Skip to main content

Brachytherapy

  • Chapter
  • 1035 Accesses

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Surgical resection alone is insufficient in the treatment of malignant gliomas because of the extensive infiltration of tumor cells into surrounding normal brain. Even with adjuvant external beam radiation therapy (EBRT), median survival times are poor. Local recurrence eventually results in death for these patients. Thus, radiation therapy that targets the focal area of the initial tumor occurrence may be useful. Clinical evidence suggests that successful radiation treatment of malignant gliomas is dose dependent. However, treatment with doses of EBRT greater than 60 Gy is not beneficial to patients. In most cases, treatment of the bed of surgical resection with radiosurgery is impractical because of the large volume of the tumor resected as well as the risk of radiation necrosis. Brachytherapy is an appealing modality in such cases because it permits the delivery of localized radiation therapy to the area at greatest risk for recurrence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dutreix J, Tubiana M, Pierquin B. The hazy dawn of brachytherapy. Radiother Oncol 1998;49:223–232.

    Article  PubMed  CAS  Google Scholar 

  2. Hirsch O. Die operative Behandlung von Hypophysistumoren nach endonasalen Methoden. Arch Laryngol Rhinol 1912;26:529–686.

    Google Scholar 

  3. Frazier C. The effects of radium emanations upon brain tumors. Surg Gynecol Obstet 1920;31:236–239.

    Google Scholar 

  4. Gutin PH, Prados MD, Phillips TL, et al. External irradiation followed by an interstitial high activity iodine-125 implant “eboost”e in the initial treatment of malignant gliomas: NCOG study 6G-82-2. Int J Radiat Oncol BiolPhys 1991;21:601–606.

    Article  CAS  Google Scholar 

  5. McDermott MW, Sneed PK, Gutin PH. Interstitial brachytherapy for malignant brain tumors. Semin Surg Oncol 1998;14:79–87.

    Article  PubMed  CAS  Google Scholar 

  6. Prados MD, Gutin PH, Phillips TL, et al. Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: the UCSF experience. Int J Radiat Oncol Biol Phys 1992;24:593–597.

    PubMed  CAS  Google Scholar 

  7. Scharfen CO, Sneed PK, Wara WM, et al. High activity iodine-125 interstitial implant for gliomas. Int J Radiat Oncol Biol Phys 1992;24:583–591.

    PubMed  CAS  Google Scholar 

  8. Sneed PK, Lamborn KR, Larson DA, et al. Demonstration of brachytherapy boost dose-response relationships in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 1996;35:37–44.

    Article  PubMed  CAS  Google Scholar 

  9. Sneed PK, Stauffer PR, McDermott MW, et al. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/− hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 1998;40:287–295.

    Article  PubMed  CAS  Google Scholar 

  10. Florell RC, Macdonald DR, Irish WD, et al. Selection bias, survival, and brachytherapy for glioma. J Neurosurg 1992;76:179–183.

    PubMed  CAS  Google Scholar 

  11. Laperriere NJ, Leung PM, McKenzie S, et al. Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int J Radiat Oncol Biol Phys 1998;41:1005–1011.

    Article  PubMed  CAS  Google Scholar 

  12. Selker RG, Shapiro WR, Burger P, et al. The Brain Tumor Cooperative Group NIH Trial 87-01: a random ized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery 2002;51:343–355; discussion 355-347.

    Article  PubMed  Google Scholar 

  13. Chang CH, Horton J, Schoenfeld D, et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer 1983;52:997–1007.

    Article  PubMed  CAS  Google Scholar 

  14. Fine HA, Dear KB, Loeffler JS, et al. Meta-analysis of radiation therapy with and without adjuvant chemo therapy for malignant gliomas in adults. Cancer 1993;71:2585–2597.

    Article  PubMed  CAS  Google Scholar 

  15. Burger PC, Dubois PJ, Schold SC, Jr., et al. Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg 1983;58:159–169.

    PubMed  CAS  Google Scholar 

  16. Burton EC, Prados MD. Malignant gliomas. Curr Treat Options Oncol 2000;1:459–468.

    Article  PubMed  CAS  Google Scholar 

  17. Armour EP, Wang ZH, Corry PM, et al. Sensitization of rat 9L gliosarcoma cells to low dose rate irradiation by long duration 41 degrees C hyperthermia. Cancer Res 51991;1:3088–3095.

    Google Scholar 

  18. Bernstein M, Gutin PH. Interstitial irradiation of brain tumors: a review. Neurosurgery 1981l9:741–750.

    Google Scholar 

  19. Fowler JF. Why shorter half-times of repair lead to greater damage in pulsed brachytherapy. Int J Radiat Oncol Biol Phys 1993;26:353–356.

    PubMed  CAS  Google Scholar 

  20. Fu KK, Phillips TL, Kane LJ, et al. Tumor and normal tissue response to irradiation in vivo: variation with decreasing dose rates. Radiology 1975;114:709–716.

    PubMed  CAS  Google Scholar 

  21. Hall EJ. The promise of low dose rate: has it been realized? Int J Radiat Oncol Biol Phys 1978;4:749–750.

    PubMed  CAS  Google Scholar 

  22. Hall EJ. Radiation dose-rate: a factor of importance in radiobiology and radiotherapy. Br J Radiol 1972;45:81–97.

    PubMed  CAS  Google Scholar 

  23. Larson DA, Suplica JM, Chang SM, et al. Permanent iodine 125 brachytherapy in patients with progressive or recurrent glioblastoma multiforme. Neuro-oncol 2004;6:119–126.

    Article  PubMed  Google Scholar 

  24. Schultz CJ, Geard CR. Radioresponse of human astrocytic tumors across grade as a function of acute and chronic irradiation. Int J Radiat Oncol Biol Phys 1990;19:1397–1403.

    PubMed  CAS  Google Scholar 

  25. Krishnaswamy V. Dose distribution around an 125I seed source in tissue. Radiology 1978;126:489–491.

    PubMed  CAS  Google Scholar 

  26. McDermott MW, Gutin PH, Berger MS, et al. Interstitial and intracavitary irradiation of brain tumors. In: Winn HR, ed. Neurologcal Surgery, vol. 4. Philadelphia: Elsevier; 2003: 4095–4109.

    Google Scholar 

  27. Backlund EO. Colloidal radioisotopes as part of a multi-modality treatment of craniopharyngiomas. J Neurosurg Sci 1989;33:95–97.

    PubMed  CAS  Google Scholar 

  28. Backlund EO, Axelsson B, Bergstrand CG, et al. Treatment of craniopharyngiomas—the stereotactic approach in a ten to twenty-three years’e perspective. I. Surgical, radiological and ophthalmological aspects. Acta Neurochir (Wien) 1989;99:11–19.

    Article  CAS  Google Scholar 

  29. Coffey RJ, Lunsford LD. The role of stereotactic techniques in the management of craniopharyngiomas. Neurosurg Clin N Am 1990;1:161–172.

    PubMed  CAS  Google Scholar 

  30. Ling CC, Chui CS. Stereotactic treatment of brain tumors with radioactive implants or external photon beams: radiobiophysical aspects. Radiother Oncol 1993;26:11–18.

    Article  PubMed  CAS  Google Scholar 

  31. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004;59:928–942.

    Article  PubMed  Google Scholar 

  32. Sinclair WK, Morton RA. Variations in X-Ray Response During the Division Cycle of Partially Synchronized Chinese Hamster Cells in Culture. Nature 1963;199:1158–1160.

    Article  PubMed  CAS  Google Scholar 

  33. Sinclair WK, Morton RA. X-Ray and Ultraviolet Sensitivity of Synchronized Chinese Hamster Cells at Various Stages of the Cell Cycle. Biophys J 1965;97:1–25.

    Article  Google Scholar 

  34. Knox SJ, Sutherland W, Goris ML. Correlation of tumor sensitivity to low-dose-rate irradiation with G2/M-phase block and other radiobiological parameters. Radiat Res 1993;135:24–31.

    Article  PubMed  CAS  Google Scholar 

  35. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000;88:1474–1480.

    PubMed  CAS  Google Scholar 

  36. Bussink J, Kaanders JH, van der Kogel AJ. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 2003;67:3–15.

    Article  PubMed  Google Scholar 

  37. Moeller B J, Cao Y, Li CY, et al. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004;5:429–441.

    Article  PubMed  CAS  Google Scholar 

  38. Ling CC, Spiro IJ, Mitchell J, et al. The variation of OER with dose rate. Int J Radiat Oncol Biol Phys 1985;11:1367–1373.

    PubMed  CAS  Google Scholar 

  39. Sneed PK, Prados MD, McDermott MW, et al. Large effect of age on the survival of patients with glioblastoma treated with radiotherapy and brachytherapy boost. Neurosurgery 1995;36:898–903; discussion 903-894.

    Article  PubMed  CAS  Google Scholar 

  40. Sneed PK, Larson DA, Gutin PH. Brachytherapy and hyperthermia for malignant astrocytomas. Semin Oncol 1994;21:186–197.

    PubMed  CAS  Google Scholar 

  41. Bampoe J, Laperriere N, Pintilie M, et al. Quality of life in patients with glioblastoma multiforme participating in a randomized study of brachytherapy as a boost treatment. J Neurosurg 2000;93:917–926.

    PubMed  CAS  Google Scholar 

  42. Haines SJ. Moving targets and ghosts of the past: outcome measurement in brain tumour therapy. J Clin Neurosci 2002;9:109–112.

    Article  PubMed  Google Scholar 

  43. Barker FG, 2nd, Prados MD, Chang SM, et al. Radiation response and survival time in patients with glioblas toma multiforme. J Neurosurg 1996;84:442–448.

    Article  PubMed  Google Scholar 

  44. Videtic GM, Gaspar LE, Zamorano L, et al. Implant volume as aprognostic variable in brachytherapy decision-making for malignant gliomas stratified by the RTOG recursive partitioning analysis. Int J Radiat Oncol Biol Phys 2001;51:963–968.

    Article  PubMed  CAS  Google Scholar 

  45. Curran WJ, Jr., Scott CB, Horton J, et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 1993;85:704–710.

    Article  PubMed  Google Scholar 

  46. Bernstein M, Laperriere N, Glen J, et al. Brachytherapy for recurrent malignant astrocytoma. Int J Radiat Oncol BiolPhys 1994;30:1213–1217.

    CAS  Google Scholar 

  47. Chamberlain MC, Barba D, Kormanik P, et al. Concurrent cisplatin therapy and iodine 125 brachytherapy for recurrent malignant brain tumors. Arch Neurol 1995;52:162–167.

    PubMed  CAS  Google Scholar 

  48. Coffey RJ, Friedman W A. Interstitial brachytherapy of malignant brain tumors using computed tomography-guided stereotaxis and available imaging software: technical report. Neurosurgery 1987;20:4–7.

    Article  PubMed  CAS  Google Scholar 

  49. Gutin PH, Phillips TL, Wara WM, et al. Brachytherapy of recurrent malignant brain tumors with removable high-activity iodine-125 sources. J Neurosurg 1984;60:61–68.

    PubMed  CAS  Google Scholar 

  50. Halligan JB, Stelzer KJ, Rostomily RC, et al. Operation and permanent low activity 125I brachytheraphy for recurrent high-grade astrocytomas. Int J Radiat Oncol Biol Phys 1996;35:541–547.

    Article  PubMed  CAS  Google Scholar 

  51. Leibel S A, Gutin PH, Wara WM, et al. Survival and quality of life after interstitial implantation of removable high-activity iodine-125 sources for the treatment of patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 1989;17:1129–1139.

    PubMed  CAS  Google Scholar 

  52. Loeffler JS, Alexander E, 3rd, Hochberg FH, et al. Clinical patterns of failure following stereotactic interstitial irradiation for malignant gliomas. Int J Radiat Oncol Biol Phys 1990;19:1455–1462.

    PubMed  CAS  Google Scholar 

  53. Loeffler JS, Alexander E, 3rd Wen PY, et al. Results of stereotactic brachytherapy used in the initial manage ment of patients with glioblastoma. J Natl Cancer Inst 1990;82:1918–1921.

    Article  PubMed  CAS  Google Scholar 

  54. McDermott MW, Gutin PH, Larson DA, et al. Interstitial brachytherapy. Neurosurg Clin N Am 1990;1:801–824.

    PubMed  CAS  Google Scholar 

  55. Shrieve DC, Alexander E, 3rd, Wen PY, et al. Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 1995;36:275–282; discussion 282-274.

    Article  PubMed  CAS  Google Scholar 

  56. Sneed PK, Gutin PH, Prados MD, et al. Brachytherapy of brain tumors. Stereotact Funct Neurosurg 1992;9:157–165.

    Article  Google Scholar 

  57. Gaspar LE, Zamorano LJ, Shamsa F, et al. Permanent 125iodine implants for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 43:977–982, 1999

    Article  PubMed  CAS  Google Scholar 

  58. Patel S, Breneman JC, Warnick RE, et al. Permanent iodine-125 interstitial implants for the treatment of recurrent glioblastoma multiforme. Neurosurgery 2000;46:1123–1128; discussion 1128-1130.

    Article  PubMed  CAS  Google Scholar 

  59. Simon JM, Cornu P, Boisserie G, et al. Brachytherapy of glioblastoma recurring in previously irradiated territory: predictive value of tumor volume. Int J Radiat Oncol Biol Phys 2002;53:67–74.

    Article  PubMed  Google Scholar 

  60. Dempsey JF, Williams JA, Stubbs JB, et al. Dosimetric properties of a novel brachytherapy balloon applicator for the treatment of malignant brain-tumor resection-cavity margins. Int J Radiat Oncol Biol Phys 1998;42:421–429.

    Article  PubMed  CAS  Google Scholar 

  61. Tatter SB, Shaw EG, Rosenblum ML, et al. An inflatable balloon catheter and liquid 125I radiation source (GliaSite Radiation Therapy System) for treatment of recurrent malignant glioma: multicenter safety and feasibility trial. J Neurosurg 2003;99:297–303.

    PubMed  Google Scholar 

  62. Videtic GM, Gaspar LE, Zamorano L, et al. Use of the RTOG recursive partitioning analysis to validate the benefit of iodine-125 implants in the primary treatment of malignant gliomas. Int J Radiat Oncol Biol Phys 1999;45:687–692.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ware, M.L., Sneed, P.K., McDermott, M.W. (2007). Brachytherapy. In: Barnett, G.H. (eds) High-Grade Gliomas. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-185-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-185-7_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-511-8

  • Online ISBN: 978-1-59745-185-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics