Skip to main content

Clinical Trials of Oncolytic Viruses for Gliomas

  • Chapter
High-Grade Gliomas

Part of the book series: Current Clinical Oncology ((CCO))

  • 1040 Accesses

Abstract

There has been resurgent interest in the use of mutant or genetically engineered strains of viruses for the local treatment of gliomas. The clinical status of these agents is reviewed and further progress in this area with new agents is detailed. Safety in glioma patients has been shown, but anticancer efficacy needs additional refinements in the technologies employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martuza RL, Malick A, Markert J.M, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991;252:854–856.

    Article  PubMed  CAS  Google Scholar 

  2. Chiocca AE. Oncolytic viruses. Nat Rev Cancer 2002;2:938–950.

    Article  PubMed  CAS  Google Scholar 

  3. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996;274:373–376.

    Article  PubMed  CAS  Google Scholar 

  4. Boviatsis EJ, Park JS, Sena-Esteves M et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidinekinase gene. Cancer Res 1994;54:5745–5751.

    PubMed  CAS  Google Scholar 

  5. Fueyo J, Gomez-Manzano C, Alemany R, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000;19:2–12.

    Article  PubMed  CAS  Google Scholar 

  6. Fulci G, Chiocca EA. Oncolytic viruses for the therapy of brain tumors and other solid malignancies: a review. Front Biosci 2003;8:e346–360.

    Article  PubMed  CAS  Google Scholar 

  7. Gromeier M, Wimmer E. Viruses for the treatment of malignant glioma. Curr Opin Mol Ther 2001;3:503–508.

    PubMed  CAS  Google Scholar 

  8. Markert JM, Gillespie GY, Weichselbaum RR, Roizman B, Whitley RJ. Genetically engineered HSV in the treatment of glioma: a review. Rev Med Virol 2000;10:17–30.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang JF, Hu C, Geng Y, et al. Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy. Proc Natl Acad Sci USA 1996;93:4513–4518.

    Article  PubMed  CAS  Google Scholar 

  10. Yang WQ, Senger D, Muzik H, et al. Reovirus prolongs survival and reduces the frequency of spinal and leptomeningeal metastases from medulloblastoma. Cancer Res 2003;63:3162–3172.

    PubMed  CAS  Google Scholar 

  11. Wilcox ME, Yang W, Senger D, et al. Reovirus as an oncolytic agent against experimental human malignant gliomas. J Natl Cancer Inst 2001;l93:903–912.

    Article  Google Scholar 

  12. Coffey MC, Strong JE, Forsyth PA, Lee P.W. Reovirus therapy of tumors with activated Ras pathway. Science 1998;282:1332–1334.

    Article  PubMed  CAS  Google Scholar 

  13. Rampling R, Cruickshank G, Papanastassiou V, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 2000;7:859–866.

    Article  PubMed  CAS  Google Scholar 

  14. Papanastassiou V, Rampling R, Fraser M, et al. The potential for efficacy of the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther 2002;9:398–406.

    Article  PubMed  CAS  Google Scholar 

  15. MacKie RM, Stewart B, Brown SM. Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet 2001;357:525–526.

    Article  PubMed  CAS  Google Scholar 

  16. Mohr I, Gluzman Y. AA herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. Embo J 1996;15:4759–4766.

    PubMed  CAS  Google Scholar 

  17. Markert JM, Medlock MD, Rabkin SD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 2000;7:867–874.

    Article  PubMed  CAS  Google Scholar 

  18. Philipson L, Pettersson U, Lindberg U. Molecular biology of adenoviruses. Virol Monogr 1975;14:1–115.

    PubMed  CAS  Google Scholar 

  19. Marechal V, Piolot T. Lytic infection by double-strand DNA viruses and cell cycle alterations. Pathol Biol (Paris) 2000;48:289–300.

    CAS  Google Scholar 

  20. Nemerow GR., Cell receptors involved in adenovirus entry. Virology 2000;274:1–4

    Article  PubMed  CAS  Google Scholar 

  21. Hall AR, Dix BR, O’eCarroll SJ, Braithwaite AW., p53-dependent cell death/apoptosis is required for aproductive adenovirus infection. NatMed 1998;4:1068–1072.

    CAS  Google Scholar 

  22. Goodrum FD, Ornelles DA. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 1998;72:9479–9490.

    PubMed  CAS  Google Scholar 

  23. Heise CC, Williams AM, Xue S, Propst M, Kirn DH. Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy. Cancer Res 1999;59:2623–2628.

    PubMed  CAS  Google Scholar 

  24. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997;3:639–645.

    Article  PubMed  CAS  Google Scholar 

  25. Geoerger B, Grill J, Opolon P, et al. Oncolytic activity of the E1B-55 kDa-deleted adenovirus ONYX-015 is independent of cellular p53 status in human malignant glioma xenografts. Cancer Res 2002;62:764–772.

    PubMed  CAS  Google Scholar 

  26. Post L E. Selectively replicating adenoviruses for cancer therapy: an update on clinical development. Curr Opin Investig Drugs 2002;3:1768–1772.

    PubMed  CAS  Google Scholar 

  27. Reid T, Warren R, Kirn D. Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther 2002;9:979–986.

    Article  PubMed  CAS  Google Scholar 

  28. Kirn D. Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther 2001;8:89–98.

    Article  PubMed  CAS  Google Scholar 

  29. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000;6:879–885.

    Article  PubMed  CAS  Google Scholar 

  30. Csatary LK, Gosztonyi G, Szeberenyi J, et al. MTH-68/H oncolytic viral treatment in human high-grade gliomas. J Neuro-oncol 2004;67:83–93.

    Article  CAS  Google Scholar 

  31. Grill J, Van Beusechem VW, VanDer Valk P, et al. Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clin Cancer Res 2001;7:641–650.

    PubMed  CAS  Google Scholar 

  32. Lamfers ML, Grill J, Dirven CM, et al. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 2002;62:5736–5742.

    PubMed  CAS  Google Scholar 

  33. Miller CR, Buchsbaum DJ, Reynolds PN, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 1998;58:5738–5748.

    PubMed  CAS  Google Scholar 

  34. Fuxe J, Liu L, Malin S, Philipson L, Collins VP, Pettersson RF. Expression of the coxsackie and adenovirus receptor in human astrocytic tumors and xenografts. Int J Cancer 2003;03:723–729.

    Article  CAS  Google Scholar 

  35. van Beusechem VMDC., vanden Doel P, Lamfers MLM, et al. Conditionally replicative adenovirus expressing a targeting adapter molecule exhibits enhanced oncolytic potency on C AR-deficient tumors. Gene Therapy 2003;10:1982–1991.

    Article  PubMed  CAS  Google Scholar 

  36. Staba MJ, Wickham TJ, Kovesdi I, Hallahan DE., Modifications of the fiber in adenovirus vectors increase tropism for malignant glioma models. Cancer Gene Ther 2000;7:13–19.

    Article  PubMed  CAS  Google Scholar 

  37. Dmitriev I, Krasnykh V, Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998;72:9706–9713.

    PubMed  CAS  Google Scholar 

  38. Fueyo J, Alemany R, Gomez-Manzano C, et al. Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 2003;95:652–660.

    Article  PubMed  CAS  Google Scholar 

  39. Shinoura N, Yoshida Y, Tsunoda R, et al. Highly augmented cytopathic effect of a fiber-mutant E 1B-defective adenovirus for gene therapy of gliomas. Cancer Res 1999;59:3411–3416.

    PubMed  CAS  Google Scholar 

  40. Gu DL, Gonzalez AM, Printz MA, et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res 1999;59:2608–2614.

    PubMed  CAS  Google Scholar 

  41. Douglas JT, Rogers BE, Rosenfeld ME, et al. Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol 1996;14:1574–1578.

    Article  PubMed  CAS  Google Scholar 

  42. Xia H, Anderson B, Mao Q, Davidson BL. Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J Virol 2000:l74:11,359–11,366.

    Article  Google Scholar 

  43. Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther 2001;8:341–348.

    Article  PubMed  CAS  Google Scholar 

  44. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 1997;8:37–44.

    Article  PubMed  CAS  Google Scholar 

  45. Da Costa XJ, Brockman MA, Alicot E, et al. Humoral response to herpes simplex virus is complement-dependent. Proc Natl Acad Sci USA 1999;96:12,708–12,712.

    Article  PubMed  Google Scholar 

  46. Wakimoto H, Johnson PR, Knipe DM, Chiocca EA. Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Ther 2003;10:983–990.

    Article  PubMed  CAS  Google Scholar 

  47. Ginsberg HS, Prince GA. The molecular basis of adenovirus pathogenesis. Infect Agents Dis 1994;3:1–8.

    PubMed  CAS  Google Scholar 

  48. Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 2001;19:65–91.

    Article  PubMed  CAS  Google Scholar 

  49. Horwitz MS, Sarvetnick N. Viruses, host responses, and autoimmunity. Immunol Rev 1999;169:241–253.

    Article  PubMed  CAS  Google Scholar 

  50. Kay MA, Holterman AX, Meuse L, et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat Genet 1995;11:191–197.

    Article  PubMed  CAS  Google Scholar 

  51. Yang Y, Trinchieri G, Wilson J.M. Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nat Med 1995;1:890–893.

    Article  PubMed  CAS  Google Scholar 

  52. Bouvet M, Fang B, Ekmekcioglu S, et al. Suppression of the immune response to an adenovirus vector and enhancement of intratumoral transgene expression by low-dose etoposide. Gene Ther 1998;5:189–195.

    Article  PubMed  CAS  Google Scholar 

  53. Mabon PJ, Weaver LC, Dekaban GA. Cyclosporin A reduces the inflammatory response to a multi-mutant herpes simplex virus type-1 leading to improved transgene expression in sympathetic preganglionic neurons in hamsters. J Neurovirol 1999;5:268–279.

    PubMed  CAS  Google Scholar 

  54. Ikeda K, Wakimoto H, Ichikawa T, et al. Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J Virol 2000;74:4765–4775.

    Article  PubMed  CAS  Google Scholar 

  55. Ikeda K, Ichikawa T, Wakimoto H, et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 1999;5:881–887.

    Article  PubMed  CAS  Google Scholar 

  56. Wakimoto H, Fulci G, Tyminski E, Chiocca EA. Altered expression of antiviral cytokine mRNAs associated with cyclophosphamide’es enhancement of viral oncolysis. Gene Ther 2004;11:214–223.

    Article  PubMed  CAS  Google Scholar 

  57. Nanda D, Vogels R, Havenga M, Avezaat CJ, Bout A, Smitt PS. Treatment of malignant gliomas with a replicating adenoviral vector expressing herpes simplex virus-thymidine kinase. Cancer Res 2001;61:8743–8750.

    PubMed  CAS  Google Scholar 

  58. Grill J, Lamfers ML, van Beusechem VW, et al. The organotypic multicellular spheroid is a relevant three-dimensional model to study adenovirus replication and penetration in human tumors in vitro. Mol Ther 2002;6:609–614.

    Article  PubMed  CAS  Google Scholar 

  59. Ichikawa T, Chiocca EA. Comparative analyses of transgene delivery and expression in tumors inoculated with a replication-conditional or-defective viral vector. Cancer Res 2001;61:5336–5339.

    PubMed  CAS  Google Scholar 

  60. Boviatsis EJ, Scharf JM, Chase M, et al. Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase. Gene Ther 1994;1:323–331.

    PubMed  CAS  Google Scholar 

  61. Boviatsis EJ, Chase M, Wei MX, et al. Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus, and retrovirus vectors. Hum Gene Ther 1994;5:183–191.

    PubMed  CAS  Google Scholar 

  62. Chas M, Chung RY, Chiocca EA. An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nat Biotechnol 1998;16:444–448.

    Article  Google Scholar 

  63. Wei MX, Tamiya T, Rhee RJ, Breakefield XO, Chiocca EA. Diffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cyclophosphamide/cytochrome P450 2B1 cancer gene therapy paradigm. Clin Cancer Res 1995;1:1171–1177.

    PubMed  CAS  Google Scholar 

  64. Stubdal H, Perin N, Lemmon M, et al. A prodrug strategy using ONYX-015-based replicating adenoviruses to deliver rabbit carboxylesterase to tumor cells for conversion of CPT-11 to SN-38. Cancer Res 2003;63:6900–6908.

    PubMed  CAS  Google Scholar 

  65. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 1998;9:1323–1333.

    PubMed  CAS  Google Scholar 

  66. Aghi M, Chou TC, Suling K, Breakefield XO, Chiocca EA. Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/ herpes simplex virus thymidine kinase gene therapies. Cancer Res 1999;59:3861–3865.

    PubMed  CAS  Google Scholar 

  67. Andreansky S, He B, van Cott J, et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Ther 1998;5:121–130.

    Article  PubMed  CAS  Google Scholar 

  68. Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 2000;97:2208–2213.

    Article  PubMed  CAS  Google Scholar 

  69. Carew JF, Kooby DA, Halterman MW, Kim SH, Federoff HJ, Fong Y. A novel approach to cancer therapy using an oncolytic herpes virus to package amplicons containing cytokine genes. Mol Ther 2001;4:250–256.

    Article  PubMed  CAS  Google Scholar 

  70. Wong RJ, Patel SG, Kim S, et al. Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum Gene Ther 2001;12:253–265.

    Article  PubMed  CAS  Google Scholar 

  71. Todo T, Martuza RL, Dallman MJ, Rabkin SD. In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity. Cancer Res 2001;61:153–161.

    PubMed  CAS  Google Scholar 

  72. Liu BL, Robinson M, Han ZQ, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 2003;10:292–303.

    Article  PubMed  CAS  Google Scholar 

  73. Kruyt FA, Curiel DT. Toward a new generation of conditionally replicating adenoviruses: pairing tumor selectivity with maximal oncolysis. Hum Gene Ther 2002;13:485–495.

    Article  PubMed  CAS  Google Scholar 

  74. van Beusechem VW, vanden Doel PB, Grill J, Pinedo HM, Gerritsen WR. Conditionally replicative adenovirus expressing p53 exhibits enhanced oncolytic potency. Cancer Res 2002;62:6165–6171.

    PubMed  Google Scholar 

  75. Mi J, Li ZY, Ni S, Steinwaerder D, Lieber A. Induced apoptosis supports spread of adenovirus vectors in tumors. Hum Gene Ther 2001;12:1343–1352.

    Article  PubMed  CAS  Google Scholar 

  76. Yu DC, Chen Y, Dilley J, et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res 2001;61:517–525.

    PubMed  CAS  Google Scholar 

  77. Toyoizumi T, Mick R, Abbas AE, Kang EH, Kaiser LR, Molnar-Kimber KL. Combined therapy with chemotherapeutic agents and herpes simplex virus type 1 ICP34.5 mutant (HSV-1716) in human non-small cell lung cancer. Hum Gene Ther 1999;10:3013–3029.

    Article  PubMed  CAS  Google Scholar 

  78. Cinatl J, Jr, Cinatl J, Michaelis M, et al. Patient oncolytic activity of multimutated herpes simplex virus G207 in combimation with vincristine against human rhabdomyosarcoma. Cancer Res 2003;63:1508–1514.

    PubMed  CAS  Google Scholar 

  79. Rogulski KR, Freytag SO, Zhang K, et al. In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res 2000;60:1193–1196.

    PubMed  CAS  Google Scholar 

  80. DeWeese TL, vander Poel H, Li S, et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001;61:7464–7472.

    PubMed  CAS  Google Scholar 

  81. Chen Y, DeWeese T, Dilley J, et al. CV706, aprostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res 2001;61:5453–5460.

    PubMed  CAS  Google Scholar 

  82. Geoerger B, Grill J, Opolon P, et al. Potentiation of radiation therapy by the oncolytic adenovirus dl1520 (ONYX-015) in human malignant glioma xenografts. Br J Cancer 2003;89:577–584.

    Article  PubMed  CAS  Google Scholar 

  83. Blank SV, Rubin SC, Coukos G, Amin KM, Albelda SM, Molnar-Kimber KL. Replication-selective herpes simplex virus type 1 mutant therapy of cervical cancer is enhanced by low-dose radiation. Hum Gene Ther 2002;13:627–639.

    Article  PubMed  CAS  Google Scholar 

  84. Stanziale SF, Petrowsky H, Joe JK, et al. Ionizing radiation potentiates the antitumor efficacy of oncolytic herpes simplex virus G207 by upregulating ribonucleotide reductase. Surgery 2002;132:353–359.

    Article  PubMed  Google Scholar 

  85. Jorgensen TJ, Katz S, Wittmack EK, et al. Ionizing radiation does not alter the antitumor activity of herpes simplex virus vector G207 in subcutaneous tumor models of human and murine prostate cancer. Neoplasia 2001;3:451–456.

    Article  PubMed  CAS  Google Scholar 

  86. Spear MA, Sun F, Eling DJ, et al. Cytotoxicity, apoptosis, and viral replication in tumor cells treated with oncolytic ribonucleotide reductase-defective herpes simplex type 1 virus (hrR3) combined with ionizing radiation. Cancer Gene Ther 2000;7:1051–1059.

    Article  PubMed  CAS  Google Scholar 

  87. Advani SJ, Sib ley GS, Song PY, et al. Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutic ally intractable tumors. Gene Ther 1998;5:160–165.

    Article  PubMed  CAS  Google Scholar 

  88. Bradley JD, Kataoka Y, Advani S, et al. Ionizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virus. Clin Cancer Res 1999;5:1517–1522.

    PubMed  CAS  Google Scholar 

  89. Rogulski KR, Wing MS, Paielli DL, Gilbert JD, Kim JH, Freytag SO. Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum Gene Ther 2000;11:67–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chiocca, E.A., Lamfers, M.L. (2007). Clinical Trials of Oncolytic Viruses for Gliomas. In: Barnett, G.H. (eds) High-Grade Gliomas. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-185-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-185-7_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-511-8

  • Online ISBN: 978-1-59745-185-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics