Skip to main content

Stem Cells and Retinal Transplantation

  • Chapter
Retinal Degenerations

Part of the book series: Ophthalmology Research ((OPHRES))

  • 1145 Accesses

Abstract

Stem cells are characterized by their potential to self renew and generate different cell types. However, their ability to give rise to various cell types, also referred to as phenotypic plasticity, is contingent on the source from which these cells are derived. At present, stem cells are being isolated and expanded in vitro from early developing embryos or specific tissues such as blood, brain, and retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tansley K. The development of the rat eye in the graft. J Exp Bio 1946;22:221–223.

    Google Scholar 

  2. Royo PE, Quay WB. Retinal transplantation from fetal to maternal mammalian eye. Growth 1959;23:313–336.

    PubMed  CAS  Google Scholar 

  3. del Cerro M, Gash DM, Rao GN, Notter MF, Wiegand SJ, Gupta M. Intraocular retinal transplants. Invest Ophthalmol Vis Sci 1985;26:1182–1185.

    PubMed  Google Scholar 

  4. Turner JE, Blair JR. Newborn rat retinal cells transplanted into a retinal lesion site in adult host eyes. Brain Res 1986;391:91–104.

    PubMed  CAS  Google Scholar 

  5. Aramant R, Seiler M, Turner JE. Donor age influences on the success of retinal grafts to adult rat retina. Invest Ophthalmol Vis Sci 1988;29:498–503.

    PubMed  CAS  Google Scholar 

  6. Ghosh F, Arner K, Ehinger B. Transplant of full-thickness embryonic rabbit retina using pars plana vitrectomy. Retina 1998;18:136–142.

    PubMed  CAS  Google Scholar 

  7. Gouras P, Du J, Gelanze M, Kwun R, Kjeldbye H, Lopez R. Transplantation of photoreceptors labeled with tritiated thymidine into RCS rats. Invest Ophthalmol Vis Sci 1991; 32:1704–1707.

    PubMed  CAS  Google Scholar 

  8. Du J, Gouras P, Kjeldbye H, Kwun R, Lopez R. Monitoring photoreceptor transplants with nuclear and cytoplasmic markers. Exp Neurol 1992;115:79–86.

    Article  PubMed  CAS  Google Scholar 

  9. Juliusson B, Bergstrom A, van Veen T, Ehinger B. Cellular organization in retinal transplants using cell suspensions or fragments of embryonic retinal tissue. Cell Transplant 1993;2:411–418.

    PubMed  CAS  Google Scholar 

  10. Gouras P, Algvere P. Retinal cell transplantation in the macula: new techniques. Vision Res 1996;36:4121–4125.

    Article  PubMed  CAS  Google Scholar 

  11. Silverman MS, Hughes SE. Transplantation of photoreceptors to light-damaged retina. Invest Ophthalmol Vis Sci 1989;30:1684–1890.

    PubMed  CAS  Google Scholar 

  12. Huang JC, Ishida M, Hersh P, Sugino IK, Zarbin MA. Preparation and transplantation of photoreceptor sheets. Curr Eye Res 1998;17:573–585.

    Article  PubMed  CAS  Google Scholar 

  13. Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res 2003;22:607–655.

    Article  PubMed  Google Scholar 

  14. del Cerro M, Notter MF, del Cerro C, Wiegand SJ, Grover DA, Lazar E. Intraretinal transplantation for rod-cell replacement in light-damaged retinas. J Neural Transplant 1989; 1:1–10.

    Article  PubMed  Google Scholar 

  15. Gouras P, Du J, Gelanze M, et al. Survival and synapse formation of transplanted rat rods. J Neural Transplant Plast 1991;2:91–100.

    Article  PubMed  CAS  Google Scholar 

  16. Silverman MS, Hughes SE, Valentino TL, Liu Y. Photoreceptor transplantation: anatomic, electrophysiologic, and behavioral evidence for the functional reconstruction of retinas lacking photoreceptors. Exp Neurol 1992;115:87–94.

    Article  PubMed  CAS  Google Scholar 

  17. Zucker CL, Ehinger B, Seiler M, Aramant RB, Adolph AR. Ultrastructural circuitry in retinal cell transplants to rat retina. J Neural Transplant Plast 1994;5:17–29.

    Article  PubMed  CAS  Google Scholar 

  18. Aramant RB, Seiler MJ. Fiber and synaptic connections between embryonic retinal transplants and host retina. Exp Neurol 1995;133:244–255.

    Article  PubMed  CAS  Google Scholar 

  19. Ghosh F, Bruun A, Ehinger B. Graft-host connections in long-term full-thickness embryonic rabbit retinal transplants. Invest Ophthalmol Vis Sci 1999;40:126–132.

    PubMed  CAS  Google Scholar 

  20. Adolph AR, Zucker CL, Ehinger B, Bergstrom A. Function and structure in retinal transplants. J Neural Transplant Plast 1994;5:147–161.

    Article  PubMed  CAS  Google Scholar 

  21. Seiler MJ,Aramant RB, Ball SL. Photoreceptor function of retinal transplants implicated by light-dark shift of S-antigen and rod transducin. Vision Res 1999;39:2589–2596.

    Article  PubMed  CAS  Google Scholar 

  22. McLoon LK, Lund RD, McLoon SC. Transplantation of reaggregates of embryonic neural retinae to neonatal rat brain: differentiation and formation of connections. J Comp Neurol 1982;205:179–189.

    Article  PubMed  CAS  Google Scholar 

  23. Klassen H, Lund RD. Retinal transplants can drive a pupillary reflex in host rat brains. Proc Natl Acad Sci USA 1987;84:6958–6960.

    Article  PubMed  CAS  Google Scholar 

  24. Klassen H, Lund RD. Parameters of retinal graft-mediated responses are related to underlying target innervation. Brain Res 1990;533:181–191.

    Article  PubMed  CAS  Google Scholar 

  25. Klassen H, Lund RD. Retinal graft-mediated pupillary responses in rats: restoration of a reflex function in the mature mammalian brain. J Neurosci 1990;10:578–587.

    PubMed  CAS  Google Scholar 

  26. Kaplan HJ, Tezel TH, Berger AS, Wolf ML, Del Priore LV. Human photoreceptor transplantation in retinitis pigmentosa. A safety study. Arch Ophthalmol 1997;115:1168–1172.

    PubMed  CAS  Google Scholar 

  27. Humayun MS, de Juan E Jr, del Cerro M, et al. Human neural retinal transplantation. Invest Ophthalmol Vis Sci 2000;41:3100–3106.

    PubMed  CAS  Google Scholar 

  28. Gouras P, Du J, Kjeldbye H, Yamamoto S, Zack DJ. Long-term photoreceptor transplants in dystrophic and normal mouse retina. Invest Ophthalmol Vis Sci 1994;35:3145–153.

    PubMed  CAS  Google Scholar 

  29. Aramant RB, Seiler MJ. Retinal transplantation-advantages of intact fetal sheets. Prog Retin Eye Res 2002;21:57–73.

    Article  PubMed  Google Scholar 

  30. Lu B, Kwan T, Kurimoto Y, Shatos M, Lund RD, Young MJ. Transplantation of EGF-responsive neurospheres from GFP transgenic mice into the eyes of rd mice. Brain Res 2002;943: 292–300.

    Article  PubMed  CAS  Google Scholar 

  31. Tropepe V, Coles BL, Chiasson BJ, et al. Retinal stem cells in the adult mammalian eye. Science 2000;287:2032–2036.

    Article  PubMed  CAS  Google Scholar 

  32. Ahmad I, Dooley CM, Thoreson WB, Rogers JA, Afiat S. In vitro analysis of a mammalian retinal progenitor that gives rise to neurons and glia. Brain Res 1999;831:1–10.

    Article  PubMed  CAS  Google Scholar 

  33. Ahmad I, Tang L, Pham H. Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 2000;270:517–521.

    Article  PubMed  CAS  Google Scholar 

  34. Klassen HJ, Ng TF, Kurimoto Y, et al. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci 2004;45:4167–4173.

    Article  PubMed  Google Scholar 

  35. Hitchcock P, Ochocinska M, Sieh A, Otteson D. Persistent and injury-induced neurogenesis in the vertebrate retina. Prog Retin Eye Res 2004;23:183–194.

    Article  PubMed  Google Scholar 

  36. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999;283:534–537.

    Article  PubMed  CAS  Google Scholar 

  37. Tomita M, Adachi Y,Yamada H, et al. Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem Cells 2002;20:279–283.

    Article  PubMed  CAS  Google Scholar 

  38. Gage FH, Ray J, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 1995;18:159–192.

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi M, Palmer TD, Takahashi J, Gage FH. Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 1998;12:340–348.

    Article  PubMed  CAS  Google Scholar 

  40. Whiteley SJ, Klassen H, Coffey PJ, Young MJ. Photoreceptor rescue after low-dose intravitreal IL-1beta injection in the RCS rat. Exp Eye Res 2001;73:557–568.

    Article  PubMed  CAS  Google Scholar 

  41. Mizumoto H, Mizumoto K, Whiteley SJ, Shatos M, Klassen H, Young MJ. Transplantation of human neural progenitor cells to the vitreous cavity of the Royal College of Surgeons rat. Cell Transplant 2001;10:223–233.

    PubMed  CAS  Google Scholar 

  42. Klassen H, Schwartz MR, Bailey AH, Young MJ. Surface markers expressed by multipotent human and mouse neural progenitor cells include tetraspanins and non-protein epitopes. Neurosci Lett 2001;312:180–182.

    Article  PubMed  CAS  Google Scholar 

  43. Reh TA. Cellular interactions determine neuronal phenotypes in rodent retinal cultures. J Neurobiol 1992;23:1067–1083.

    Article  PubMed  CAS  Google Scholar 

  44. Klassen H, Imfeld KL, Ray J,Young MJ, Gage FH, Berman MA. The immunological properties of adult hippocampal progenitor cells. Vision Res 2003;43:947–956.

    Article  PubMed  CAS  Google Scholar 

  45. Livesey FJ, Cepko CL. Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci 2001;2:109–118.

    Article  PubMed  CAS  Google Scholar 

  46. Young MJ, Ray J, Whiteley SJ, Klassen H, Gage FH. Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci 2000;16:197–205.

    Article  PubMed  CAS  Google Scholar 

  47. Klassen H, Ziaeian B, Kirov II,Young MJ, Schwartz PH. Isolation of retinal progenitor cells from post-mortem human tissue and comparison with autologous brain progenitors. J Neurosci Res 2004;77:334–343.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yau, J., Klassen, H., Zahir, T., Young, M. (2007). Stem Cells and Retinal Transplantation. In: Tombran-Tink, J., Barnstable, C.J. (eds) Retinal Degenerations. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-186-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-186-4_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-620-7

  • Online ISBN: 978-1-59745-186-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics