Skip to main content

Current Status of IPE Transplantation and Its Potential as a Cell-Based Therapy for Age-Related Macular Degeneration and Retinal Dystrophies

  • Chapter
Retinal Degenerations

Part of the book series: Ophthalmology Research ((OPHRES))

  • 1132 Accesses

Abstract

The vital properties of the neural retina that ensures good vision are maintained by the highly specialized functions of the retinal pigment epithelium (RPE) cells. Among these functions are a physical barrier with tight junctions, absorption of stray light, metabolic/biochemical phagocytosis and vitamin A metabolism, developmental/trophic support (cytokines), and transport of ion, amino acids, and vitamin A. In addition, the microenvironment of the subretinal space between the photoreceptor cells of the sensory retina and the choriocapillaris (1) is maintained by RPE cells. For example, each RPE cell is estimated to phagocytize about 3 × 108 discs during a 70-yr life span, and RPE cells are the scavenger operating under oxidative stress during continuous light stimulation (2). Abnormalities in any of these functions of the RPE cells will lead to disturbances of the microenvironment and result in the programmed cell death of the photoreceptor cells (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hewitt AT, Adler R. The retinal pigment epithelium and interphotoreceptor matrix: structure and specialized functions. In: Ryan S, ed. Retina. (St. Louis, MO: Mosby-Year Book, Inc., 1994;58–71.

    Google Scholar 

  2. Marshall J. The aging retina: physiology or pathology. Eye 1987;1:282–295.

    PubMed  Google Scholar 

  3. Chang GQ, Hao Y, Wong F. Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 1993;11:595–605.

    Article  PubMed  CAS  Google Scholar 

  4. Thompson DA, Gal A. Vitamin A metabolism in the retinal pigment epithelium: genes, mutations, and diseases. Prog. Retinal Eye Res 2003;22:683–703.

    Article  CAS  Google Scholar 

  5. Wada Y, Nakazawa T, Abe T, Fuse N, Tamai M. Clinical variability of patients associated with gene mutations of visual cycle protein, arrestin, RPE65 and RDH5. Invest Ophthalmol Vis Sci 2000;41(4):S617.

    Google Scholar 

  6. Li L, Turner JE. Optimal conditions for long-term photoreceptor cell rescue in RCS rats: The necessity for healthy RPE transplants. Exp Eye Res 1991;52:669–679.

    Article  PubMed  CAS  Google Scholar 

  7. Yamaguchi K, Gaur VP, Turner JE. Retinal pigment epithelial cell transplantation into aging retina: A possible approach to delay age-related cell death. Jpn J Ophthalmol 1993;37: 16–27.

    PubMed  CAS  Google Scholar 

  8. Rezai KA, Kohen L, Wiedemann P, Heimann K. Iris pigment epithelium transplantation. Graefes Arch Clin Exp Ophthalmol 1997;235:558–562.

    Article  PubMed  CAS  Google Scholar 

  9. Heriot WJ, Machemer R. Pigment epithelial repair. Graefe’s Arch Clin Exp Ophthalmol 1992;230:91–100.

    Article  CAS  Google Scholar 

  10. Wallow IH. Repair of the pigment epithelial barrier following photocoagulation. Arch Ophthalmol 1984;102:126–135.

    PubMed  CAS  Google Scholar 

  11. Bird A, Marshall J. Retinal pigment epithelial detachments in the elderly. Trans Ophthalmol Soc UK 1986;105:674–682.

    PubMed  Google Scholar 

  12. Abe T, Tomita H, Kano T, et al. Autologous iris pigment epithelial cell transplantation in monkey subretinal region Curr Eye Res 2000;20:268–275.

    Article  PubMed  CAS  Google Scholar 

  13. Kimizuka Y, Yamada T, Tamai M. Quantitative study on regenerated retinal pigment epithelium and the effects of growth factor. Curr Eye Res 1997;16:1081–1087.

    Article  PubMed  CAS  Google Scholar 

  14. Valentino TL, Kaplan HJ, Del Priore LV, Fang SR, Berger A, Silverman MS. Retinal pigment epithelial repopulation in monkeys after submacular surgery. Arch Ophthalmol, 1995;113:932–938.

    PubMed  CAS  Google Scholar 

  15. Sheedlo H, Li L, Turner J. Functional and structural characteristics of photoreceptor cells rescued in RPE-cell grafted retinas of RCS dystrophic rats. Exp Eye Res 1989;48:841–854.

    Article  PubMed  CAS  Google Scholar 

  16. Grossniklaus HE, Hutchinson AK, Capone A, Woolfson J, Lambert HM. Clinicopathologic features of surgically excised choroidal neovascular membranes. Ophthalmology 1994; 101:1099–1111.

    PubMed  CAS  Google Scholar 

  17. Seregard S, Algvere PV, Berglin L. Immunohistochemical characterization of surgically removed subfoveal fibrovascular membranes. Graefe’s Arch Clin Exp Ophthalmol 1994;232:325–329.

    Article  CAS  Google Scholar 

  18. Abe T, Yoshida M, Kano T, Tamai M. Visual function after removal of suberetinal neovascular membranes in patients with age-related macular degeneration. Graefe’s Arch Clin Exp Ophthalmol 2001;239:927–936.

    CAS  Google Scholar 

  19. Gass JDM. Biomicroscopic and histopathologic considerations regarding the feasibility of surgical excision of subfoveal neovascular membranes. Am J Ophthalmol 1994;118:285–298.

    PubMed  CAS  Google Scholar 

  20. Algvere PV, Berglin L, Gouras P, Sheng Y. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefe’s Arch Clin Exp Ophthalmol 1994;232:707–716.

    Article  CAS  Google Scholar 

  21. Algvere PV, Berglin L, Gouras P, Sheng Y, Kopp ED. Transplantation of RPE in age-related macular degeneration: observations in disciform lesions and dry RPE atrophy. Graefe’s Arch Clin Exp Ophthalmol 1997;235:149–158.

    Article  CAS  Google Scholar 

  22. Weisz JM, Humayun MS, De Juan Jr., E, et al. Allogenic fetal retinal pigment epithelial cell transplant in a patient with geographic atrophy. Retina1999;19:540–545.

    Article  PubMed  CAS  Google Scholar 

  23. Algvere PV, Gouras P, Dafgard KE, et al. Long-term outcome of RPE allografts in nonimmunosuppressed patients with AMD. Eur J Ophthalmol 1997;9:217–230.

    Google Scholar 

  24. Peyman GA, Blinder KJ, Paris CL, Alturki W, Nelson Jr, NC, Billson FA. A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surgery 1991;22:102–108.

    PubMed  CAS  Google Scholar 

  25. Binder S, Krebs I, Hilgers R-D, et al. Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci 2004;45:4151–4160.

    Article  PubMed  Google Scholar 

  26. Streilein JW. Anterior chamber associated immune deviation: the privilege of immunity in the eye. Surv Ophthalmol 1990;35:67–73.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang X, Bok D. Transplantation of retinal pigment epithelial cells and immune response in the subretinal space. Invest Ophthalmol Vis Sci1998;39:1021–1027.

    PubMed  CAS  Google Scholar 

  28. Abe T, Tomita H, Ohashi T, et al. Characterization of Iris Pigment Epithelial Cell for Auto Cell Transplantation. Cell Transplant 1999;8:501–510.

    PubMed  CAS  Google Scholar 

  29. Durlu YK, Tamai M. Transplantation of retinal pigment epithelium using viable cryopreserved cells. Cell Transplant 1997;6:149–162.

    Article  PubMed  CAS  Google Scholar 

  30. Abe T, Sato M, Tamai M. Dedifferentiation of the retinal pigment epithelium compared to the proliferative membranes of proliferative vitreoretinopaty. Curr Eye Res 1998;17: 1103–1109.

    Article  PubMed  CAS  Google Scholar 

  31. Tamai M. Retinal pigment epithelial cell transplantation: Perspective. J Jpn Ophthalmol Soc 1996;100:982–1006.

    CAS  Google Scholar 

  32. Kociok N, Heppekausen H, Schraermeyer U, et al. The mRNA expression of cytokines and their receptors in cutured iris pigment epithelial cells: a comparison with retinal pigment epithelial cells. Exp Eye Res 1998;67:237–250.

    Article  PubMed  CAS  Google Scholar 

  33. Rezai KA, Lappas A, Farrokh-Siar L, Kohen L, Wiedeman P, Heimann K. Iris pigment epithelial cells of long evans rats demonstrate phagocytic activity. Exp Eye Res 1997;65: 23–29.

    Article  PubMed  CAS  Google Scholar 

  34. Sakuragi M, Tomita H, Abe T, Tamai M. Changes of phagocytic capacity in basic fibroblast growth factor-transfected iris pigment epithelial cells in rats. Curr Eye Res 2001;23:185–191.

    Article  PubMed  CAS  Google Scholar 

  35. Sugano E, Tomita H, Abe T, Yamashita A, Tamai M. Comparative study of cathepsins D and S in rat IPE and RPE cells. Exp Eye Res 2003;77:203–209.

    Article  PubMed  CAS  Google Scholar 

  36. Li L, Turner JE. Optimal conditions for long-term photoreceptor cell rescue in RCS rats: The necessity for healthy RPE transplants. Exp Eye Res 1991;52:669–679.

    Article  PubMed  CAS  Google Scholar 

  37. Sheedlo HJ, Li L, Turner JE. Photoreceptor cell rescue at early and late RPE-cell transplantation periods during retinal disease in RCS dystrophic rats. J Neural Transplant Plast 1991;2:55–63.

    Article  PubMed  CAS  Google Scholar 

  38. Little CW, Castillo B, DiLoreto DA, et al. Transplantation of human fetal retinal pigment epithelium rescues photoreceptor cells from degeneration in the Royal College of Surgeons rat retina. Invest Ophthalmol Vis Sci 1996;37:204–211.

    PubMed  CAS  Google Scholar 

  39. Bhatt NS, Newsome DA, Fenech T, et al. Experimental transplantation of human retinal pigment epitheliual cells on collagen substrates. Am J Ophthalmol 1994;117:214–221.

    PubMed  CAS  Google Scholar 

  40. Akaishi K, Ishiguro S-I, Durlu YK, Tamai M. Quantitative analysis of major histocompatibility complex class II-positive cells in posterior segment of Royal College of Surgeons rat eyes. Jpn J Ophthalmol 1998;42:357–362.

    Article  PubMed  CAS  Google Scholar 

  41. Fealy MJ, Most D, Huie P, et al. Association of down-regulation of cytokine activity with rat hind limb allograft survival. Transplantation 1995;59:1475–1480.

    Article  PubMed  CAS  Google Scholar 

  42. Abe T, Takeda Y, Yamada K, et al. Cytokine gene expression after subretinal transplantation. Tohoku J Exp Med 1999;189:179–189.

    Article  PubMed  CAS  Google Scholar 

  43. Abe T, Yoshida M, Tomita H, et al. Functional analysis after auto iris pigment epithelial cell transplantation in patients with age-related macular degeneration. Tohoku J Exp Med 1999;189:295–305.

    Article  PubMed  CAS  Google Scholar 

  44. Abe T, Yoshida M, Tomita H, et al. Auto iris pigment epithelial cell transplantation in patients with age-related macular degeneration: short term results. Tohoku J exp Med 2000;191:7–20.

    Article  PubMed  CAS  Google Scholar 

  45. Tamai M. Progress in pathogenesis and therapeutic research in retinitis pigmentosa and age-related macular degeneration. J Jpn Ophthalmol Soc 2004;108:750–769.

    CAS  Google Scholar 

  46. Chang GQ, Hao Y, Wong F. Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 1993;11:595–605.

    Article  PubMed  CAS  Google Scholar 

  47. Wong P. Apoptosis, retinitis pigmentosa, and degeneration. Biochem Cell Biol 1994;72:489–498.

    Article  PubMed  CAS  Google Scholar 

  48. Ranganathan R. Cell biology: a matter of life or death. Science 2003;299:1677–1679.

    Article  PubMed  CAS  Google Scholar 

  49. LaVail MM, Yasumura D, Matthes MT, et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 1998;39:592–602.

    PubMed  CAS  Google Scholar 

  50. Okoye G, Zimmer J, Sung J, et al. Increased expression of brain-derived neurotrophic factor preserves retinal function and slows cell death from rhodopsin mutation or oxidative damage. J Neurosci 2003;23:4164–4172.

    PubMed  CAS  Google Scholar 

  51. Lawrence JM, Keegan DJ, Muir EM, et al. Transplantation of Schwann cell line clones secreting GDNF or BDNF into the retinas of dystrophic Royal College of Surgeons rat. Invest Ophthalmol Vis Sci 2004;45:267–274.

    Article  PubMed  Google Scholar 

  52. Unoki K, LaVail MM. Protection of the rat retina from ischemic injury by brain-derived neurotrophic factor, ciliary neurotrophic factor, and basic fibroblast growth factor. Invest Ophthalmol Vis Sci 1994;35:907–915.

    PubMed  CAS  Google Scholar 

  53. Tamai M, Takeda Y, Yamada K, et al. bFGF transfected iris PE may rescue photoreceptor cell degeneration in RCS rat. In: LaVail MM, Anderson RE, Hollyfield JG, eds. Retinal Degeneration. New York: Plenum Press, 1997;323–328.

    Google Scholar 

  54. Itaya H, Gullapalli V, Sugino IK, Tamai M, Zarbin M. Iris pigment epithelium attachment to aged submacular human Bruch’s membrane. Invest Ophthalmol Vis Sci 2004;45: 4520–4528.

    Article  PubMed  Google Scholar 

  55. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 2000;14:2919–2937.

    Article  PubMed  CAS  Google Scholar 

  56. Leibrock J, Lottspeich F, Hohn A, et al. Molecular cloning and expression of bain-derived neurotrophic factor. Nature 1989;341:149–152.

    Article  PubMed  CAS  Google Scholar 

  57. von Bartheld CS. Neurotrophins in the developing and regenerating visual system. Histol Histopathol 1998;13:437–459.

    Google Scholar 

  58. Liang FQ, Aleman TS, Dejneka NS, et al. Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Mol Ther 2001;4:461–472.

    Article  PubMed  CAS  Google Scholar 

  59. Saigo Y, Abe T, Hojo M, Tomita H, Sugano E, Tamai M. Transplantation of Transduced Retinal Pigment Epithelium in Rats. Invest Ophthalmol Vis Sci 2004;45:1996–2004.

    Article  PubMed  Google Scholar 

  60. Hojo M, Abe T, Sugano E, et al. Photoreceptor Protection by Iris Pigment Epithelial Transplantation Transduced with AAV-Mediated Brain-Derived Neurotrophic Factor Gene. Invest Ophthalmol Vis Sci 2004;45:3721–3726.

    Article  PubMed  Google Scholar 

  61. Bennett J, Maguire AM, Cideciyan AV, et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci USA 1999;96:9920–9925.

    Article  PubMed  CAS  Google Scholar 

  62. Yoshiok Y, et al. (in preparation)

    Google Scholar 

  63. Kano T, Abe T, Tomita H, Sakata T, Ishiguro S-I, Tamai M. Protective effect against ischemia and light damage of iris pigment epithelial cells transfedted with the BDNF gene. Invest Ophthalmol Vis Sci 2002;43:3744–3753.

    PubMed  Google Scholar 

  64. Rabinowitz JE, Samulski J. Adeno-associated virus expression systems for gene transfer. Curr Opin Biotechnol 1998;9:470–475.

    CAS  Google Scholar 

  65. Monahan PE, Samulski RJ. AAV vectors: Is clinical success on the horizon? Gene Ther 2000;7:24–30.

    Article  PubMed  CAS  Google Scholar 

  66. Kay MA, Manno CS, Ragni MV, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000;24:257–261.

    Article  PubMed  CAS  Google Scholar 

  67. Rabinowitz JE, Rolling F, Li C, et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple aav serotypes enables transduction with broad specificity. J Virol 2002;76:791–801.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Tamai, M. (2007). Current Status of IPE Transplantation and Its Potential as a Cell-Based Therapy for Age-Related Macular Degeneration and Retinal Dystrophies. In: Tombran-Tink, J., Barnstable, C.J. (eds) Retinal Degenerations. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-186-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-186-4_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-620-7

  • Online ISBN: 978-1-59745-186-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics