Skip to main content

Magnetic Resonance Imaging

  • Chapter
High-Grade Gliomas

Part of the book series: Current Clinical Oncology ((CCO))

  • 1052 Accesses

Abstract

Magnetic resonance (MR) is clearly the accepted imaging standard for the preliminary evaluation, peri-operative management, and routine longitudinal follow-up of patients with high-grade gliomas (HGG). The purpose of this chapter is to review the imaging characteristics of HGG using conventional MR imaging techniques. Whereas the newer techniques of MR diffusion, perfusion, diffusion tensor imaging, and MR spectroscopy will be included as part of this discussion of the high grade neoplasms, the detailed concepts of such studies will be discussed elsewhere in this text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ricci PE. Imaging of adult brain tumors. Neuroimaging Clin No Am 1999;9:651–669.

    CAS  Google Scholar 

  2. Moller-Hartmann W, Herminghaus S, Krings T, et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 2003;44:371–381.

    Article  Google Scholar 

  3. Dean BL, Drayer BP, Bird CR. Gliomas: classification with MR imaging. Radiology 1990;174:411–415.

    PubMed  CAS  Google Scholar 

  4. Watanabe M, Tanaka R, Takeda N. Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 1992;34:463–469.

    Article  PubMed  CAS  Google Scholar 

  5. Kondziolka D, Lunsford LD, Martinez AJ. Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low grade) astrocytoma. J Neurosurg 1993;79:533–536.

    PubMed  CAS  Google Scholar 

  6. Knopp EA, Cha S, Johnson G, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999;211:791–798.

    PubMed  CAS  Google Scholar 

  7. Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003;24:1989–1998.

    PubMed  Google Scholar 

  8. Ginsberg LE, Fuller GN, Hashmi M, et al. The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol 1998;49:436–440.

    Article  PubMed  CAS  Google Scholar 

  9. Smirniotopoulos JG. The new WHO classification of brain tumors. Neuroimaging Clin No Am 1999;9:595–613.

    CAS  Google Scholar 

  10. McKeran RO, Thomas DGT. The clinical study of gliomas. In:Thomas DG, Graham DI, eds. Brain tumors: Scientific Basis, Clinical Investigation, and Current Therapy. London: Butterworth, 1980:194–230.

    Google Scholar 

  11. Russel D, Rubinstein L. Tumors of central nervous system origin. In: Rubinstein LJ, ed. Pathology of Tumors of the Nervous System. Baltimore, MD: Williams and Wilkins, 1989

    Google Scholar 

  12. Paulus W, Pfeifer J. Intratumoral histologic heterogeneity of gliomas. Cancer 1989;64:442–447.

    Article  PubMed  CAS  Google Scholar 

  13. Vandenberg ST. Current concepts of astrocytic tumors. J Neuropathol Exp Neurol 1992;51:644–657.

    PubMed  CAS  Google Scholar 

  14. Kondziolka D, Bernstein M, Resch., et al. Significance of hemorrhage into brain tumors: clinicopathological study. J Neurosurg 1987;67:852–857.

    PubMed  CAS  Google Scholar 

  15. Burger PC, Heinz ER, Shibata T, et al. Topographic anatomy and CT correlations in the untreated glioblastomas multiforme. J Neurosurg 1988;68:698–704.

    PubMed  CAS  Google Scholar 

  16. Lilja A, Bertstrom K, Spannare B, et al. Reliability of CT in assessing histopathological features of malignant supratentorial gliomas. J Comput Assist Tomogr 1981;5:625.

    PubMed  CAS  Google Scholar 

  17. Earnest FIV, Kelly PJ, Scheithauer BW, et al. Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 1988;166:823–827.

    PubMed  Google Scholar 

  18. Atlas SW. Adult supratentorial tumors. Seminars in Roentgenol 1990;25:130–154.

    Article  CAS  Google Scholar 

  19. Tovi M, Lolj a A, Erickson A. MR imaging in cerebral gliomas: tissue component analysis in correlation with histopathology of whole-brain specimens. ActaRadiol 1994;35:495–505.

    CAS  Google Scholar 

  20. Drevelegas A, Karkavelas G. High grade gliomas. In: Drevelegas A., ed. Imaging of Brain Tumors with Histological Correlations. Berlin: Springer-Verlag, 2002:109–136.

    Google Scholar 

  21. Hartmann M, Jansen O, Heiland S, et al. Restricted diffusion within ring ehnancement is not pathognomonic for brain abscess. AJNR Am J Neuroradiol 2001;22:1738–1742.

    PubMed  CAS  Google Scholar 

  22. Desprechins B, Stannik T, Koerts G, et al. Use of diffusion-weighted MR imaging in the differential diagnosis between intracerebral necrotic tumors and cerebral abscesses. AJNR Am J Neuroradiol 1999;20:1252–1257.

    PubMed  CAS  Google Scholar 

  23. Feigin IM, Gross SW. Sarcoma arising in glioblastoma of the brain. Am J Pathol 1955;31:633–665.

    PubMed  CAS  Google Scholar 

  24. Morantz RA, Feigin I, Ransohoff J. Clinical and pathological study of 24 cases of gliosarcoma. J Neurosurg 1976;45:398–408.

    Article  PubMed  CAS  Google Scholar 

  25. Lee YY, Castillo M, Nauert C, Moser RP. Computed tomography of gliosarcoma. AJNR Am J Neuroradiol 1985;6:527–531.

    PubMed  CAS  Google Scholar 

  26. Meis JM, Martz KL, Nelson JS. Mixed glioblastoma multiforme and sarcoma. A clinicopathologic study of 26 radiation therapy oncology group cases. Cancer 1991;67:2342–2349.

    Article  PubMed  CAS  Google Scholar 

  27. Beute BJ, Fobben GS, Hubschman O, et al. Cerebellar gliosarcoma: report of a probable radiation-ionduced neoplasm. AJNR Am J Neuroradiol 1991;12:554–556.

    PubMed  CAS  Google Scholar 

  28. Averback P. Mixed intracranial sarcomas: rare forms and a new association with previous radiation therapy. Ann Neurol 1998;4:229–233.

    Article  Google Scholar 

  29. Kaschten B, Flandroy P, Reznil M, et al. Radiation induced gliosarcoma. J Neurosurg 1995;83:154–162.

    Article  PubMed  CAS  Google Scholar 

  30. Marcus G, Levin DF, Rutherford GS. Malignant gliomaa following radiation therapy for unrelated primary tumor. Cancer 1986;58:886–894.

    Article  Google Scholar 

  31. Cerame MA, Buthikonda M, Kohli CN. Extraneural metastases in gliosarcoma. A case report and review of the literature. Neurosurgery 1985;17:413–418.

    Article  PubMed  CAS  Google Scholar 

  32. Maiuri F, Stella I, Benvenuti D, et al. Cerebral gliosarcomas: correlation of computed tomographic findings, surgical aspect, pathological features and prognosis. Neurosurgery 1990;26:261–267.

    Article  PubMed  CAS  Google Scholar 

  33. Lieberman KA, Fuller CE, Caruso RD. Postradiation gliosarcoma with osteosarcomatous components. Neuroradiology 2001;43:555–558.

    Article  PubMed  CAS  Google Scholar 

  34. Ross IB, Robitaille Y, Villemure JG, Tampieri D. Diagnosis and management of gliomatosis cerebri: recent trends. Surg Neurol 1991;36:431–440.

    Article  PubMed  CAS  Google Scholar 

  35. Artigas J, Cervis-Navaro J, Iglesias JR, et al. Gliomatosis cerebri: clinical and gistological findings. Clin Neuropathol 1985;4:135–148.

    PubMed  CAS  Google Scholar 

  36. Couch JR, Weiss SA. Gliomatosis cerebri: report of four cases and review of the literature. Neurology 1976;24:504–511.

    Google Scholar 

  37. Dickson DW, Horoupian DS, Thal LJ, et al. Gliomatosis cerebri presenting with hydrocephalus and dementia. AJNR Am J Neuroradiol 1988;9:200–202.

    PubMed  CAS  Google Scholar 

  38. Rippe DJ, Boyko OB Fuller GN, et al. Gadopentetate-dimeglumine-enhanced MR imaging of gliomatosis cerebral: appearance mimicking leptomeningeal tumor dissemination. AJNR Am J Neuroradiol 1990;11:800–801.

    PubMed  CAS  Google Scholar 

  39. Leproux F, Melanson D, Mercier C, et al. Leptomeningeal gliomatosis: MR findings. J Comput Assist Tomogr 1993;17:317–320.

    Article  PubMed  CAS  Google Scholar 

  40. Shin YM, Chang KH, Han MH, et al. Gliomatosis cerebri: comparison of MR and CT features. AJR Am J Roentgenol 1993;161:859–862.

    PubMed  CAS  Google Scholar 

  41. Wilkinson IMS, Anderson JF, Holmes AE. Oligodendroglioma: an analysis of 42 cases. J Neurol Neurosurg Psychiatry 1987;50:304–312.

    PubMed  CAS  Google Scholar 

  42. Chin HW, Hazel JJ, Kim TH, et al. Oligodendrogliomas I A clinical study of cerebral oligodendrogliomas. Cancer 1980;45:1458–1466.

    Article  PubMed  CAS  Google Scholar 

  43. Packer RJ, Sutton LN, Rorke LB, et al. Oligodendroglioma of the posterior fossa in childhood. Cancer 1985;56:195–199.

    Article  PubMed  CAS  Google Scholar 

  44. Pagni CA, Canavero S, Gaidolfi E. Intramedullary “eholocord”e oligodendroglioma: case report. ActaNeurochir 1991;113:96–99.

    CAS  Google Scholar 

  45. Ringertz N. Grading of gliomas. APMIS 1950;27:51–64.

    CAS  Google Scholar 

  46. Smith MT, Ludwig CL, Godfrey AD, et al. Grading of oligodendrogliomas. Cancer 1983;52:2107–2114.

    Article  PubMed  CAS  Google Scholar 

  47. Shaw EG, Scheithauer B W, O-Fallon JR, et al. Oligodendrogliomas: the Many Clinic experience. J Neurosurg 1992;76:428–434.

    PubMed  CAS  Google Scholar 

  48. Burger PC, Scheithauer BW. Central nervous system. Atlas of tumor pathology. Washington, DC: Armed Forces Institute of Pathology, 1994:107–120.

    Google Scholar 

  49. Daumas-Duport C, Tucker ML, Kolles H. Oligodendrogliomas. Part II: A new grading system based on morpholoical and imaging criteria. J Neurooncol 1997;34:61–78.

    Article  PubMed  CAS  Google Scholar 

  50. Shibata T, Burger PC, Kleihaus P. Ki-67 immunoperoxidase stain as a marker for the histologic grading of nervous system tumors. Acta Neurochir Suppl 1988;43:103–106.

    CAS  Google Scholar 

  51. Chan ASY, Leung SY, Wong MP, et al. Expression of vascular endothelial growh factor and its receptors in the anaplastic progression of astrocytoma, oligodendroglioma, and ependymoma. Am J Surg Pathol 1998;22:816–826.

    Article  PubMed  CAS  Google Scholar 

  52. Cairncross JG, Ueki K, Zlatescu MC, et al. Specific genetic predictors of chemotherapeutic response and survival in patients anaplastic oligodendrogliomas. J Natl Cancer Inst 1998;90:1473–1479.

    Article  PubMed  CAS  Google Scholar 

  53. Paleologos NA, Carincross J. Treatment of oligodendroglioma: an update. Neurooncology 1999;1:61–68.

    CAS  Google Scholar 

  54. Lee YY, Van Tassel P. Intracranial oligodendrogliomas: imaging findings in 35 untreated cases. AJR Am J Roentgenol 1989;152:361–369.

    PubMed  CAS  Google Scholar 

  55. Segall HD, Destian S, Nelson MD, et al. CT and MR imaging in malignant gliomas. In:Apuzzo M.I.J., ed. Malignant cerebral glioma. Park Ridge, IL: AANS Publications Committee, 1990:63–77.

    Google Scholar 

  56. Couldwell WT, DeMattia JA, Hinton DR. Oligodendroglioma. In:Kaye A.H., Law E.R., eds. Brain Tumors: an encyclopedic approach. London: Churchill Livingstone, 2001:525–540.

    Google Scholar 

  57. Burger PC. Classification, grading and patterns of spread of malignant gliomas. In: Apuzzo MLJ, ed. Malignant Cerebral Glioma. Park Ridge, IL: AANS Publications Committee, 1990:3–17.

    Google Scholar 

  58. Hajnal JV, Doran M, Hall AS, et al. MR imaging of anisotropically restricted diffusion of water in the nervous system: technical, anatomic and pathologic considerations. J Comput Assist Tomogr 1991;15:1–18.

    Article  PubMed  CAS  Google Scholar 

  59. Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401–408.

    PubMed  CAS  Google Scholar 

  60. Chien D, Kwong KK, Gress DR, et al. MR diffusion imaging of cerebral infarction in humans. AJNR Am J Neuroradiol 1992;13:1097–1102.

    PubMed  CAS  Google Scholar 

  61. Warach S, Chien D, Li W, et al. Fast magnetic resonance diffusion-wieghted imaging of acute human stroke. Neurology 1992;42:1717–1723.

    PubMed  CAS  Google Scholar 

  62. Brunberg JA, Chenevert TL, McKeever PE, et al. In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with stgructural alteration in gliomas of the cerebral hemispheres. AJNR Am J Neuroradiol 1995;16:361–371.

    PubMed  CAS  Google Scholar 

  63. Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. Magn Reson Med 1999;9:53–60.

    CAS  Google Scholar 

  64. Stadnik TW, Chaskis C, Michotte A, et al. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 2001;22:969–976.

    PubMed  CAS  Google Scholar 

  65. Castillo M, Smith JK, Kwock L, et al. Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. AJNR Am J Neuroradiol 2001;22:60–64.

    PubMed  CAS  Google Scholar 

  66. Kono K, Inoue Y, Nakayama K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 2001;22:1081–1088.

    PubMed  CAS  Google Scholar 

  67. Tsui EY, Chan JH, Ramsey RG, et al. Late temporal lobe necrosis in patients with nasopharyngeal carcinoma: evaluation with combined multi-section diffusion weighted and perfusion weighted MR imaging. Eur J Radiol 2001;39:138.

    Article  Google Scholar 

  68. Hein PA, Eskey CJ, Dunn JF, et al. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 2004;25:201–209.

    PubMed  Google Scholar 

  69. Guo AC, Cummings TJ, Dash RC, et al. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 2002;224:177–183.

    Article  PubMed  Google Scholar 

  70. Wakana S, Jiang H, Nagae-Poetscher LM, et al. Fiber tract-based atlas of human white matter anatomy. Radiology 2003;230:77–87.

    Article  PubMed  Google Scholar 

  71. Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol 2004;25:356–369.

    PubMed  Google Scholar 

  72. Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176:439–446.

    PubMed  CAS  Google Scholar 

  73. Basser PJ, Matiello J, Le Bihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259–267.

    Article  PubMed  CAS  Google Scholar 

  74. Jones DK, Simmons A, Williams SC, et al. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 1999;42:37–41.

    Article  PubMed  CAS  Google Scholar 

  75. Contouro TE, Lori NF, Cull TS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 1999;96:10422–10427.

    Article  Google Scholar 

  76. Mori S, Crain B J, Chacko BP, et al. Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999;45:265–269.

    Article  PubMed  CAS  Google Scholar 

  77. Basser PJ, Pajevic S, Pierpaoli C, et al. In vitro fiber tractography using DT-MRI data. Magn Reson Med 2000;44:625–632.

    Article  PubMed  CAS  Google Scholar 

  78. Jones DK, Simmons A, Williams SC, et al. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Neuroimage 2000;12:184–195.

    Article  Google Scholar 

  79. Sinha S, Bastin ME, Whittle IR, et al. Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR Am J Neuroradiol 2002;23:520–527.

    PubMed  Google Scholar 

  80. Lu S, Ahn D, Johnson G, et al. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: intrroduction of the tumor infiltration index. Radiology 2004;232:221–228.

    Article  PubMed  Google Scholar 

  81. Nimsky C. Ganslandt O, Hastreiter P, et al. Intraoperative diffusion-tensor MR imaging: shiftging of white matter tracts during neurosurgical procedures-initial experience. Radiology 2005;234:218–225.

    Article  PubMed  Google Scholar 

  82. Witwer BP, Moftakhar R, Hasan KM, et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 2002;97:568–575.

    PubMed  Google Scholar 

  83. Tropine A, Vucurevic G, Delani P, et al. Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. J Magn Reson Imaging 2004;20:905–912.

    Article  PubMed  CAS  Google Scholar 

  84. Lammertsma A, Wise R, Jones T. In vivo measurements of regional cerebral blood flow and blood volume in patients with brain tumours using positron emission tomography. Acta Neurochir 1983;69:5–13.

    Article  CAS  Google Scholar 

  85. Black K, Emerick T, Hoh C, et al. Thallium-201 SPECT and positron emission tomography equal predictors of glioma grade and recurrence. Neurol Res 1994;16:93–96.

    PubMed  CAS  Google Scholar 

  86. Kaplan WD, Takvorian T, Morris JH, et al. Thallium-201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med 1990;28:47–52.

    Google Scholar 

  87. Kim KT, Black KL, Marciano D, et al. Thallium-201 SPECT imaing of brain tumors: methods and results. J Nucl Med 1990;31:965–969.

    PubMed  CAS  Google Scholar 

  88. Uematsu H, Maeda M, Sadato N, et al. Blood volume of gliomas determined by double-echo dynamic perfusion-weighted MR imaging: a preliminary study. AJNR Am J Neuroradiol 2001;22:1915–1919.

    PubMed  CAS  Google Scholar 

  89. Lev M, Rosen B. Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin No Am 1999;9:309–331.

    CAS  Google Scholar 

  90. Le Bas J, Kremer S, Graand S, et al. NMR perfusion imaging: applications to the study of brain tumor angiogenesis. Bull Acad Nat Med 2000;184:557–567.

    PubMed  CAS  Google Scholar 

  91. Ostergaard L, Johannsen P, Host-Poulson P, et al. Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [(15)O]H2O positron emission tomography in humans. J Cereb Blood Flow Metab 1998;18:935–940.

    Article  PubMed  CAS  Google Scholar 

  92. Roberts JC, Roberts TPL. Brasch RC, et al. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000;21:891–899.

    PubMed  CAS  Google Scholar 

  93. Roberts H, Roberts T, Bollen A, et al. Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling inde: xa study in human brain tumors. Acad Radiol 2001;8:384–391.

    Article  PubMed  CAS  Google Scholar 

  94. Aronen H, Gazit I, Louis D, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994;191:41–51.

    PubMed  CAS  Google Scholar 

  95. Silva A, Kim S, Garwood M. Imaging blood flow in brain tumors using arterial spin labeling. Magn Reson Med 2000;44:169–173.

    Article  PubMed  CAS  Google Scholar 

  96. Gaa J, Warach S, Wen P, et al. Noninvasive perfusion imaging of human brain tumors with EPISTAR. Eur Radiol 1996;6:518–522.

    PubMed  CAS  Google Scholar 

  97. Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003;228:523–532.

    Article  PubMed  Google Scholar 

  98. Law M, Cha S, Knopp EA, et al. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 2002;222:715–721.

    Article  PubMed  Google Scholar 

  99. Roberts H, Roberts TPL, Brasch RC, et al. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000;21:891–899.

    PubMed  CAS  Google Scholar 

  100. Wong ET, Jackson EF, Hess KR, et al. Correlation between dynamic MRI and outcome in patients with malignant gliomas. Neurology 1998;50:777–781.

    PubMed  CAS  Google Scholar 

  101. Sugahara T, Korogi Y, Kochi M, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 1998;171:1479–1486.

    PubMed  CAS  Google Scholar 

  102. Wenz F, Rempp K, Hess T, et al. Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 1996;166:187–193.

    PubMed  CAS  Google Scholar 

  103. Pardo FS, Aronen JJ, Kennedy D, et al. Functional cerebral imaging in the evaluation and radiotherapeutic treatment planning of patients with malignant glioma. Int J Radiat Oncol Biol Phys 1994;30:663–669.

    PubMed  CAS  Google Scholar 

  104. Barker PB, Hearshen DO. Boska MD. Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med 2001;45:765–769.

    Article  PubMed  CAS  Google Scholar 

  105. Gonen O, Gruber S, Belinda S, et al. Multivixel 3D proton spectroscopy in the brain at 1.5 versus 3.0T: signalto-noise ratio and resolution comparison. AJNR Am J Neuroradiol 2001;22:1727–1731.

    PubMed  CAS  Google Scholar 

  106. Birken DL, Oldendorf WH. N-acetyl-L-aspartic acid: a leterature reviw of a compound prominent in 1H spectroscopic studies of brain. Neurosci Biobehav Rev 1989;13:23–31.

    Article  PubMed  CAS  Google Scholar 

  107. Ross BD. Biochemical considerations in 1H spectroscopy. Glutamate and glutamine; myo-inositol and related metabolites. NMRBiomed 1991;4:59–53.

    CAS  Google Scholar 

  108. Howe FA, Maxwell RJ, Saunders DE, et al. Proton spectroscopy in vivo. Magn Reson Q 1993;9:31–59.

    PubMed  CAS  Google Scholar 

  109. Vion-Dury J, Meyerhoff DJ, Cozzone PJ, et al. What might be the impact on neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy? J Neurol 1994;241:354–371.

    Article  PubMed  CAS  Google Scholar 

  110. Castillo M, Kwock L, Mukherji SK. Clinical applications in proton MR spectroscopy. AJNR Am J Neuroradiol 1996;17:1–15.

    PubMed  CAS  Google Scholar 

  111. Pouwels PJW, Frahm J. Regional metabolite concentrations in human brain determined by quantitative localized proton MRS. Magn Reson Med 1998;39:53–60.

    Article  PubMed  CAS  Google Scholar 

  112. Urenjak J, Williams SR, Gadian DG, et al. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem 1992;59:55–61.

    Article  PubMed  CAS  Google Scholar 

  113. Lowry OH, Berger SJ, Chi M-Y, et al. Diversity of metabolic patterns in human brain tumors-I. High energy phosphate compounds and basic composition. J Neurochem 1977;29:959–977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ruggieri, P.M. (2007). Magnetic Resonance Imaging. In: Barnett, G.H. (eds) High-Grade Gliomas. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-185-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-185-7_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-511-8

  • Online ISBN: 978-1-59745-185-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics