google Scholar 

  80. Yan Z, Zhang Y, Duan D, Engelhardt JF. Trans-splicing vectors expand the utility of adenoassociated virus for gene therapy. Proc Natl Acad Sci USA 2000;97:6716–6721.

    Article  PubMed  CAS  Google Scholar 

  81. Bungert S, Molday LL, Molday RS. Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters: identification of N-linked glycosylation sites. J Biol Chem 2001;276:23,539–23,546.

    Article  PubMed  CAS  Google Scholar 

  82. Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001;28:92–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Allikmets, R. (2007). Stargardt Disease. In: Tombran-Tink, J., Barnstable, C.J. (eds) Retinal Degenerations. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-186-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-186-4_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-620-7

  • Online ISBN: 978-1-59745-186-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics