Skip to main content

Leber Congenital Amaurosis

A Hereditary Childhood Form of Blindness and a Model to Elucidate Retinal Physiology and Development

  • Chapter
Retinal Degenerations

Part of the book series: Ophthalmology Research ((OPHRES))

Abstract

Leber congenital amaurosis ([LCA], MIM 204000) is an important, currently untreatable congenital retinal dystrophy that inexorably leads to blindness. Its importance is twofold and lies in the fact that it creates a tremendous burden on the affected child, the family, and society, as the blindness is life long and commences at birth. Also, LCA gene discoveries have led to an increased understanding of the molecular determinants of retinal physiology and retinal development by identifying new biochemical and cellular pathways. Therefore, LCA serves as a model for all human retinal dystrophies and human retinal development and physiology. LCA has a worldwide prevalence of 3 in 100,000 newborns and accounts for 5% or more of all inherited retinopathies and approx 20% of children attending schools for the blind (1). We estimate that 180,000 patients are affected worldwide (2). Leber defined LCA in 1869 as a congenital form of retinitis pigmentosa (RP) with profound visual loss at birth, nystagmus, amaurotic pupils, and a pigmentary retinopathy (3). A severely reduced electroretinogram (ERG) was added to the definition as this distinguishes it from a complex set of overlapping retinal dystrophies (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alstrom CH, Olson O. Heredo-retinopathia congenitalis monohybrida recessiva autosomalis. Hereditas 1957;43:1–178.

    Google Scholar 

  2. Koenekoop RK. Major Review: an overview of recent developments in Leber congenital amaurosis: a model to understand human retinal development. Invited publication. Surv Ophthalmol 2004;49(4):379–398.

    Article  PubMed  Google Scholar 

  3. Leber T. Uber retinitis pigmentosa und angeborene amaurose. Graefes Arch Klin Ophthalmol 1869;15:1–25.

    Google Scholar 

  4. Franceschetti A, Dieterlé P. Die Differentaldiagnostische Bedeutung des ERG’s bei tapetoretinalen Degenerationen: Elektroretinographie. Bibl Ophth 1956;48:161.

    Google Scholar 

  5. Perrault I, Rozet JM, Calvas P, et al. Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet 1996;14:461–464.

    Article  PubMed  CAS  Google Scholar 

  6. Janecke AR, Thompson DA, Utermann G, et al. Mutations in RDH12. encoding a photoreceptor cell retinol dehydrogenase cause childhood-onset severe retinal dystrophy. Nat Genet 2004;36(8):850–854.

    Article  PubMed  CAS  Google Scholar 

  7. Marlhens F, Bareil C, Griffoin J-M, et al. Mutations in RPE65 cause Leber’s congenital amaurosis. (Letter) Nature Genet 1997;17:139–141.

    Article  PubMed  CAS  Google Scholar 

  8. De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis Carol L. Freund, Qing-Ling Wang, Shiming Chen, Brenda L. Muskat, Carmella D. Wiles, Val C. Sheffield, Samuel G. Jacobson, Roderick R. Mclnnes, Donald J. Zack, & Edwin M. Stone. Nature Genetics 18, 311–312 (199

    Article  PubMed  CAS  Google Scholar 

  9. den Hollander AI, Heckenlively JR, van den Born LI, et al. Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet 2001; 69:198–203.

    Article  Google Scholar 

  10. Sohocki MM, Bowne SJ, Sullivan LS, et al. Mutations in a new photoreceptor-pineal gene on 17p cause Leber Congenital amaurosis. Nature Genet 2000;24:79–83.

    Article  PubMed  CAS  Google Scholar 

  11. Dryja TP, Adams SM, Grimsby JL, et al. Null RPGRIP1 alleles in patients with Leber Congenital Amaurosis. Am J Hum Genet 2001;68:1295–1298.

    Article  PubMed  CAS  Google Scholar 

  12. Dharmaraj S, Li Y, Robitaille J, et al. A novel locus for Leber congenital amaurosis maps on chromosome 6q. Am J Hum Genet 2000a;66:319–326.

    Article  PubMed  CAS  Google Scholar 

  13. Stockton DW, Lewis RA, Abboud EB, et al. A novel locus for Leber congenital amaurosis on chromosome 14q24. Hum Genet 1998;103:328–333.

    Article  PubMed  CAS  Google Scholar 

  14. Keen TJ, Mohamed MD, McKibbin M, et al. Identification of a locus (LCA9) for Leber’s congenital amaurosis on chromosome 1p36. Eur J Hum Genet 2003;11:420–423.

    Article  PubMed  CAS  Google Scholar 

  15. Aubineau M. Retinite pigmentaire congenitale familiale. Examen anatomique. Ann Oculistique 1903;129:432–439.

    Google Scholar 

  16. Flanders M, Lapointe ML, Brownstein S, et al. Keratoconus and Leber’s congenital amaurosis: a clinicopathological correlation. Can J Ophthalmol 1984;19:310–314.

    PubMed  CAS  Google Scholar 

  17. François J, Hanssens M. E-tude histo-pathologique de deux cas de dégénérescence tapétorétinienne congénitale de Leber. Ann Oculist 1969;202:127–155.

    Google Scholar 

  18. Kroll AJ, Kuwabara T. Electron Microscopy of a Retinal Abiotrophy. Arch Ophthalmol 1964;71:683–690.

    PubMed  CAS  Google Scholar 

  19. Ramamurthy V, Niemi GA, Reh TA, Hurley JB. Leber congenital amaurosis linked to AIPL1: A mouse model reveals destabilization of cGMP phosphodiesterase. PNAS 2004;101(38):13,897–13,902.

    Article  PubMed  CAS  Google Scholar 

  20. Sorsby A, Williams CE. Retinal aplasia as a clinical entity. Br Med J 1960;1:293–297.

    Article  Google Scholar 

  21. Sullivan TJ, Heathcote JG, Brazel SM, Musarella MA. The ocular pathology in Leber’s congenital amaurosis. Aust N Z J Ophthalmol 1994;22:25–31.

    PubMed  CAS  Google Scholar 

  22. Babel J. Constatations histologiques dans l’amaurose infantile de Leber et dans diverses formes d’héméralopie. Ophthalmologica 1962;145:399–402.

    Google Scholar 

  23. Horsten GP. Development of the retina of man and animals. Arch Ophthalmol 1960; 63:232–242.

    PubMed  CAS  Google Scholar 

  24. Milam AH, Barakat MR, Gupta N, et al. Clinicopathologic effects of mutant GUCY2D in Leber congenital amaurosis. Ophthalmology 2003;110(3):549–558.

    Article  PubMed  Google Scholar 

  25. Gillespie FD. Congenital Amaurosis of Leber. Am J Ophthalmol 1966;61:874–880.

    PubMed  CAS  Google Scholar 

  26. Vrabec F. Un cas de degenerance pigmentaire congenitale de la retine examinee histoloquement. Ophthalmologica 1951;122:65–75.

    Article  PubMed  CAS  Google Scholar 

  27. Fariss RN, Li ZY, Milam AH. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am J Ophthalmology 2000; 129:215–223.

    Article  CAS  Google Scholar 

  28. Li Z, Kljavin I, Milam A. Rod photoreceptor sprouting in retinitis pigmentosa. J Neurosci 1995;15(8):5429–5438.

    PubMed  CAS  Google Scholar 

  29. Milam A, Li Z, Fariss R. Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 1998;17(2):175–205.

    Article  PubMed  CAS  Google Scholar 

  30. Brecelj J, Stirn-Kranjc B. ERG and VEP follow up study in children with Leber congenital amaurosis. Eye 1999;13:47–54.

    PubMed  Google Scholar 

  31. Fulton AB, Hansen RM, Mayer DL. Vision in Leber congenital amaurosis. Arch Ophthalmol 1996;114:698–703.

    PubMed  CAS  Google Scholar 

  32. Heher KL, Traboulsi EI, Maumenee IH. The natural history of Leber’s Congenital Amaurosis. Ophthalmology 1992;99:241–245.

    PubMed  CAS  Google Scholar 

  33. Lambert SR, Kriss A, Taylor D, et al. Follow-up and diagnostic reappraisal of 75 patients with Leber’s congenital amaurosis. Am J Ophthalmol 1989;107:624–631.

    PubMed  CAS  Google Scholar 

  34. Acland GM, Aguire GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001;28:92–95.

    Article  PubMed  CAS  Google Scholar 

  35. Ali RR, Sarra G-M, Stephens C, et al. Restoration of photoreceptor ultra structure and function in retinal degeneration slow mice by gene therapy. Nature Genet 2000; 25:306–310.

    Article  PubMed  CAS  Google Scholar 

  36. Bush RA, Kononen L, Machida S, et al. The effect of calcium channel blocker diltiazem on photoreceptor degeneration in the rhodopsin Pro23His rat. Invest Ophthalmol Vis Sci 2000;41:2697–2701.

    PubMed  CAS  Google Scholar 

  37. Frasson M, Sahel JA, Fabre M, et al. Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nature Med 1999;5:1183–1187.

    Article  PubMed  CAS  Google Scholar 

  38. LaVail MM, Yasumura D, Matthes MT, et al. Protection of mouse survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 1998;39(3):592–602.

    PubMed  CAS  Google Scholar 

  39. Lem J, Flannery JG, Li T, et al. Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodiesterase beta subunit. Proc Natl Acad Sci USA 1992;89:4422–4426.

    Article  PubMed  CAS  Google Scholar 

  40. Lewin AS, Drenser KA, Hausworth WW, et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med 1998;4(8):967–971.

    Article  PubMed  CAS  Google Scholar 

  41. Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS. Neurotrophic factors: from molecule to man. Trends Neurosci 1987;28:1131–1137.

    Google Scholar 

  42. Travis GR, Groshan KR, Lloyd MB, Bok D. Complete rescue of photoreceptor dysplasia and degeneration in transgenic retinal degeneration slow (rds) mice. Neuron 1992;9:113–119.

    Article  PubMed  CAS  Google Scholar 

  43. Van Hooser JP, Aleman TS, He YG, et al. Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc Natl Acad Sci USA 2000;97(15):8623–8628.

    Article  PubMed  Google Scholar 

  44. Weiss A, Biersdorf W. Visual sensory disorders in congenital nystagmus. Ophthalmology 1989;96(4):517–523.

    PubMed  CAS  Google Scholar 

  45. Sundin OH, Yang JM, Li Y, et al. Genetic basis of total colourblindness among the Pingelapese islanders. Nat Genet 2000;25(3):289–293.

    Article  PubMed  CAS  Google Scholar 

  46. Wissinger B, Gamer D, Jagle H, et al. CNGA3 mutations in hereditary cone photoreceptor disorders. Am J Hum Genet 2001;69(4):722–737.

    Article  PubMed  CAS  Google Scholar 

  47. Aligianis IA, Forshew T, Johnson S, et al. Mapping of a novel locus for achromatopsia (ACHM4) to 1p and identification of a germline mutation in the alpha subunit of cone transducin (GNAT2). J Med Genet 2002;39(9):656–660.

    Article  PubMed  CAS  Google Scholar 

  48. Weleber RG, Tongue AC. Congenital stationary night blindness presenting as Leber’s congenital amaurosis. Arch Ophthalmol 1987;105(3):360–365.

    PubMed  CAS  Google Scholar 

  49. Dryja TP. Molecular genetics of Oguchi disease, fundus albipunctatus, and other forms of stationary night blindness: LVII Edward Jackson Memorial Lecture. Am J Ophthalmol 2000;130(5):547–563.

    Article  PubMed  CAS  Google Scholar 

  50. Sohocki MM, Perrault I, Leroy BP, et al. Prevalence of AIPL1 mutations in inherited retinal degenerative disease. Mol Genet Metab 2000;70(2):142–150.

    Article  PubMed  CAS  Google Scholar 

  51. Ramamurthy V, Roberts M, van den Akker F, Niemi G, Reh TA, Hurley JB. AIPL1, a protein implicated in Leber’s congenital amaurosis, interacts with and aids in processing of farnesylated proteins. Proc Natl Acad Sci USA 2003;100(22):12,630–12,635.

    Article  PubMed  CAS  Google Scholar 

  52. Akey DT, Zhu X, Dyer M, et al. The inherited blindness associated protein AIPL1 interacts with the cell cycle regulator protein NUB1. Hum Mol Genet 2002;11(22):2723–2733.

    Article  PubMed  CAS  Google Scholar 

  53. van der Spuy J, Cheetham ME. The leber congenital amaurosis protein AIPL1 modulates the nuclear translocation of NUB1 and suppresses inclusion formation by NUB1 fragments. J Biol Chem 2004;279(46):48,038–48,047.

    Article  PubMed  CAS  Google Scholar 

  54. Kanaya K, Sohocki MM, Kamitani T. Abolished interaction of NUB1 with mutant AIPL1 involved in Leber congenital amaurosis. Biochem Biophys Res Commun 2004;317(3): 768–773.

    Article  PubMed  CAS  Google Scholar 

  55. Choy E, Chiu VK, Silletti J, et al. Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell. 1999;98(1):69–80.

    Article  PubMed  CAS  Google Scholar 

  56. Dyer MA, Donovan SL, Zhang J, et al. Retinal degeneration in Aipl1-deficient mice: a new genetic model of Leber congenital amaurosis. Brain Res Mol Brain Res 2004; 132(2):208–220.

    Article  PubMed  CAS  Google Scholar 

  57. Liu X, Bulgakov OV, Wen XH, et al. AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proc Natl Acad Sci USA 2004;101(38):13,903–13,908.

    Article  PubMed  CAS  Google Scholar 

  58. Bowes C, Li T, Danciger M, et al. Retinal degeneration in the rd mouse is caused by a defect in the ®-subunit of rod cGMP-phosphodiesterase. Nature 1990;347:677–680.

    Article  PubMed  CAS  Google Scholar 

  59. Farber DB, Lolley RN. Cyclic guanosine monophosphate: Elevation in degenerating photoreceptor cells of the C3H mouse retina. Science 1974;186:449–451.

    Article  PubMed  CAS  Google Scholar 

  60. Lolley RN, Farber DB, Rayborn ME, et al. Cyclic GMP accumulation causes degeneration of phototreceptor cells: simulation of an inherited disease. Science 1977;196:664–666.

    Article  PubMed  CAS  Google Scholar 

  61. Dharmaraj S, Leroy BP, Sohocki MM, et al. Maumenee. A distinct phenotype for Leber congenital amaurosis patients with AIPL1 mutations: a cross sectional genotype-phenotype evaluation of 26 AIPL1 patients and comparisons with other LCA phenotypes. Arch Ophthalmol 2004;122:1029–1037.

    Article  PubMed  CAS  Google Scholar 

  62. Galvin JA, Fishman GA, Stone EM, Koenekoop RK. Clinical phenotypes in carriers of Leber congenital amaurosis mutations. Ophthalmology 2005;112:349–356.

    Article  PubMed  Google Scholar 

  63. Ortiz A, Xiaoshan W, Lopez I, Koenekoop RK, Sohocki MM. Functional correlations of selected AIPL1 mutations found in Leber congenital amaurosis patients and their parents. Invest Ophthalmol Vis Sci 2004;45(4):S5109.

    Google Scholar 

  64. van der Spuy J, Chapple JP, Clark BJ, Luthert PJ, Sethi CS, Cheetham ME. The Leber congenital amaurosis gene product AIPL1 is localized exclusively in rod photoreceptors of the adult human retina. Hum Mol Genet 2002;11(7):823–831.

    Article  PubMed  Google Scholar 

  65. van der Spuy J, Kim JH, Yu YS, et al. The expression of the Leber congenital amaurosis protein AIPL1 coincides with rod and cone photoreceptor development. Invest Ophthalmol Vis Sci 44(12):5396–5403.

    Google Scholar 

  66. Damji KF, Sohocki MM, Khan R, et al. Leber congenital amaurosis with anterior keratoconus in Pakistani families is caused by the Trp278X mutation in the AIPL1 gene on 17p. Can J Ophthalmol 2001;36(5):252–259.

    PubMed  CAS  Google Scholar 

  67. Silva E, Yang JM, Li Y, et al. A CRX Null Mutation Is Associated with Both Leber Congenital Amaurosis and a Normal Ocular Phenotype. Invest Ophthalmol Vis Sci 2000; 41:2076–2079.

    PubMed  CAS  Google Scholar 

  68. Freund CL, Gregory-Evans CY, Furukawa T, et al. Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 1997;91:543–553.

    Article  PubMed  CAS  Google Scholar 

  69. Furukawa T, Morrow EM, Li T, et al. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet 1999;23:466–470.

    Article  PubMed  CAS  Google Scholar 

  70. Furukawa T, Morrow EM, Cepko CL. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 1997; 91:531–541.

    Article  PubMed  CAS  Google Scholar 

  71. Pignatelli V, Cepko CL, Strettoi E. Inner retinal abnormalities in a mouse model of Leber’s congenital amaurosis. J Comp Neurol 2004;469(3):351–359.

    Article  PubMed  Google Scholar 

  72. Livesey FJ, Furukawa T, Steffen MA, Church GM, Cepko CL. Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Curr Biol 2000;10(6):301–310.

    Article  PubMed  CAS  Google Scholar 

  73. Tsang SH, Gouras P, Yamashita CK, et al. Retinal degeneration in mice lacking the gamma subunit of the rod cGMP phosphodiesterase. Science 1996;272(5264):1026–1029.

    Article  PubMed  CAS  Google Scholar 

  74. Rivolta C, Berson EL, Dryja TP. Dominant Leber congenital amaurosis, cone-rod degeneration, and retinitis pigmentosa caused by mutant versions of the transcription factor CRX. Hum Mutat 2001;18(6):488–498.

    Article  PubMed  CAS  Google Scholar 

  75. Swaroop A, Wang QL, Wu W, et al. Leber congenital amaurosis caused by a homozygous mutation (R90W) in the homeodomain of the retinal transcription factor CRX: direct evidence for the involvement of CRX in the development of photoreceptor function. Hum Mol Genet 1999;8:299–305.

    Article  PubMed  CAS  Google Scholar 

  76. Sohocki MM, Sullivan LS, Mintz-Hittner HA, et al. A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene. Am J Hum Genet 1998;63:1307–1315.

    Article  PubMed  CAS  Google Scholar 

  77. Koenekoop RK, Loyer M, Dembinska O, Beneish R. Visual improvement in Leber congenital amaurosis and the CRX genotype. Ophthalmic Genet 2002;23(1):49–59.

    Article  PubMed  Google Scholar 

  78. Dharmaraj S, Silva E, Pina A-L, et al. Mutational Analysis and Clinical Correlation in LCA. Ophthalmic Genetics, 2000;21(3):135–150.

    Article  PubMed  CAS  Google Scholar 

  79. Hanein S, Perrault I, Gerber S, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat 2004;23(4):306–317.

    Article  PubMed  CAS  Google Scholar 

  80. den Hollander AI, ten Brink JB, de Kok YJM, et al. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nature Genet 1999;23:217–221.

    Article  CAS  Google Scholar 

  81. den Hollander AI, van Driel MA, de Kok YJM, et al. Isolation and mapping of novel candidate genes for retinal disorders using suppression subtractive hybridization. Genomics 1999;58:240–249.

    Article  Google Scholar 

  82. den Hollander AI, Davis J, van der Velde-Visser SD, et al. CRB1 mutation spectrum in inherited retinal dystrophies. Hum Mutat 2004;24(5):355–369.

    Article  CAS  Google Scholar 

  83. Pellikka M, Tanentzapf G, Pinto M, et al. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 2002;416(6877):143–149.

    Article  PubMed  CAS  Google Scholar 

  84. Mehalow AK, Kameya S, Smith RS, et al. CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 2003;12(17):2179–2189.

    Article  PubMed  CAS  Google Scholar 

  85. Lotery AJ, Jacobson SG, Fishman GA, et al. Mutations in the CRB1 gene cause Leber congenital amaurosis. Arch Ophthalmol 2001;119:415–420.

    PubMed  CAS  Google Scholar 

  86. van de Pavert SA, Kantardzhieva A, Malysheva A, et al. Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. J Cell Sci 2004;117(Pt 18):4169–4177.

    Article  PubMed  CAS  Google Scholar 

  87. Jacobson SG, Cideciyan AV, Aleman TS, et al. Crumbs homolog 1 (CRB1) mutations result in a thick human retina with abnormal lamination. Hum Mol Genet 2003;12(9): 1073–1078.

    Article  PubMed  CAS  Google Scholar 

  88. McKay GJ, Clarke S, Davis JA, Simpson DA, Silvestri G. Pigmented paravenous chorioretinal atrophy is associated with a mutation within the Crumbs homolog 1 (CRB1) gene. Invest Ophthalmol Vis Sci 2005;46(1):322–328.

    Article  PubMed  Google Scholar 

  89. Galvin JA, Fishman GA, Stone EM, Lopez I, Koenekoop RK. Clinical phenotypes in patients & carriers of various genotypes in Leber congenital amaurosis (LCA). Invest Ophthalmol Vis Sci 2004;45(4):S4063.

    Google Scholar 

  90. Cremers FP, van den Hurk JA, den Hollander AI. Molecular genetics of Leber congenital amaurosis. Hum Mol Genet 2002;11(10):1169–1176.

    Article  PubMed  CAS  Google Scholar 

  91. Shyjan AW, de Sauvage FJ, Gillett NA, Goeddel DV, Lowe DG. Molecular cloning of a retina-specific membrane guanylyl cyclase. Neuron 1992;9:727–737.

    Article  PubMed  CAS  Google Scholar 

  92. Oliveira L, Miniou P, Viegas-Pequignot E, Rozet J-M, Dollfus H, Pittler SJ. Human retinal guanylate cyclase (GUC2D) maps to chromosome 17p13.1. Genomics 1994;22:478–481.

    Article  PubMed  CAS  Google Scholar 

  93. Camuzat A, Dollfus H, Rozet JM, et al. A gene for Leber’s congenital amaurosis maps to chromosome 17p. Hum Mol Genet 1995;4:1447–1452.

    Article  PubMed  CAS  Google Scholar 

  94. Camuzat A, Rozet JM, Dollfus H, et al. Evidence of genetic heterogeneity of Leber’s congenital amaurosis (LCA) and mapping of LCA1 to chromosome 17p13. Hum Genet 1996;97:798–801.

    PubMed  CAS  Google Scholar 

  95. Kelsell RE, Gregory-Evans K, Payne AM, et al. Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 1998;7:1179–1184.

    Article  PubMed  CAS  Google Scholar 

  96. Dizhoor AM, Lowe DG, Olshevskaya EV, et al. Expression patterns of RetGC-1 in rod and cone photoreceptors. Neuron 1994;12:1345–1352.

    Article  PubMed  CAS  Google Scholar 

  97. Liu X, Seno K, Nishizawa Y, et al. Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp Eye Res 1994;59:761–768.

    Article  PubMed  CAS  Google Scholar 

  98. Dizhoor AM, Hurley JB. Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2?-induced “activator-toinhibitor” transition. J Biol Chem 1996;271:19,346–19,350.

    Article  PubMed  CAS  Google Scholar 

  99. Dizhoor AM, Olshevskaya EV, Henzel WJ, et al. Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 1995;270:25,200–25,206.

    Article  PubMed  CAS  Google Scholar 

  100. Olshevskaya EV, Hughes RE, Hurley JB, Dizhoor AM. Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J Biol Chem 1997;272:14,327–14,333.

    Article  PubMed  CAS  Google Scholar 

  101. Palczewski K, Subbaraya I, Gorczyca WA, et al. Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 1994;13:395–404.

    Article  PubMed  CAS  Google Scholar 

  102. Dizhoor AM, Lowe DG, Olshevskaya EV, et al. The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 1994;12:1345–1352.

    Article  PubMed  CAS  Google Scholar 

  103. Lagnado L, Baylor D. Signal flow in visual transduction. Neuron 1992;8:995–1002.

    Article  PubMed  CAS  Google Scholar 

  104. Laura RP, Dizhoor AM, Hurley JB. The membrane guanylyl cyclase, retinal guanylyl cyclase-1, is activated through its intracellular domain. J Biol Chem 1996;271:11,646–11,651.

    Article  PubMed  CAS  Google Scholar 

  105. Duda T, Venkatarama V, Goraczniak R, Lange C, Koch K-W, Sharma RK. Functional consequences of a rod outer segment membrane guanylate cyclase (ROS-GC1) gene mutation linked with Leber’s congenital amaurosis. Biochemistry 1999;38:509–515.

    Article  PubMed  CAS  Google Scholar 

  106. Rozet JM, Perrault I, Gerber S, et al. Complete abolition of the retinal-specific guanylyl cyclase (retGC-1) catalytic ability consistently leads to leber congenital amaurosis (LCA). Invest Ophthalmol Vis Sci 2001;42(6):1190–1192.

    PubMed  CAS  Google Scholar 

  107. Tucker C, Ramamurthy V, Pina AL, et al. Functional analyses of mutant recessive GUCY2D alleles identified in Leber congenital amaurosis patients: protein domain comparisons and dominant negative effects. Mol Vision 2004;10:297–303.

    CAS  Google Scholar 

  108. Tucker CL, Hurley JH, Miller TR, Hurley JB. Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc Natl Acad Sci USA 1998;95: 5993–5997.

    Article  PubMed  CAS  Google Scholar 

  109. Koenekoop RK, Fishman GA, Iannaccone A, et al. Electroretinographic (ERG) abnormalities in parents of Leber Congenital Amaurosis children with known GUCY2D mutations. Arch Ophthalmol 2002;120(10):1325–1330.

    PubMed  Google Scholar 

  110. Koenekoop RKV, Ramamurthy AL, Pina M, et al. Biochemical consequences of RetGC-1 mutations found in children with Leber congenital amaurosis. Invest Ophthalmol Vis Sci 2000;41(4):S200 (abstract 1050).

    Google Scholar 

  111. Chinkers M, Wilson EM. Ligand-independent oligomerization of natriuretic peptide receptors. Identification of heteromeric receptors and a dominant negative mutant. J Biol Chem 1992;267:18,589–18,597.

    PubMed  CAS  Google Scholar 

  112. Thompson DK, Garbers DL. Dominant negative mutations of the guanylyl cyclase-A receptor. Extracellular domain deletion and catalytic domain point mutations. J Biol Chem 1995;270:425–430.

    Article  PubMed  CAS  Google Scholar 

  113. Yang RB, Robinson SW, Xiong WH, et al. Disruption of a Retinal Guanylyl Cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci 1999;19: 5889–5897.

    PubMed  CAS  Google Scholar 

  114. Semple-Rowland S, Lee NR, Van Hooser JP, et al. A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype. Proc Natl Acad Sci USA 1998;95:1271–1276.

    Article  PubMed  CAS  Google Scholar 

  115. Coleman JE, Semple-Rowland SL. GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells. Invest Ophthalmol Vis Sci 2005;46(1):12–16.

    Article  PubMed  Google Scholar 

  116. Perrault I, Rozet J, Gerber S, et al. Spectrum of RetGC1 mutations in Leber congenital amaurosis. Eur J Hu Genet 2000;8:578–582.

    Article  CAS  Google Scholar 

  117. Perrault I, Rozet JM, Ghazi I, et al. Different functional outcome of RetGC1 and RPE65 gene mutations in Leber congenital amaurosis. Am J Hum Genet 1999;64(4):1225–1228.

    Article  PubMed  CAS  Google Scholar 

  118. Silva E, Dharmaraj S, Li YY, et al. A missense mutation in GUCY2D acts as a genetic modifier in RPE65-related Leber congenital amaurosis. Ophthalmic Genet 2004;25(3):205–217.

    Article  PubMed  CAS  Google Scholar 

  119. Lorenz B, Wabbels B, Wegscheider E, Hamel CP, Drexler W, Preising MN. Lack of fundus autofluorescence to 488 nanometers from childhood on in patients with early-onset severe retinal dystrophy associated with mutations in RPE65. Ophthalmology 2004;111(8): 1585–1594.

    Article  PubMed  Google Scholar 

  120. Hamel CP, Tsilou E, Pfeffer BA, Hooks JJ, Detrick B, Redmond TM. Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J Biol Chem 1993;268:15,751–15,757.

    PubMed  CAS  Google Scholar 

  121. Hamel CP, Jenkins NA, Gilbert DJ, Copeland NG, Redmond TM. The gene for the retinal pigment epithelium-specific protein RPE65 is localized to human 1p31 and mouse 3. Genomics 1994;20:509–512.

    Article  PubMed  CAS  Google Scholar 

  122. Nicoletti A, Wong DJ, Kawase K, et al. Molecular characterization of the human gene encoding an abundant 61 kDa protein specific to the retinal pigment epithelium. Hum Mol Genet 1995;4(4):641–649.

    Article  PubMed  CAS  Google Scholar 

  123. Gu S, Thompson DA, Srikumari CRS, et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nature Genet 1997;17:194–197.

    Article  PubMed  CAS  Google Scholar 

  124. Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. Proc Nat Acad Sci USA 1998;95:3088–3093.

    Article  PubMed  CAS  Google Scholar 

  125. Redmond TM, Yu S, Lee E, et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nature Genet 1998;20:344–351.

    Article  PubMed  CAS  Google Scholar 

  126. Seeliger MW, Grimm C, Stahlberg F, et al. New views on RPE65 deficiency: the rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat Genet 2001;29(1):70–74.

    Article  PubMed  CAS  Google Scholar 

  127. Fain GL, Lisman JE. Photoreceptor degeneration in vitamin A deprivation and retinitis pigmentosa: the equivalent light hypothesis. Exp Eye Res 1993;57(3):335–340.

    Article  PubMed  CAS  Google Scholar 

  128. Fain GL, Lisman JE. Light, Ca2+, and photoreceptor death: new evidence for the equivalent-light hypothesis from arrestin KO mice. Invest Ophthalmol Vis Sci 1999; 40(12):2770–2772.

    PubMed  CAS  Google Scholar 

  129. Woodruff ML, Wang Z, Chung HY, Redmond TM, Fain GL, Lem J. Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Nat Genet 2003;35(2):158–164.

    Article  PubMed  CAS  Google Scholar 

  130. Franklin JL, Sanz-Rodriguez C, Juhasz A, Deckwerth TL, Johnson EM Jr. Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth: requirement for Ca2+ influx but not Trk activation. J Neurosci 1995;15:643–664.

    PubMed  CAS  Google Scholar 

  131. Aguirre GD, Baldwin V, Pearce-Kelling S, Narfstrom K, Ray K, Acland GM. Congenital stationary night blindness in the dog: common mutation in the RPE65 gene indicates founder effect. Mol Vis 1998;4:23.

    PubMed  CAS  Google Scholar 

  132. Veske A, Nilsson SE, Narfstrom K, Gal A. Retinal dystrophy of Swedish briard/briardbeagle dogs is due to a 4-bp deletion in RPE65. Genomics 1999;57(1):57–61.

    Article  PubMed  CAS  Google Scholar 

  133. Lorenz B, Gyurus P, Preising M, et al. Early-onset severe rod cone dystrophy in young children with RPE 65 mutations. Invest Ophthalmol Vis Sci 2000;41(9):2735–2742.

    PubMed  CAS  Google Scholar 

  134. Paunescu K, Wabbels B, Preising MN, Lorenz B. Longitudinal and cross-sectional study of patients with early-onset severe retinal dystrophy associated with RPE65 mutations. Graefes Arch Clin Exp Ophthalmol 2005;243(5):417–426.

    Article  PubMed  Google Scholar 

  135. Simovich MJ, Miller B, Ezzeldin H, et al. Four novel mutations in the RPE65 gene in patients with Leber congenital amaurosis. Hum Mutat 2001;18(2):164.

    Article  PubMed  CAS  Google Scholar 

  136. Allikmets R, Zernant J, Külm M, et al. The genotyping microarray (disease chip) for Leber congenital amaurosis: mutation identification and modifier alleles. Invest Ophthalmol Vis Sci 2004;45(4):S2444.

    Google Scholar 

  137. Zernant J, Külm M, Dharmaraj S, et al. Genotyping microarray (disease chip) for Leber congenital amaurosis: detection of modifier alleles. Invest Ophthalmol Vis Sci 2005;46(9):3052–3059.

    Article  PubMed  Google Scholar 

  138. Yzer S, van den Born LI, Schuil J, et al. A Tyr368His RPE65 founder mutation is associated with variable expression and progression of early onset retinal dystrophy in 10 families of a genetically isolated population. J Med Genet 2003;40(9):709–713.

    Article  PubMed  CAS  Google Scholar 

  139. Koenekoop RK. Abnormal retinal architecture in a 33-week-old fetus with LCA and a homozygous C330Y mutation in RPE65. Ophthalmic Genet 2003;24(2):125–126.

    Article  PubMed  Google Scholar 

  140. Porto FB, Perrault I, Hicks D, et al. Prenatal human ocular degeneration occurs in Leber’s congenital amaurosis (LCA2). J Gene Med 2002;4(4):390–396.

    Article  PubMed  Google Scholar 

  141. Roepman R, Bernoud-Hubac N, Schick D, et al. The Retinitis Pigmentosa GTPase Regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors. Hum Mol Genet 2000;9:2095–2105.

    Article  PubMed  CAS  Google Scholar 

  142. Boylan JP, Wright AF. Identification of a novel protein interacting with RPGR. Hum Mol Genet 2000;9:2085–2093.

    Article  PubMed  CAS  Google Scholar 

  143. Hong D-H, Yue G, Adamian M, Li T. Retinitis pigmentosa GTPase regulator (RPGR)-interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J Biol Chem 2001;276:12,091–12,099.

    Article  PubMed  CAS  Google Scholar 

  144. Castagnet P, Mavlyutov T, Cai Y, Zhong F, Ferreira P. RPGRIP1s with distinct neuronal localization and biochemical properties associate selectively with RanBP2 in amacrine neurons. Hum Mol Genet 2003;12(15):1847–1863.

    Article  PubMed  CAS  Google Scholar 

  145. Koenekoop RK, Loyer M, Hand C, et al. Novel RPGR mutations with distinct retinitis pigmentosa phenotypes in French-Canadian families. Am J Ophthalmol 2003;136(4):678–687.

    Article  PubMed  CAS  Google Scholar 

  146. Zhao Y, Hong DH, Pawlyk B, et al. The retinitis pigmentosa GTPase regulator (RPGR)-interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc Natl Acad Sci USA 2003;100(7):3965–3970.

    Article  PubMed  CAS  Google Scholar 

  147. Roepman R, Letteboer S, Cremers FPM. Novel interactors link the RPGR/RPGRIP1 multisubunit assembly complex to different key processes of the retina. Invest Ophthalmol Vis Sci 2004;45(4):S2438.

    Google Scholar 

  148. Lu X, Ferreira P. Identification and expression profile of a novel RPGR-independent RPGRIP1 isoform. Invest Ophthalmol Vis Sci 2004;45(4):S5088.

    Google Scholar 

  149. Mavlyutov TA, Zhao H, Ferreira PA. Species-specific subcellular localization of RPGR and RPGRIP isoforms: implications for the phenotypic variability of congenital retinopathies among species. Hum Mol Genet 2002;11(16):1899–1907.

    Article  PubMed  CAS  Google Scholar 

  150. Gerber S, Perrault I, Hanein S, et al. Complete exon-intron structure of the RPGR-interacting protein (RPGRIP1) gene allows the identification of mutations underlying Leber congenital amaurosis. Eur J Hum Genet 2001;9(8):561–571.

    Article  PubMed  CAS  Google Scholar 

  151. Delphin C, Guan T, Melchior F, Gerace L. RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol Biol Cell 1997;8(12):2379–2390.

    PubMed  CAS  Google Scholar 

  152. Yaseen NR, Blobel G. GTP hydrolysis links initiation and termination of nuclear import on the nucleoporin nup358. J Biol Chem 1999;274(37):26,493–26,502.

    Article  PubMed  CAS  Google Scholar 

  153. Hameed A, Abid A, Aziz A, Ismail M, Mehdi SQ, Khaliq S. Evidence of RPGRIP1 gene mutations associated with recessive cone-rod dystrophy. J Med Genet 2003;40(8):616–619.

    Article  PubMed  CAS  Google Scholar 

  154. Koenekoop RK, Lopez I, Fossarello M, Mansfield D, Wright A. RPGRIP1 mutations in juvenile retinitis pigmentosa: a linkage and mutation study. Invest Ophthalmol Vis Sci 2004;45(4):S4727.

    Google Scholar 

  155. Marsh DJ, Theodosopoulos G, Howell V, et al. Rapid mutation screening of genes associated with familial cancer syndromes using denaturing high performance liquid chromatography. Neoplasia 2001;3(3):236–244.

    Article  PubMed  CAS  Google Scholar 

  156. Dharmaraj S, Lopez I, Fishman G, et al. Recessive RPGRIP1 mutations can cause rod and cone dysfunction in the heterozygous parents. Invest Ophthalmol Vis Sci 2004;45(4):S4728.

    Google Scholar 

  157. Lopez I, Fishman GAF, Racine J, et al. Functional studies of recessive RPGRIP1 mutations from Leber congenital amaurosis patients: rod and cone ERG dysfunction in the obligate heterozygotes. Invest Ophthalmol Vis Sci 2005;46(4):S1705.

    Google Scholar 

  158. Perrault I, Hanein S, Gerber S, et al. Retinal dehydrogenase 12 (RDH12) mutations in leber congenital amaurosis. Am J Hum Genet 2004;75(4):639–646.

    Article  PubMed  CAS  Google Scholar 

  159. Lotery AJ, Namperumalsamy P, Jacobson SG, et al. Mutation analysis of three genes in patients with Leber congenital amaurosis. Arch Opthalmol 2000;118:538–543.

    CAS  Google Scholar 

  160. Ansley SJ, Badano JL, Blacque OE, et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 2003;425(6958):628–633.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Koenekoop, R.K. (2007). Leber Congenital Amaurosis. In: Tombran-Tink, J., Barnstable, C.J. (eds) Retinal Degenerations. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-186-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-186-4_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-620-7

  • Online ISBN: 978-1-59745-186-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics