Skip to main content

Monoclonal Antibodies

  • Chapter
High-Grade Gliomas

Part of the book series: Current Clinical Oncology ((CCO))

  • 1045 Accesses

Abstract

Over the last decades, progress has been made in diagnostic imaging, surgical techniques, radiotherapy, and chemotherapy for the treatment of tumors of the central nervous system. However, the outcome for patients with high-grade gliomas (HGG) has remained essentially unchanged. The use of monoclonal antibodies (MAbs), either unarmed or armed, to target and kill HGG cells has appeared as a prospective adjuvant therapeutic option. The potential of this approach is being investigated in a large number of clinical trials currently in progress for patients with HGG; the encouraging results of some of these phase I/II trials will be summarized here.

In this chapter, we review the critical components for the safe, efficient, and practical implementation of MAb-based immunotherapy for HGG patients as well as the current and future targetable antigens and their corresponding monoclonal antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehrlich P. Collected Studies on Immunity. New York: Wiley, 1906.

    Google Scholar 

  2. Hericourt J, Richet C. Traitement d’eun cas de sarcome par la serotherapie. CR Hebd Seances Acad Sci 1895;120:948–950.

    Google Scholar 

  3. Day ED, Lassiter S, Woodhall B, Mahaley JL, Mahaley MS, Jr. The localization of radioantibodies in human brain tumors. I. Preliminary exploration. Cancer Res 1965;25:773–778.

    PubMed  CAS  Google Scholar 

  4. Mahaley MS, Jr., Mahaley JL, Day ED. The localization of radioantibodies in human brain tumors. II. Radio-autography. Cancer Res 1965;25:779–793.

    PubMed  CAS  Google Scholar 

  5. Marrack D, Kubala M, Corry P, et al. Localization of intracranial tumors. Comparative study with 131-I-labeled antibody to human fibrinogen and neohydrin-203Hg. Cancer 1967;20:751–755.

    Article  PubMed  CAS  Google Scholar 

  6. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495–497.

    Article  PubMed  CAS  Google Scholar 

  7. Boskovitz A, Wikstrand C, Kuan CT, Zalutsky M, Reardon DA, Bigner DD. Monoclonal antibodies for brain tumor treatment. Expert Opin Biol Ther 2004;4(9):1453–1471.

    Article  PubMed  CAS  Google Scholar 

  8. Wikstrand CJ, Zalutsky MR, Bigner DD. Radiolabeled antibodies for therapy of brain tumors. In: Liau LM, Becker DP, Cloughesy TF, Bigner DD, eds. Brain Tumor Immunotherapy. Totowa, NJ: Humana Press, 2001:205–229.

    Google Scholar 

  9. Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol 2002;13:603–608.

    Article  PubMed  CAS  Google Scholar 

  10. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 1984;81:6851–6855.

    Article  PubMed  CAS  Google Scholar 

  11. Boulianne GL, Hozumi N, Shulman MJ. Production of functional chimaeric mouse/human antibody. Nature 1984;312:643–646.

    Article  PubMed  CAS  Google Scholar 

  12. Colcher D, Pavlinkova G, Beresford G, Booth BJ, Choudhury A, Batra SK. Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q J Nucl Med 1998;42:225–241.

    PubMed  CAS  Google Scholar 

  13. Shin SU. Chimeric antibody: potential applications for drug delivery and immunotherapy. Biotherapy 1991;3:43–353.

    Article  PubMed  CAS  Google Scholar 

  14. Reist CJ, Bigner DD, Zalutsky MR. Human IgG2 constant region enhances in vivo stability of anti-tenascin antibody 81C6 compared with its murine parent. Clin Cancer Res 1998;4:2495–502.

    PubMed  CAS  Google Scholar 

  15. Batra SK, Niswonger ML, Wikstrand CJ, et al. Mouse/human chimeric Me1-14 antibody: genomic cloning of the variable region genes, linkage to human constant region genes, expression, and characterization. Hybridoma 1994;13:87–97.

    PubMed  CAS  Google Scholar 

  16. Zalutsky MR, Archer GE, Garg PK, Batra SK, Bigner DD. Chimeric anti-tenascin antibody 81C6: increased tumor localization compared with its murine parent. Nucl Med Biol 1996;23:449–458.

    Article  PubMed  CAS  Google Scholar 

  17. He X, Archer GE, Wikstrand CJ, et al. Generation and characterization of a mouse/human chimeric antibody directed against extracellular matrix protein tenascin. J Neuroimmunol 1994;52:127–137.

    Article  PubMed  CAS  Google Scholar 

  18. Khazaeli MB, Saleh MN, Liu TP, et al. Pharmacokinetics and immune response of 131I-chimeric mouse/human B72.3 (human gamma 4) monoclonal antibody in humans. Cancer Res 1991;51:5461–5466.

    PubMed  CAS  Google Scholar 

  19. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986;321:522–525.

    Article  PubMed  CAS  Google Scholar 

  20. Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature 1988;332:323–327.

    Article  PubMed  CAS  Google Scholar 

  21. Vaughan TJ, Osbourn JK, Tempest PR. Human antibodies by design. Nat Biotechnol 1998;16:535–539.

    Article  PubMed  CAS  Google Scholar 

  22. Foon KA, Yang XD, Weiner LM, et al. Preclinical and clinical evaluations of ABX-EGF, a fully human antiepidermal growth factor receptor antibody. Int J Radiat Oncol Biol Phys 2004;58:984–990.

    Article  PubMed  CAS  Google Scholar 

  23. Powers DB, Marks JD. Monovalent phage display of Fab and scFv fusions. Antibody fusion proteins. New York: Wiley Liss, John Wiley & Sons; 1999:151–188.

    Google Scholar 

  24. Boskovitz A, Akabani GH, Pegram CN, Bigner DD, Zalutsky MR. Human/murine chimeric 81C6 F(ab’e)(2) fragment: preclinical evaluation of a potential construct for the targeted radiotherapy of malignant glioma. Nucl Med Biol 2004;31:345–55.

    Article  PubMed  CAS  Google Scholar 

  25. Kuan CT, Wikstrand CJ, Archer G, et al. Increased binding affinity enhances targeting of glioma xenografts by EGFRvIII-specific scFv. Int J Cancer 2000;88:962–969.

    Article  PubMed  CAS  Google Scholar 

  26. Colcher D, Bird R, Roselli M, et al. In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J Natl Cancer Inst 1990;82:1 191–1197.

    Article  CAS  Google Scholar 

  27. Schier R, McCall A, Adams GP, et al. Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J Mol Biol 1996;263:551–567.

    Article  PubMed  CAS  Google Scholar 

  28. Yokota T, Milenic DE, Whitlow M, Schlom J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992;52:3402–408.

    PubMed  CAS  Google Scholar 

  29. Todorovska A, Roovers RC, Dolezal O, Kortt AA, Hoogenboom HR, Hudson PJ. Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J Immunol Methods 2001;248:47–66.

    Article  PubMed  CAS  Google Scholar 

  30. Hu S, Shively L, Raubitschek A, et al. Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 1996;56:3055–3061.

    PubMed  CAS  Google Scholar 

  31. Yazaki PJ, Wu AM. Construction and characterization of minibodies for imaging and therapy of colorectal carcinomas. Methods Mol Biol 2003;207:351–364.

    PubMed  CAS  Google Scholar 

  32. Kuan CT, Wikstrand CJ, Bigner DD. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer 2001;8:83–96.

    Article  PubMed  CAS  Google Scholar 

  33. Sampson JH, Crotty LE, Lee S, et al. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors. Proc Natl Acad Sci USA 2000;97:7503–7508.

    Article  PubMed  CAS  Google Scholar 

  34. Zalutsky M. Radionuclide therapy. In: Vertes A, Nagy S, Klencsar Z, eds. Handbook of Nuclear Chemistry, Vol. 4. Dordrecht, Netherlands: Kluwer Academic; 2003:315–348.

    Google Scholar 

  35. Zalutsky MR, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr Pharm Des 2000;6:1433–1455.

    Article  PubMed  CAS  Google Scholar 

  36. Hall WA, Fodstad O. Immunotoxins and central nervous system neoplasia. J Neurosurg 1992;76:1–12.

    Article  PubMed  CAS  Google Scholar 

  37. Rustamzadeh E, Low WC, Vallera DA, Hall WA. Immunotoxin therapy for CNS tumor. J Neurooncol 2003;64:101–116.

    PubMed  Google Scholar 

  38. Archer GE, Sampson JH, Lorimer IA, et al. Regional treatment of epidermal growth factor receptor vIII-expressing neoplastic meningitis with a single-chain immunotoxin, MR-1. Clin Cancer Res 1999;5:2646–2652.

    PubMed  CAS  Google Scholar 

  39. Zalutsky MR, Moseley RP, Benjamin JC, et al. Monoclonal antibody and F(ab’e)2 fragment delivery to tumor inpatients with glioma: comparison ofintracarotid and intravenous administration. Cancer Res 1990;50:4105–4110.

    PubMed  CAS  Google Scholar 

  40. Schold SC, Jr., Zalutsky MR, Coleman RE, et al. Distribution and dosimetry of I-123-labeled monoclonal antibody 81C6 in patients with anaplastic glioma. Invest Radiol 1993;28:488–496.

    Article  PubMed  Google Scholar 

  41. Bartus RT, Elliott PJ, Dean RL, et al. Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7. ExpNeurol 1996;142:14–28.

    CAS  Google Scholar 

  42. Sampson JH, Akabani G, Archer GE, et al. Progress report of aPhase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-3 8 (TP-3 8) for the treatment of malignant brain tumors. J Neurooncol 2003;65:27–35.

    Article  PubMed  Google Scholar 

  43. Jain RK, Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macro-molecules in tumors: significance of elevated interstitial pressure. Cancer Res 1988;48:7022–7032.

    PubMed  CAS  Google Scholar 

  44. Goetz C, Riva P, Poepperl G, et al. Locoregional radioimmunotherapy in selected patients with malignant glioma: experiences, side effects and survival times. J Neurooncol 2003;62:321–328.

    Article  PubMed  CAS  Google Scholar 

  45. Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-oncol 2000;2:45–59.

    Article  PubMed  CAS  Google Scholar 

  46. Erickson HP. Tenascin-C, tenascin-R and tenascin-: a family of talented proteins in search of functions. Curr Opin Cell Biol 1993;5:869–876.

    Article  PubMed  CAS  Google Scholar 

  47. Jones FS, Jones PL. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 2000;218:235–259.

    Article  PubMed  CAS  Google Scholar 

  48. Bourdon MA, Wikstrand CJ, Furthmayr H, Matthews TJ, Bigner DD. Human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody. Cancer Res 1983;43:2796–2805.

    PubMed  CAS  Google Scholar 

  49. Bourdon MA, Matthews TJ, Pizzo SV, Bigner DD. Immunochemical and biochemical characterization of a glioma-associated extracellular matrix glycoprotein. J Cell Biochem 1985;28:183–195.

    Article  PubMed  CAS  Google Scholar 

  50. Zagzag D, Friedlander DR, Dosik J, et al. Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res 1996;56:182–189.

    PubMed  CAS  Google Scholar 

  51. Wikstrand CJ, Fung KM, Trojanowski JQ, McLendon RE, Bigner DD. Antibodies and molecular immunology: immunohistochemistry and antigens of diagnostic significance. In: Bigner DD, McLendon RE, Bruner JM, eds. Russell and Rubinstein’e Pathology of the Nervous System. New York: Oxford University Press; 1998:251–304.

    Google Scholar 

  52. Reardon DA, Akabani G, Coleman RE, etal. Phase II trial of murine( 13 1)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 2002;20:1389–1397.

    Article  PubMed  CAS  Google Scholar 

  53. Riva P, Franceschi G, Riva N, Casi M, Santimaria M, Adamo M. Role of nuclear medicine in the treatment of malignant gliomas: the locoregional radioimmunotherapy approach. Eur J Nucl Med 2000;27:601–609.

    Article  PubMed  CAS  Google Scholar 

  54. Paganelli G, Grana C, Chinol M, et al. Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Eur J Nucl Med 1999;26:348–357.

    Article  PubMed  CAS  Google Scholar 

  55. Grana C, Chinol M, Robertson C, et al. Pretargeted adjuvant radioimmunotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study. Br J Cancer 2002;86:207–212.

    Article  PubMed  CAS  Google Scholar 

  56. Zagzag D, Shiff B, Jallo GI, et al. Tenascin-C promotes microvascular cell migration and phosphorylation of focal adhesion kinase. Cancer Res 2002;62:2660–2668.

    PubMed  CAS  Google Scholar 

  57. Zalutsky MR, Moseley RP, Coakham HB, Coleman RE, Bigner DD. Pharmacokinetics and tumor localization of 131I-labeled anti-tenascin monoclonal antibody 81C6 in patients with gliomas and other intracranial malignancies. Cancer Res 1989;49:2807–2813.

    PubMed  CAS  Google Scholar 

  58. Shrieve DC, Alexander E, 3rd, Wen PY, et al. Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 1995;36:275–282; discussion 282-284.

    Article  PubMed  CAS  Google Scholar 

  59. Akabani G, Cokgor I, Coleman RE, et al. Dosimetry and dose-response relationships in newly diagnosed patients with malignant gliomas treated with iodine-131-labeled anti-tenascin monoclonal antibody 81C6 therapy. Int J Radiat Oncol Biol Phys 2000;46:947–958.

    Article  PubMed  CAS  Google Scholar 

  60. Zalutsky M, Reardon DA, Akabani G, et al. Astatine-211 labeled human/mouse chimeric anti-tenascin monoclonal antibody via surgically created resection cavities for patients with recurrent glioma: Phase I study (abstract). Neuro-oncol 2002;4:103.

    Google Scholar 

  61. Akabani G, Reist CJ, Cokgor I, et al. Dosimetry of 131I-labeled 81C6 monoclonal antibody administered into surgically created resection cavities in patients with malignant brain tumors. J Nucl Med 1999;40:631–638.

    PubMed  CAS  Google Scholar 

  62. Vanhoefer U, Tewes M, Rojo F, et al. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. J Clin Oncol 2004;22:175–184.

    Article  PubMed  CAS  Google Scholar 

  63. Pimentel E. Peptide growth factors. In: Pimentel E, ed. Handbook of growth factors. London: CRC; 1994:104–185.

    Google Scholar 

  64. Bigner SH, Wong AJ, Mark J, et al. Relationship between gene amplification and chromosomal deviations in malignant human gliomas. Cancer Genet Cytogenet 1987;29:165–170.

    Article  PubMed  CAS  Google Scholar 

  65. Wikstrand CJ, Reist CJ, Archer GE, Zalutsky MR, Bigner DD. The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immunotherapeutic target. J Neurovirol 1998;4:148–158.

    Article  PubMed  CAS  Google Scholar 

  66. Wersall P, Ohlsson I, Biberfeld P, et al. Intratumoral infusion of the monoclonal antibody, mAb 425, against the epidermal-growth-factor receptor in patients with advanced malignant glioma. Cancer Immunol Immunother 1997;44:157–164.

    Article  PubMed  CAS  Google Scholar 

  67. Faillot T, Magdelenat H, Mady E, et al. A phase I study of an anti-epidermal growth factor receptor monoclonal antibody for the treatment of malignant gliomas. Neurosurgery 1996;39:478–483.

    Article  PubMed  CAS  Google Scholar 

  68. Stragliotto G, Vega F, Stasiecki P, Gropp P, Poisson M, Delattre JY. Multiple infusions of anti-epidermal growth factor receptor (EGFR) monoclonal antibody (EMD 55,900) in patients with recurrent malignant gliomas. Eur J Cancer 1996;32A:636–640.

    Article  PubMed  CAS  Google Scholar 

  69. Kalofonos HP, Pawlikowska TR, Hemingway A, et al. Antibody guided diagnosis and therapy of brain gliomas using radiolabeled monoclonal antibodies against epidermal growth factor receptor and placental alkaline phosphatase. J Nucl Med 1989;30:1636–645.

    PubMed  CAS  Google Scholar 

  70. Brady LW, Miyamoto C, Woo DV, et al. Malignant astrocytomas treated with iodine-125 labeled monoclonal antibody 425 against epidermal growth factor receptor: a phase II trial. Int J Radiat Oncol Biol Phys 1992;22:225–230.

    PubMed  CAS  Google Scholar 

  71. Epenetos A A, Courtenay-Luck N, Pickering D, et al. Antibody guided irradiation of brain glioma by arterial infusion of radioactive monoclonal antibody against epidermal growth factor receptor and blood group A antigen. Br Med J (Clin Res Ed) 1985;290:1463–1466.

    CAS  Google Scholar 

  72. Quang TS, Brady LW. Radioimmunotherapy as a novel treatment regimen: 125I-labeled monoclonal antibody 425 in the treatment of high-grade brain gliomas. Int J Radiat Oncol Biol Phys 2004;58:972–975.

    Article  PubMed  CAS  Google Scholar 

  73. Aldape KD, Ballman K, Furth A, et al. Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance. J Neuropathol Exp Neurol 2004;63:700–707.

    PubMed  CAS  Google Scholar 

  74. Wikstrand CJ, McLendon RE, Friedman AH, Bigner DD. Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res 1997;57:4130–4140.

    PubMed  CAS  Google Scholar 

  75. Feldkamp MM, Lala P, Lau N, Roncari L, Guha A. Expression of activated epidermal growth factor receptorscRas-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery 1999;45:1442–1453.

    Article  PubMed  CAS  Google Scholar 

  76. Shinojima N, Tada K, Shiraishi S, et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 2003;63:6962–6970.

    PubMed  CAS  Google Scholar 

  77. Reist CJ, Batra SK, Pegram CN, Bigner DD, Zalutsky MR. In vitro and in vivo behavior of radiolabeled chimeric anti-EGFRvIII monoclonal antibody: comparison with its murine parent. Nucl Med Biol 1997;24:639–647.

    Article  PubMed  CAS  Google Scholar 

  78. Khawli LA, Mizokami MM, Sharifi J, Hu P, Epstein AL. Pharmacokinetic characteristics and biodistribution of radioiodinated chimeric TNT-1,-2, and-3 monoclonal antibodies after chemical modification with biotin. Cancer Biother Radiopharm 2002;17:359–370.

    Article  PubMed  CAS  Google Scholar 

  79. Mariani G, Lasku A, Pau A, et al. A pilot pharmacokinetic and immunoscintigraphic study with the techne-tium-99m-labeled monoclonal antibody BC-1 directed against oncofetal fibronectin in patients with brain tumors. Cancer 1997;80:2484–489.

    Article  PubMed  CAS  Google Scholar 

  80. Ravic M. Intracavitary treatment of malignant gliomas: radioimmunotherapy targeting fibronectin. Acta Neurochir Suppl 2003;88:77–82.

    PubMed  CAS  Google Scholar 

  81. Carrel S, Accolla RS, Carmagnola AL, Mach JP. Common human melanoma-associated antigen(s) detected by monoclonal antibodies. Cancer Res 1980;40:2523–2528.

    PubMed  CAS  Google Scholar 

  82. Coakham HB, Kemshead JT. Treatment of neoplastic meningitis by targeted radiation using (13 1)I-radiolabelled monoclonal antibodies. Results of responses and long term follow-up in 40 patients. J Neurooncol 1998;38:225–232.

    Article  PubMed  CAS  Google Scholar 

  83. Cokgor I, Akabani G, Friedman HS, et al. Long term response in a patient with neoplastic meningitis secondary to melanoma treated with (131)I-radiolabeled antichondroitin proteoglycan sulfate Mel-14 F(ab’e)(2): a case study. Cancer 2001;91:1809–1813.

    Article  PubMed  CAS  Google Scholar 

  84. Lamszus K, Kunkel P, Westphal M. Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Supp 2003;88:169–77.

    CAS  Google Scholar 

  85. Kunkel P, Ulbricht U, Bohlen P, et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 2001;61:6624–6628.

    PubMed  CAS  Google Scholar 

  86. Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic 2002;3:311–320.

    Article  PubMed  CAS  Google Scholar 

  87. Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK. Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 2003;21:457–481.

    Article  PubMed  CAS  Google Scholar 

  88. Wikstrand CJ, Fredman P, Svennerholm L, Bigner DD. Detection of glioma-associated gangliosides GM2, GD2, GD3,3′-isoLM1 3′,6′-isoLD1 in central nervous system tumors in vitro and in vivo using epitope-defined monoclonal antibodies. Prog Brain Res 1994;101:213–223.

    PubMed  CAS  Google Scholar 

  89. Hedberg KM, Mahesparan R, Read TA, et al. The glioma-associated gangliosides 3′-isoLM1, GD3 and GM2 show selective area expression in human glioblastoma xenografts in nude rat brains. Neuropathol Appl Neurobiol 2001;27:451–464.

    Article  PubMed  CAS  Google Scholar 

  90. Kuan CT, Wikstrand C, Wakiya K, Riggins GJ, Bigner DD. Expression of GPNMBwt/GPNMBsv mRNA and protein in human high-grade gliomas (abstract). Neuro-oncol 2003;5:387.

    Google Scholar 

  91. Rich JN, Guo C, McLendon RE, Bigner DD, Wang XF, Counter CM. A genetically tractable model of human glioma formation. Cancer Res 2001;61:3556–3560.

    PubMed  CAS  Google Scholar 

  92. Wikstrand C, Wakiya K, Kuan CT, Riggins GJ, Bigner DD. Expression of multidrug resistance protein 3 (MRP3) by human gliomas: detection and determination of incidence with polyclonal and monoclonal antibodies (MAbs) (abstract). Proc Am Assoc Cancer Res 2003;44:424.

    Google Scholar 

  93. Wakiya K, Kuan CT, Riggins GJ, Wikstrand C, Bigner DD. MRP3: a potential target for glioma therapy (abstract). Neuro-oncol 2003;5:401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Boskovitz, A., Reardon, D.A., Wikstrand, C.J., Zalutsky, M.R., Bigner, D.D. (2007). Monoclonal Antibodies. In: Barnett, G.H. (eds) High-Grade Gliomas. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-185-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-185-7_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-511-8

  • Online ISBN: 978-1-59745-185-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics