Skip to main content

Gene Therapy

  • Chapter
High-Grade Gliomas

Part of the book series: Current Clinical Oncology ((CCO))

  • 1027 Accesses

Abstract

High-grade gliomas (HGG) represent the most common primary malignant tumor of the adult central nervous system. Unfortunately, the median survival after surgical intervention alone is only 6 mo and the addition of radiotherapy can extend this time to 9 mo (1,2). Consequently, efforts aimed at developing new therapies have focused on new treatment strategies that specifically target tumor cells and spare normal cells. One such modality, gene therapy, has shown promise in the spectrum of agents utilized against brain tumors. In this chapter, we review the principles of gene therapy and discuss results of recent clinical trials in which gene therapy was employed against HGG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black PM. Brain tumor, part 1. N Engl J Med 1991;324(21):1471–1476.

    Article  PubMed  CAS  Google Scholar 

  2. Black PM. Brain tumor, part 2. N Engl J Med 1991;324(22):1555–1564.

    Article  PubMed  CAS  Google Scholar 

  3. Mavilio F, Bordignon C. Gene therapy. Nature 1993;362(6418):284.

    Article  PubMed  CAS  Google Scholar 

  4. Blaese RM, et al., T lymphocyte∶-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995;270(5235):475–480.

    Article  PubMed  CAS  Google Scholar 

  5. Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science 1995;270(5235):404–410.

    Article  PubMed  CAS  Google Scholar 

  6. Verma IM, Somia N. Gene therapy∶-promises, problems and prospects. Nature 1997;389(6648):239–242.

    Article  PubMed  CAS  Google Scholar 

  7. Miller N, Vile R. Targeted vectors for gene therapy. FASEBJ 1995;9(2):190–199.

    CAS  Google Scholar 

  8. Marchisone C, et al. Progress towards gene therapy for cancer. J Exp Clin Cancer Res 2000;19(3):261–270.

    PubMed  CAS  Google Scholar 

  9. Galanis E, Vile R, Russell SJ. Delivery systems intended for in vivo gene therapy of cancer: targeting and replication competent viral vectors. Crit Rev Oncol Hematol 2001;38(3):177–192.

    Article  PubMed  CAS  Google Scholar 

  10. Anderson WF. Human gene therapy. Nature 1998;392(6679 Suppl):25–30.

    PubMed  CAS  Google Scholar 

  11. Martuza RL, et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991;252(5007):854–856.

    Article  PubMed  CAS  Google Scholar 

  12. Shah AC, et al. Oncolytic viruses: clinical applications as vectors for the treatment of malignant gliomas. J Neurooncol 2003;65(3):203–226.

    Article  PubMed  Google Scholar 

  13. Ram Z, et al. Therapy of malignant brain tumors by intratumoral implantation of retro viral vector-producing cells. Nat Med 1997;3(12):1354–1361.

    Article  PubMed  CAS  Google Scholar 

  14. Shand N, et al. A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European Canadian Study Group. Hum Gene Ther 1999;10(14):2325–2335.

    Article  PubMed  CAS  Google Scholar 

  15. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adj uvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000;11(17):2389–2401.

    Article  PubMed  CAS  Google Scholar 

  16. Goebel EA, et al. Adenovirus-mediated gene therapy for head and neck squamous cell carcinomas. Ann Otol Rhinol Laryngol 1996;105(7)562–567.

    PubMed  CAS  Google Scholar 

  17. Miller CR, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 1998;58(24):5738–5748.

    PubMed  CAS  Google Scholar 

  18. Li Y, et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 1999;59(2):325–330.

    PubMed  CAS  Google Scholar 

  19. Li D, et al. Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer. Clin Cancer Res 1999;5(12):4175–4181.

    PubMed  CAS  Google Scholar 

  20. Hemmi S, et al. The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 1998;9(16):2363–2373.

    PubMed  CAS  Google Scholar 

  21. Asaoka K, et al. Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the Coxsackievirus and adenovirus receptor. J Neurosurg 2000;92(6):1002–1008.

    PubMed  CAS  Google Scholar 

  22. Trask TW, et al. Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol Ther 2000;1(2):195–203.

    Article  PubMed  CAS  Google Scholar 

  23. Bischoff JR, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996;274(5286):373–376.

    Article  PubMed  CAS  Google Scholar 

  24. Nemunaitis J, et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 2000;60(22):6359–6366.

    PubMed  CAS  Google Scholar 

  25. Heise C, et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997;3(6):639–645.

    Article  PubMed  CAS  Google Scholar 

  26. Khuri FR, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6(8):879–885.

    Article  PubMed  CAS  Google Scholar 

  27. Chiocca EA, et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1BAttenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 2004;10(5):958–966.

    Article  PubMed  CAS  Google Scholar 

  28. Mineta T, et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995;1(9):938–943.

    Article  PubMed  CAS  Google Scholar 

  29. Hunter WD, et al. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J Virol 1999;73(8):6319–6326.

    PubMed  CAS  Google Scholar 

  30. Markert JM, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 2000;7(10):867–874.

    Article  PubMed  CAS  Google Scholar 

  31. Valyi-Nagy T, et al. The herpes simplex virus type 1 strain 17+ gamma 34.5 deletion mutant 1716 is avirulent in SCID mice. J Gen Virol 1994;75(Pt 8):2059–2063.

    Article  PubMed  CAS  Google Scholar 

  32. Randazzo BP, et al. Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant. Virology 1995;211(1):94–101.

    Article  PubMed  CAS  Google Scholar 

  33. Kesari S, et al. Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant. Lab Invest 1995;73(5):636–648.

    PubMed  CAS  Google Scholar 

  34. Rampling R, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 2000;7(10):859–66.

    Article  PubMed  CAS  Google Scholar 

  35. Harrow S, et al. HS V1716 injection into the brain adj acent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther 2004;11(22):1648–1658.

    Article  PubMed  CAS  Google Scholar 

  36. Papanastassiou V, et al. The potential for efficacy of the modified (ICP 34.5 (-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther 2002; 9(6):398–406.

    Article  PubMed  CAS  Google Scholar 

  37. Coffey MC, et al. Reovirus therapy of tumors with activated Ras pathway. Science 1998;282(5392):1332–1334.

    Article  PubMed  CAS  Google Scholar 

  38. Wilcox ME, et al. Reovirus as an oncolytic agent against experimental human malignant gliomas. J Natl Cancer Inst 2001;93(12):903–912.

    Article  PubMed  CAS  Google Scholar 

  39. Yang WQ, et al. Efficacy and safety evaluation of human reovirus type 3 in immunocompetent animals: racine and nonhuman primates. Clin Cancer Res 2004;10(24):8561–8576.

    Article  PubMed  Google Scholar 

  40. Reichard KW, et al. Newcastle disease virus selectively kills human tumor cells. J Surg Res 1992;52(5):448–453.

    Article  PubMed  CAS  Google Scholar 

  41. Phuangsab A, et al. Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Letter 2001;172(1):27–36.

    Article  CAS  Google Scholar 

  42. Lorence RM, et al. Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy. Cancer Res 1994;54(23):6017–6021.

    PubMed  CAS  Google Scholar 

  43. Lorence RM, et al. Complete regression of human neuroblastoma xenografts in athymic mice after local Newcastle disease virus therapy. J Natl Cancer Inst 1994;86(16):1228–1233.

    Article  PubMed  CAS  Google Scholar 

  44. Csatary LK, et al. Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect Prev 1993;17(6):619–627.

    PubMed  CAS  Google Scholar 

  45. Lorence RM, et al. Overview of phase I studies of intravenous administration of PV701, an oncolytic virus. Curr Opin Mol Ther 2003;5(6):618–624.

    PubMed  CAS  Google Scholar 

  46. Csatary LK, Bakacs T. Use of Newcastle disease virus vaccine (MTH-68/H) in a patient with high-grade glioblastoma. JAMA 1999;281(17):1588–1589.

    Article  PubMed  CAS  Google Scholar 

  47. Csatary LK, et al. MTH-68/H oncolytic viral treatment in human high-grade gliomas. J Neurooncol 2004;67(1-2):83–93.

    Article  PubMed  CAS  Google Scholar 

  48. Haas C, et al. Introduction of adhesive and costimulatory immune functions into tumor cells by infection with Newcastle Disease Virus. Int J Oncol 1998;13(6):1105–1115.

    PubMed  CAS  Google Scholar 

  49. Liau LM, et al. Tumor immunity within the central nervous system stimulated by recombinant Listeria monocytogenes vaccination. Cancer Res 2002;62(8):2287–2293.

    PubMed  CAS  Google Scholar 

  50. Prins RM, Liau LM. Cellular immunity and immunotherapy of brain tumors. Front Biosci 2004;9:124–136.

    Article  Google Scholar 

  51. Miyatake S, Martuza RL, Rabkin SD. Defective herpes simplex virus vectors expressing thymidine kinase for the treatment of malignant glioma. Cancer Gene Ther 1997;4(4):222–228.

    PubMed  CAS  Google Scholar 

  52. Parker JN, et al. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 2000;97(5):2208–2213.

    Article  PubMed  CAS  Google Scholar 

  53. Andreansky S, et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Ther 1998;5(1):121–130.

    Article  PubMed  CAS  Google Scholar 

  54. Liu Y, et al. In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther 2002;9(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  55. Yoshikawa K, et al. Immune gene therapy of experimental mouse brain tumor with adenovirus-mediated gene transfer of murine interleukin-4. Cancer Immunol Immunother 2000;49(1):23–33.

    Article  PubMed  CAS  Google Scholar 

  56. Yamini B, et al. Transcriptional targeting of adenovirally delivered tumor necrosis factor alpha by temozolomide in experimental glioblastoma. Cancer Res 2004;64(18):6381–6384.

    Article  PubMed  CAS  Google Scholar 

  57. Chen B, et al. Low-dose vaccinia virus-mediated cytokine gene therapy of glioma. J Immunother 2001;24(1):46–57.

    Article  PubMed  CAS  Google Scholar 

  58. Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 1: Growth factor and Ras signaling pathways. Expert Rev Anticancer Ther 2003;3(5):595–614.

    Article  PubMed  CAS  Google Scholar 

  59. Rich JN, Bigner DD. Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 2004;3(5):430–446.

    Article  PubMed  CAS  Google Scholar 

  60. Maher EA, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev 2001;15(11):311–333.

    Article  Google Scholar 

  61. Ostman A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev 2004;15(4):275–286.

    Article  PubMed  CAS  Google Scholar 

  62. Guha A, et al. Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int J Cancer 1995;60(2):168–173.

    PubMed  CAS  Google Scholar 

  63. Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev Anticancer Ther 2004;4(1):105–128.

    Article  PubMed  CAS  Google Scholar 

  64. Wechsler-Reya RJ. Analysis of gene expression in the normal and malignant cerebellum. Recent Prog Horm Res 2003;58:227–248.

    Article  PubMed  CAS  Google Scholar 

  65. Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Annu Rev Neurosci 2001;24:385–428.

    Article  PubMed  CAS  Google Scholar 

  66. Pomeroy SL, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002;415(6870):436–442.

    Article  PubMed  CAS  Google Scholar 

  67. Romer JT, et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 2004;6(3):229–240.

    Article  PubMed  CAS  Google Scholar 

  68. Wei MX, et al. Effects on brain tumor cell proliferation by an adenovirus vector that bears the interleukin-4 gene. J Neurovirol 1998;4(2):237–241.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lesniak, M.S., Olivi, A. (2007). Gene Therapy. In: Barnett, G.H. (eds) High-Grade Gliomas. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-185-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-185-7_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-511-8

  • Online ISBN: 978-1-59745-185-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics