Skip to main content

Nuclear Imaging of Gliomas

  • Chapter
Book cover High-Grade Gliomas

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

This chapter reviews nuclear imaging of gliomas, both high- and low-grade, with emphasis on results from positron emission tomography (PET) with [F-18]-2-fluoro-2-deoxyglucose (FDG) for assessing energy metabolism. There are many additional advances beyond FDG-PET that are very exciting and potentially applicable in the management of gliomas. Biosynthesis in tumors occurs along several important broad fronts for DNA, proteins, and membrane lipids. Molecular imaging of these pathways is coming to the foreground. Hypoxia, a significant resistance mechanism that compromises the efficacy of radiotherapy and chemotherapy, can now be regionally quantified in vivo with PET. In the near future it is likely that the presence of mutant receptors, apoptosis, and angiogenesis will also be measurable with PET and new tracers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001;42:432–445.

    PubMed  CAS  Google Scholar 

  2. Allen N. Respiration and oxidative metabolism of brain tumors. In: Kirsch WM, Paoletti EG, Paoletti P, eds. The Experimental Biology of Brain Tumors, Springfield: Charles C Thomas, 1972;243-274.

    Google Scholar 

  3. Spence AM, Muzi M, Graham MM, et al. Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-1 1]glucose and FDG: analysis of the FDG lumped constant. J Nucl Med 1998;39:440–448.

    PubMed  CAS  Google Scholar 

  4. Di Chiro G, Oldfield E, Bairamian D, et al. In vivo glucose utilization of tumors of the brain stem and spinal cord. In: Greitz T, Ingvar DH, Widen L, eds. The Metabolism of the Human Brain Studied with Positron Emission Tomography, New York: Raven Press, 1985;351-361.

    Google Scholar 

  5. Di Chiro G. Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors: A powerful diagnostic and prognostic tool. Invest Radiol 1987;22:360–371.

    Article  PubMed  Google Scholar 

  6. Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 1982;32:1323–1329.

    PubMed  Google Scholar 

  7. Patronas NJ, Di Chiro G, Kufta C, et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 1985;62:816–822.

    PubMed  CAS  Google Scholar 

  8. Delbeke D, Meyerowitz C, Lapidus RL, et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 1995;195:47–52.

    PubMed  CAS  Google Scholar 

  9. Padma MV, Said S, Jacobs M, et al. Prediction of pathology and survivalby FDG PET in gliomas. J Neurooncol 2003;64:227–237.

    Article  PubMed  CAS  Google Scholar 

  10. De Witte O, Levivier M, Violon P, et al. Prognostic value of positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 1996;39:470–476.

    Article  PubMed  Google Scholar 

  11. Hanson MW, Glantz MJ, Hoffman JM, et al. FDG-PET in the selection of brain lesions for biopsy. J Comput Assist Tomogr 1991;15:796–801.

    Article  PubMed  CAS  Google Scholar 

  12. Herholz K, Pietrzyk U, Voges J, et al. Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg 1993;79:853–858.

    PubMed  CAS  Google Scholar 

  13. Goldman S, Levivier M, Pirotte B, et al. Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy. Cancer 1996;78:1098–1106.

    Article  PubMed  CAS  Google Scholar 

  14. Glantz MJ, Hoffman JM, Coleman RE, et al. Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. AnnNeurol 1991;29:347–355.

    CAS  Google Scholar 

  15. Asensio C, Perez-Castejon MJ, Maldonado A, et al. The role of PET-FDG in questionable diagnosis of relapse in the presence of radionecrosis of brain tumors. Rev Neurol 1998;27:447–452.

    PubMed  CAS  Google Scholar 

  16. Langleben DD, Segall GM. PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 2000;41:1861–1867.

    PubMed  CAS  Google Scholar 

  17. Maldonado A, Santos M, Rodriguez S, Ossola G, Liano H, Delgado JM. The role of PET-FDG in resolving diagnostic doubt: recurrence vs. radionecrosis in brain tumors (abs 124). Mol Imag Biol 2002;4:S32.

    Google Scholar 

  18. Patronas NJ, Di Chiro G, Brooks RA, etal. Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 1982;144:885–889.

    PubMed  CAS  Google Scholar 

  19. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 1998;19:407–413.

    PubMed  CAS  Google Scholar 

  20. Spence AM, Muzi M, Graham MM, et al. FDG and glucose uptake in malignant gliomas before and after radiotherapy: correlation with outcome. Advances in Brief. Clinical Cancer Res 2002;8:971–979.

    Google Scholar 

  21. Hoekstra CJ, Paglianiti I, Hoekstra OS, et al. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 2000;27:731–743.

    Article  PubMed  CAS  Google Scholar 

  22. De Witte O, Hildebrand J, Luxen A, Goldman S. Acute effect of carmustine on glucose metabolism in brain and glioblastoma. Cancer 1994;74:2836–2842.

    Article  PubMed  Google Scholar 

  23. Maruyama I, Sadato N, Waki A, et al. Hyperacute changes in glucose metabolism of brain tumors after stereotactic radiosurgery: a PET study. J Nucl Med 1999;40:1085–1090.

    PubMed  CAS  Google Scholar 

  24. Haberkorn U, Bellemann ME, Altmann A, et al. PET 2-fluoro-2-deoxyglucose uptake in rat prostate adenocarcinoma during chemotherapy with gemcitabine. J Nucl Med 1997;38:1215–1221.

    PubMed  CAS  Google Scholar 

  25. Haberkorn U, Morr I, Oberdorfer F, et al. Fluorodeoxyglucose uptake in vitro: aspects of method and effects of treatment with gemcitabine. J Nucl Med 1994;35:1842–1850.

    PubMed  CAS  Google Scholar 

  26. Haberkorn U, Oberdorfer F, Klenner T, et al. Metabolic and transcriptional changes in osteosarcoma cells treated with chemotherapeutic drugs. Nucl Med Biol 1994;21:835–845.

    Article  PubMed  CAS  Google Scholar 

  27. Haberkorn U, Reinhardt M, Strauss LG, et al. Metabolic design of combination therapy: use of enhanced fluorodeoxyglucose uptake caused by chemotherapy. J Nucl Med 1992;33:1981–1987.

    PubMed  CAS  Google Scholar 

  28. Smith TA, Maisey NR, Titley JC, Jackson LE, Leach MO, Ronen SM. Treatment of SW620 cells with Tomudex and oxaliplatin induces changes in 2-deoxy-D-glucose incorporation associated with modifications in glucose transport. J Nucl Med 2000;41:1753–1759.

    PubMed  CAS  Google Scholar 

  29. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992;33:1972–1980.

    PubMed  CAS  Google Scholar 

  30. Reinhardt MJ, Kubota K, Yamada S, Iwata R, Yaegashi H. Assessment of cancerrecurrence in residual tumors after fractionated radiotherapy: a comparison of fluorodeoxyglucose, L-methionine and thymidine. J Nucl Med 1997;38:280–287.

    PubMed  CAS  Google Scholar 

  31. Furuta M, Hasegawa M, Hayakawa K, et al. Rapid rise in FDG uptake in an irradiated human tumour xenograft. Eur J Nucl Med 1997;24:435–438.

    PubMed  CAS  Google Scholar 

  32. Hasegawa M, Mitsuhashi N, Yamakawa M, et al. p53 protein expression and radiation-induced apoptosis in human tumors transplanted to nude mice. Radiat Med 1997;15:171–176.

    PubMed  CAS  Google Scholar 

  33. Barker FG, Chang SM, Valk PE, Pounds TR, Prados MD. 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 1997;79:115–126.

    Article  PubMed  CAS  Google Scholar 

  34. Tralins KS, Douglas JG, Stelzer KJ, et al. Volumetric analysis of fluorodeoxyglucose positron emission tomography in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation. J Nucl Med 2002;43:1667–1673.

    PubMed  Google Scholar 

  35. Alavi JB, Alavi A, Chawluk J, et al. Positron emission tomography in patients with glioma: A predictor of prognosis. Cancer 1988;62:1074–1078.

    Article  PubMed  CAS  Google Scholar 

  36. De Witte O, Lefranc F, Levivier M, Salmon I, Brotchi J, Goldman S. FDG-PET as a prognostic factor in highgrade astrocytoma. J Neurooncol 2000;49:157–163.

    Article  PubMed  Google Scholar 

  37. Chang CH, Horton J, Schoenfeld D, et al. Comparison of postoperative radiotherapy and combined postop-erative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer 1983;52:997–1007.

    Article  PubMed  CAS  Google Scholar 

  38. Lee SW, Fraass B A, Marsh LH, et al. Patterns of failure following high-dose 3-D conformal radiotherapy for high-grade astrocytomas: a quantitative dosimetric study. Int J Radiat Oncol Biol Phys 1999;43:79–88.

    PubMed  CAS  Google Scholar 

  39. Nelson DF, Diener-West M, Horton J, Chang CH, Schoenfeld D, Nelson JS. Combined modality approach to treatment of malignant gliomas-re-evaluation of RTOG 7401/ECOG 1374 with long-term follow-up: a joint study of the Radiation Therapy Oncology Group and the Eastern Cooperative Oncology Group. NCI Monogr 1988;6:279–284.

    PubMed  Google Scholar 

  40. Salazar OM, Rubin P, Feldstein ML, Pizzutiello R. High dose radiation therapy in the treatment of malignant gliomas: final report. Int J Radiat Oncol Biol Phys 1979;5:1733–1740.

    PubMed  CAS  Google Scholar 

  41. Tralins K, Stelzer KJ, Mankoff DA, et al. FDG-PET guided radiation dose escalation in the treatment of glioblastoma multiforme. In: Ninety-second Annual Meeting of the American Association for Cancer Research, New Orleans, LA, 2001.

    Google Scholar 

  42. Ito M, Lammertsma AA, Wise RJ, et al. Measurement of regional cerebral blood flow and oxygen utilisation in patients with cerebral tumours using 15O and positron emission tomography: analytical techniques and preliminary results. Neuroradiology 1982;23:63–74.

    Article  PubMed  CAS  Google Scholar 

  43. Lammertsma AA, Frackowiak RS. Positron emission tomography. Crit Rev Biomed Eng 1985;13:125–169.

    PubMed  CAS  Google Scholar 

  44. Rhodes CG, Wise RJ, Gibbs JM, et al. In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 1983;14:614–626.

    Article  PubMed  CAS  Google Scholar 

  45. Tyler JL, Diksic M, Villemure JG, et al. Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med 1987;28:1123–1133.

    PubMed  CAS  Google Scholar 

  46. Wise RJS, Thomas DGT, Lammertsma AA, Rhodes CG. PET scanning of human brain tumors. Prog Exp Tumor Res 1984;27:154–169.

    PubMed  CAS  Google Scholar 

  47. Baron JC, Rougemont D, Soussaline F, et al. Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients: a positron tomography study. J Cereb Blood Flow Metab 1984;4:140–149.

    PubMed  CAS  Google Scholar 

  48. Badib AO, Webster JH. Changes in tumor oxygen tension during radiation therapy. Acta Radiol Ther Phys Biol 1969;8:247–257.

    PubMed  CAS  Google Scholar 

  49. Brizel DM, Dodge RK, Clough RW, Dewhirst MW. Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother Oncol 1999;53:113–117.

    Article  PubMed  CAS  Google Scholar 

  50. Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 1996;41:31–39.

    PubMed  CAS  Google Scholar 

  51. Rampling R, Cruickshank G, Lewis AD, Fitzsimmons SA, Workman P. Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys 1994;29:427–431.

    PubMed  CAS  Google Scholar 

  52. Davis LW. Malignant glioma-a nemesis which requires clinical and basic investigation in radiation oncology. Int J Radiat Oncol Biol Phys 1989;16:1355–1365.

    PubMed  CAS  Google Scholar 

  53. Green SB, Byar DP, Strike TA, et al. Randomized comparisons of BCNU, streptozotocin, radiosensitizer, and fractionation of radiotherapy in the post-operative treatment of malignant glioma. Proc ASCO 1984;3:260.

    Google Scholar 

  54. Nelson DF, Schoenfeld D, Weinstein AS, et al. A randomized comparison of misonidazole sensitized radiotherapy plus BCNU and radiotherapy plus BCNU for treatment of malignant glioma after surgery; preliminary results of an RTOG study. Int J Radiat Oncol Biol Phys 1983;9:1143–1151.

    PubMed  CAS  Google Scholar 

  55. Griffin TW, Davis R, Laramore G, et al. Fast neutron radiation therapy for glioblastoma multiforme. Results of an RTOG study. Am J Clin Oncol 1983;6:661–667.

    Article  PubMed  CAS  Google Scholar 

  56. Chapman JD, Engelhardt EL, Stobbe CC, Schneider RF, Hanks GE. Measuring hypoxia and predicting tumor radioresistance with nuclear medicine assays. Radiother Oncol 1998;46:229–237.

    Article  PubMed  CAS  Google Scholar 

  57. Mathias CJ, Welch MJ, Kilbourn MR, et al. Radiolabeled hypoxic cell sensitizers: tracers for assessment of ischemia. Life Sci 1987;41:199–206.

    Article  PubMed  CAS  Google Scholar 

  58. Koh WJ, Bergman KS, Rasey JS, et al. Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 1995;33:391–398.

    Article  PubMed  CAS  Google Scholar 

  59. Liu RS, Chu LS, Chu YK, Yen SH, Liao SQ, Yeh SH. Does β-oxidation occur in malignant neoplasm? A concurrent [C-11]acetate and [F-18]MISO study (abstract). J Nucl Med 1999;40(suppl):239P.

    Google Scholar 

  60. Scott AM, Ramdave S, Hannah A, et al. Correlation of hypoxic cell fraction with glucose metabolic rate in gliomas with 18F-fluoromisonidazole (FMISO) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). J Nucl Med 2001;42: Abstract 250, 267P.

    Google Scholar 

  61. Valk PE, Mathis C A, Prados MD, Gilbert JC, Budinger TF. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 1992;33:2133–2137.

    PubMed  CAS  Google Scholar 

  62. Swanson KR, Muzi M, Spence AM, Rajendran JG, Grierson JR, Krohn KA. PET imaging of glioma patients with FMISO and MRI provides distinct information in the assessment of radiation therapy (abstract). J Nucl Med 2004;45:266P.

    Google Scholar 

  63. Vaalburg W, Coenen HH, Crouzel C, et al. Amino acids for the measurement of protein synthesis in vivo by PET. Int J Rad Appl Instrum B 1992;19:227–237.

    PubMed  CAS  Google Scholar 

  64. Bergstrom M, Ericson K, Hagenfeldt L, et al. PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J Comput Assist Tomogr 1987;11:208–213.

    Article  PubMed  CAS  Google Scholar 

  65. Smith CB, Deibler GE, Eng N, Schmidt K, Sokoloff L. Measurement of local cerebral protein synthesis in vivo: influence of recycling of amino acids derived from protein degradation. Proc Natl Acad Sci USA 1988;85:9341–9345.

    Article  PubMed  CAS  Google Scholar 

  66. Widmann R, Kocher M, Ernestus RI, Hossmann KA. Biochemical and autoradiographical determination of protein synthesis in experimental brain tumors of rats. J Neurochem 1992;59:18–25.

    Article  PubMed  CAS  Google Scholar 

  67. Hawkins RA, Huang SC, Barrio JR, et al. Estimation of local cerebral protein synthesis rates with L-[1-1 1C]leucine and PET: methods, model, and results in animals and humans. J Cereb Blood Flow Metab 1989;9:446–460.

    PubMed  CAS  Google Scholar 

  68. Ishiwata K, Kubota K, Murakami M, et al. Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med 1993;34:1936–1943.

    PubMed  CAS  Google Scholar 

  69. Wienhard K, Herholz K, Coenen HH, et al. Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine [see comments]. J Nucl Med 1991;32:1338–1346.

    PubMed  CAS  Google Scholar 

  70. Willemsen AT, van Waarde A, Paans AM, et al. In vivo protein synthesis rate determination in primary or recurrent brain tumors using L-[1-11C]-tyrosine and PET. J Nucl Med 1995;36:411–419.

    PubMed  CAS  Google Scholar 

  71. Sato N, Suzuki M, Kuwata N, et al. Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev 1999;22:210–214.

    Article  PubMed  CAS  Google Scholar 

  72. de Wolde H, Pruim J, Mastik MF, Koudstaal J, Molenaar WM. Proliferative activity in human brain tumors: comparison of histopathology and L-[1-(11)C]tyrosine PET. J Nucl Med 1997;38:1369–1374.

    PubMed  Google Scholar 

  73. Ogawa T, Shishido F, Kanno I, et al. Cerebral glioma: evaluation with methionine PET. Radiology 1993;186:45–53.

    PubMed  CAS  Google Scholar 

  74. De Witte O, Goldberg I, Wikler D, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 2001;95:746–750.

    PubMed  Google Scholar 

  75. Pruim J, Willemsen AT, Molenaar WM, et al. Brain tumors: L-[1-C-1 1]tyrosine PET for visualization and quantification of protein synthesis rate. Radiology 1995;197:221–226.

    PubMed  CAS  Google Scholar 

  76. Weber WA, Wester HJ, Grosu AL, et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000;27:542–549.

    Article  PubMed  CAS  Google Scholar 

  77. Derlon JM, Bourdet C, Bustany P, et al. [1 1C]L-methionine uptake in gliomas. Neurosurgery 1989;25:720–728.

    Article  PubMed  CAS  Google Scholar 

  78. Kaschten B, Stevenaert A, Sadzot B, et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998;39:778–785.

    PubMed  CAS  Google Scholar 

  79. Herholz K, Holzer T, Bauer B, et al. 1 1C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998;50:1316–1322.

    PubMed  CAS  Google Scholar 

  80. Roelcke U, von Ammon K, Hausmann O, et al. Operated low grade astrocytomas: a long term PET study on the effect of radiotherapy. J Neurol Neurosurg Psychiatry 1999;66:644–647.

    PubMed  CAS  Google Scholar 

  81. Cleaver JE. Thymidine metabolism and cell kinetics. Frontiers Biol 1967;6:43–100.

    Google Scholar 

  82. Livingston RB, Ambus U, George SL, Freireich EJ, Hart JS. In vitro determination of thymidine-[H-3] labeling index in human solid tumors. Cancer Res 1974;34:1376–1380.

    PubMed  CAS  Google Scholar 

  83. Tannock IF, Hill RP (ed.) The Basic Science of Oncology, New York: McGraw-Hill, 1992.

    Google Scholar 

  84. Krohn KA, Mankoff DA, Eary JF. Imaging cellular proliferation as a measure of response to therapy. J Clin Pharmacol 2001;Suppl:96S–103S.

    Google Scholar 

  85. Mankoff DA, Dehdashti F, Shields AF. Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia 2000;2:71–88.

    Article  PubMed  CAS  Google Scholar 

  86. Coons SW, Johnson PC, Pearl DK. Prognostic significance of flow cytometry deoxyribonucleic acid analysis of human astrocytomas. Neurosurgery 1994;35:119–125.

    Article  PubMed  CAS  Google Scholar 

  87. Lamborn KR, Prados MD, Kaplan SB, Davis RL. Final report on the University of California-San Francisco experience with bromodeoxyuridine labeling index as a prognostic factor for the survival of glioma patients. Cancer 1999;85:925–935.

    Article  PubMed  CAS  Google Scholar 

  88. Matsutani M. Cell Kinetics. In: Berger MS, Wilson CB, eds. The Gliomas, Philadelphia: WB Saunders Co, 1999;204-209.

    Google Scholar 

  89. Shibuya M, Ito S, Davis RL, Wilson CB, Hoshino T. A new method for analyzing the cell kinetics of human brain tumors by double labeling with bromodeoxyuridine in situ and with iododeoxyuridine in vitro. Cancer 1993;71:3109–3113.

    Article  PubMed  CAS  Google Scholar 

  90. Fujimaki T, Matsutani M, Takakura K. Analysis of BUdR (bromodeoxyuridine) labeling indices of cerebral glioblastomas after radiation therapy. J JPN Soc Ther Radiol Oncol 1990;2:263–273.

    Google Scholar 

  91. Damaraju VL, Damaraju S, Young JD, et al. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 2003;22:7524–7536.

    Article  PubMed  CAS  Google Scholar 

  92. Young JD, Cheeseman CI, Mackey JR, Cass CE, Baldwin SA. Gastrointestinal Transport, Molecular Physiology. In: Fambrough D, Benos D, Barrett K, Domowitz M, eds. Current Topics in Membranes, Vol. 50 San Diego, CA: Academic Press, 2000;329–378.

    Google Scholar 

  93. Cornford EM, Oldendorf WH. Independent blood-brain barriertransport systems for nucleic acid precursors. Biochim Biophys Acta 1975;394:211–219.

    Article  PubMed  CAS  Google Scholar 

  94. Wells JM, Mankoff DA, Muzi M, et al. Kinetic analysis of 2-[11C]thymidine PET imaging studies of malignant brain tumors: compartmental model investigation and mathematical analysis. Mol Imaging 2002;1:151–159.

    Article  PubMed  CAS  Google Scholar 

  95. Mankoff DA, Shields AF, Graham MM, Link JM, Eary JF, Krohn KA. Kinetic analysis of 2-[carbon-11] thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med 1998;39:1043–1055.

    PubMed  CAS  Google Scholar 

  96. Sherley JL, Kelly TJ. Regulation of human thymidine kinase during the cell cycle. J Biol Chem 1988;263:8350–8358.

    PubMed  CAS  Google Scholar 

  97. Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 2003;44:2027–2032.

    PubMed  CAS  Google Scholar 

  98. Christman D, Crawford EJ, Friedkin M, Wolf AP. Detection of DNA synthesis in intact organisms with positron-emitting (methyl-11C)thymidine. Proc Natl Acad Sci USA 1972;69:988–992.

    Article  PubMed  CAS  Google Scholar 

  99. Link JM, Grierson J, Krohn K. Alternatives in the synthesis of 2-[C-1 1]-thymidine. J Label CompRadiopharm 1995;37:610–612.

    Google Scholar 

  100. Sundoro-Wu BM, Schmall B, Conti PS, Dahl JR, Drumm P, Jacobsen JK. Selective alkylation of pyrimidyldianions: synthesis and purification of 11C labeled thymidine for tumor visualization using positron emission tomography. Int J Appl Radiat Isot 1984;35:705–708.

    Article  PubMed  CAS  Google Scholar 

  101. Vander Borght T, Labar D, Pauwels S, Lambotte L. Production of [2-11C]thymidine for quantification of cellular proliferation with PET. Int J Rad Appl Instrum [A] 1991;42:103–104.

    Article  CAS  Google Scholar 

  102. Shields AF, Lim K, Grierson J, Link J, Krohn K A. Utilization of labeled thymidine in DNA synthesis: studies for PET. J Nucl Med 1990;31:337–342.

    PubMed  CAS  Google Scholar 

  103. Eary JF, Mankoff DA, Spence AM, etal. 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res 1999;59:615–621.

    PubMed  CAS  Google Scholar 

  104. De Reuck J, Santens P, Goethals P, et al. [Methyl-1 1C]thymidine positron emission tomography in tumoral and non-tumoral cerebral lesions. Acta Neurol Belg 1999;99:118–125.

    PubMed  Google Scholar 

  105. Vander Borght T, Pauwels S, Lambotte L, et al. Brain tumor imaging with PET and 2-[carbon-1 1]thymidine. J Nucl Med 1994;35:974–982.

    PubMed  CAS  Google Scholar 

  106. O’eSullivan F. Metabolic images from dynamic positron emission tomography studies. Stat Methods Med Res 1994;3:87–101.

    PubMed  CAS  Google Scholar 

  107. O’eSullivan F, Muzi M, Graham MM, Spence AM. Parametric imaging by mixture analysis in 3-D: Validation for dual-tracer glucose studies. In: Myers R, Cunningham V, Bailey D, Jones T, eds. Quantitation of Brain Function Using PET, Academic Press, Inc., 1996;297-300.

    Google Scholar 

  108. Wells JM, Mankoff DA, Eary JF, etal. Kinetic analysis of 2-[11C]thymidine PET imaging studies of malignant brain tumors: preliminary patient results. Mol Imaging 2002;1:145–150.

    Article  PubMed  CAS  Google Scholar 

  109. Shields AF, Grierson JR, Kozawa SM, Zheng M. Development of labeled thymidine analogs for imaging tumor proliferation. Nucl Med Biol 1996;23:17–22.

    Article  PubMed  CAS  Google Scholar 

  110. Grierson JR, Shields AF. Radiosynthesis of 3′-deoxy-3′-[(18)F]fluorothymidine: [(18)F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 2000;27:143–156.

    Article  PubMed  CAS  Google Scholar 

  111. Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4:1334–1336.

    Article  PubMed  CAS  Google Scholar 

  112. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43:1210–1217.

    PubMed  CAS  Google Scholar 

  113. Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine (FLT) in proliferating A549 cells: validations for positron emission tomography (PET). Nucl Med Biol 2004:31:829–837.

    Article  PubMed  CAS  Google Scholar 

  114. Bendaly EA, Sloan AE, Dohmen BM, et al. Use of 18F-FLT-PET to assess the metabolic activity of primary and metastatic brain tumors (abstract). J Nucl Med 2002;43:111P.

    Google Scholar 

  115. Sloan AE, Bendaly EA, Dohman BM, et al. Use of 18F-FLT-PET to assess the metabolic activity of primary, recurrent and metastatic brain tumors (abs). Neuro-Oncology 2002;4:363.

    Google Scholar 

  116. Sloan AE, Shields AF, Kupsky W, et al. Superiority of [F-18]FLT-PET compared to FDG PET in assessing proliferative activity and tumor physiology in primary and recurrent intracranial gliomas. Neuro-Oncology 2001;3:345, Abstract 313.

    Google Scholar 

  117. Macdonald DR, Cascino TL, Schold SCJ, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990;8:1277–1280.

    PubMed  CAS  Google Scholar 

  118. Waniewski RA, Martin DL. Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 1998;18:5225–5233.

    PubMed  CAS  Google Scholar 

  119. Oldendorf WH. Clearance of radiolabeled substances by brain after arterial inj ection using a diffusible internal standard. In: Marks N, Rodnight R, eds. Research Methods in Neurochemistry, vol. 5. New York: Plenum Publishing Corporation, 1981:91–112.

    Google Scholar 

  120. Yoshimoto M, Waki A, Yonekura Y, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 2001;28:117–122.

    Article  PubMed  CAS  Google Scholar 

  121. Liu RS, Chang CP, Chu LS, et al. [C-11 ] acetate positron emission tomography in the detection of brain tumors: comparison with [F-18]fluorodeoxyglucose (abstract). J Nucl Med 1997;38(suppl):240P.

    Google Scholar 

  122. DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001;42:1805–1814.

    PubMed  CAS  Google Scholar 

  123. Hara T, Kondo T, Kosaka N. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 2003;99:474–479.

    PubMed  Google Scholar 

  124. Ohtani T, Kurihara H, Ishiuchi S, et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med 2001;28:1664–1670.

    Article  PubMed  CAS  Google Scholar 

  125. Shinoura N, Nishijima M, Hara T, et al. Brain tumors: detection with C-11 choline PET. Radiology 1997;202:497–503.

    PubMed  CAS  Google Scholar 

  126. Yoshimoto M, Waki A, Yonekura Y, Fujibayashi Y. Acetate and choline as cell growth markers provide different perspectives of lipid synthesis. J Nucl Med 2001;42:275P.

    Google Scholar 

  127. Fredriksson A, Johnstrom P, Thorell JO, et al. In vivo evaluation of the biodistribution of 11C-labeled PD153035 in rats without and with neuroblastoma implants. Life Sci 1999;65:165–174.

    Article  PubMed  CAS  Google Scholar 

  128. Haubner R, Wester HJ, Weber WA, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61:1781–1785.

    PubMed  CAS  Google Scholar 

  129. Belhocine T, Steinmetz N, Hustinx R, et al. Increased uptake of the apoptosis-imaging agent 99mTc recombinant human annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 2002;8:2766–2774.

    PubMed  CAS  Google Scholar 

  130. Spence AM, Mankoff DA, Muzi M. Positron emission tomography imaging of brain tumors. In: Meltzer CC, Drayer BP, eds. Neuroimaging Clinics North America, 13(4), WB Saunders Co: Philadelphia. 2003:717–739.

    Google Scholar 

  131. Derlon JM, Chapon F, Noel MH, et al. Non-invasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med 2000;27:778–787.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Spence, A.M., Mankoff, D.A., Muzi, M., Swanson, K. (2007). Nuclear Imaging of Gliomas. In: Barnett, G.H. (eds) High-Grade Gliomas. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-185-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-185-7_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-511-8

  • Online ISBN: 978-1-59745-185-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics