Skip to main content

Surgical Techniques

  • Chapter
High-Grade Gliomas

Part of the book series: Current Clinical Oncology ((CCO))

  • 1051 Accesses

Abstract

The development of surgical navigation systems (SNS) has revolutionized the surgical management of high-grade glioma. The most common procedures using this technology are biopsy and craniotomy. Biopsy is often the procedure of choice when a histological diagnosis is desired, or when open resection is too risky or unnecessary. Stereotactic biopsy has low morbidity, high rates of diagnosis (albeit with a small risk of undergrading HGG), and may provide tissue for both histologic and molecular diagnoses. SNS may also be used to placed catheters for cyst drainage, brachytherapy, and convection enhanced delivery—a relatively new technique for infusing therapeutic agents through the brain. Extent of resection is becoming increasingly recognized as important to outcome in HGG. Navigation may be used to locate or tailor the bone flap, locate the tumor, or assist with assessment of resection completeness. It is important for the surgeon to consider the impact of gross brain movement due to loss of cerebrospinal fluid (so-called brain shift) as well as local tissue distortions when navigating using preoperatively acquired imaging. With proper care, use of SNS can limit morbidity and enhance resection for some patients with HGG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apuzzo ML, Chandrasoma PT, Cohen D, Zee CS, Zelman V. Computed imaging stereotaxy: experience and perspective related to 500 procedures applied to brain masses. Neurosurgery 1987;20(6):930–937.

    Article  PubMed  CAS  Google Scholar 

  2. Barnett GH, Miller DW, Weisenberger J. Brain biopsy using frameless stereotaxy with scalp applied fiducials: Experience in 218 cases. J Neurosurg 1999;91:569–576.

    PubMed  CAS  Google Scholar 

  3. Barnett GH. Minimal Access Craniotomy. In: Barnett GH, Roberts DW, Maciunas RJ, eds. Image-Guided Neurosurgery: Clinical Applications of Surgical Navigation. St. Louis, MO: Quality Medical Publishing Inc. 1998;63-71.

    Google Scholar 

  4. Barnett GH. Stereotactic techniques in the management of brain tumors. Contemp Neurosurg 1997;19(10):1–9.

    Google Scholar 

  5. Gomez H, Barnett GH, Estes ML, Palmer J, Magdinec M. Stereotactic and computer-assisted neurosurgery at the Cleveland Clinic. Review of 501 consecutive cases. Cleve Clin J Med 1993;60:399–410.

    PubMed  CAS  Google Scholar 

  6. Barnett GH, Miller DW. Brain biopsy and related procedures. In: Barnett GH, Roberts DW, Maciunas RJ, eds. Image-Guided Neurosurgery: Clinical Applications of Surgical Navigation. St. Louis, Misouri; Quality Medical Publishing Inc. 1998;181-191.

    Google Scholar 

  7. Bernays RL, Kollias SS, Khan N, Brandner S, Meier S, Yonekawa Y. Histological yield, complications, and technological considerations in 114 consecutive frameless stereotactic biopsy procedures aided by open intraoperative magnetic resonance imaging. J Neurosurg 2002;97(2):354–362.

    PubMed  Google Scholar 

  8. Dorward NL, Paleologos TS, Alberti O, Thomas DG. The advantages of frameless stereotactic biopsy over frame-based biopsy. Br J Neurosurg 2002;16(2):110–118.

    Article  PubMed  CAS  Google Scholar 

  9. Gralla J, Nimsky C, Buchfelder M, Fahlbusch R, Ganslandt O. Frameless stereotactic brain biopsy procedures using the Stealth Station: indications, accuracy and results. Zentralbl Neurochir 2003;64:166–170.

    Article  PubMed  CAS  Google Scholar 

  10. Grunert P, Espinosa J, Busert C, et al. Stereotactic biopsies guided by an optical navigation system: technique and clinical experience. Minim Invasive Neurosurg. 2002;45(1):11–15.

    Article  PubMed  CAS  Google Scholar 

  11. Kelly PJ, Earnest F 4th, Kall B A, GoerssS J, Scheithauer B. Surgical options forpatients with deep-seated brain tumors: computer-assisted stereotactic biopsy. Mayo Clin Proc 1985;60(4):223–229.

    PubMed  CAS  Google Scholar 

  12. Paleologos TS, Dorward NL, Wadley JP, Thomas DG. Clinical validation of true frameless stereotactic biopsy: analysis of the first 125 consecutive cases. Neurosurgery 2001;49(4):830–835.

    Article  PubMed  CAS  Google Scholar 

  13. Al-Anazi A, Bernstein M. Modified stereotactic insertion of the Ommaya reservoir. Technical note. J Neurosurg. 2000;92(6):1050–1052

    PubMed  CAS  Google Scholar 

  14. Rogers LR, Barnett G. Percutaneous aspiration of brain tumor cysts via the Ommaya reservoir system. Neurology 1991;41:279–282.

    PubMed  CAS  Google Scholar 

  15. Sneed PK, Gutin PH, Larson DA et al. Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. Int J Radiat Oncol Biol Phys 1994;29:719–727.

    PubMed  CAS  Google Scholar 

  16. Suh JH, Barnett GH. Brachytherapy for brain tumor. Hematol Oncol Clin North Am 1999;13(3):635–650, viii-ix.

    Article  PubMed  CAS  Google Scholar 

  17. Croteau D, Walbridge S, Morrison PF, et al. Real-time in vivo imaging of the convective distribution of a low molecular-weight tracer. J Neurosurg 2005;102:90–97.

    PubMed  Google Scholar 

  18. Mamot C, Nguyen JB, Pourdehnad, et al. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J Neuro-Oncology 2004;68:1–9.

    Article  Google Scholar 

  19. Nguyen TT, Pannu YS, Sung C, et al. Convective distribution of macromolecules in the primate brain demonstrated using computed tomography and magnetic resonance imaging. J Neurosurg 2003;98:584–590.

    PubMed  CAS  Google Scholar 

  20. Saito R, Bringas JR, McKnight TR, et al. Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cencer Res 2004;64:2572–2579.

    Article  CAS  Google Scholar 

  21. Saito R, Bringas JR, Panner A, et al. Convection-enhanced delivery of tumor necrosis factor-related apoptosis-inducing ligand with systemic administration of temozolomide prolongs survival in an intracranial glioblastoma xenograft model. Cancer Res 2004;64:6858–6862.

    Article  PubMed  CAS  Google Scholar 

  22. Voges J, Reszka R, Gossmann A, et al. Image-guided convection-enhanced delivery and gene therapy for glioblastoma. Ann Neurol 2003;54:479–487.

    Article  PubMed  CAS  Google Scholar 

  23. Barnett GH, Kormos DW, Steiner CP, Weisenberger J. Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging. Neurosurgery 1993;33:674–678.

    Article  PubMed  CAS  Google Scholar 

  24. Barnett GH. Surgical navigation for brain tumors. In: Winn HR ed. Youman’es Neurological Surgery, 5th Ed. Philadelphia: WB Saunders 2004.

    Google Scholar 

  25. Doshi PK, Lemmieux L, Fish DR, Shorvon SD, Harkness WH, Thomas DG. Frameless stereotaxy and interactive neurosurgery with the ISG viewing wand. Acta Neuroschir Suppl Iwien 1995;64:49–53.

    CAS  Google Scholar 

  26. Golfinos JG, Fitzpatrick BC, Smith LR, Spetzler RF. Clinical use of a frameless stereotactic arm: results in 325 cases. J Neurosurg 1995;83:197–205.

    PubMed  CAS  Google Scholar 

  27. Guthrie BL, Adler JR Jr. Computer-assisted preoperative planning, interactive surgery, and frameless stereotaxy. Clin neurosurg 1992;38:112–131.

    PubMed  CAS  Google Scholar 

  28. Kelly PJ, Kall BA, Goerss S Earnest F 4th. Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms. J Neurosurg 1986;64:427–439.

    PubMed  CAS  Google Scholar 

  29. Kelly PJ. Volumetric stereotactic surgical resection of intra-axial brain mass lesions. Mayo Clin Proc 1988;63:1186–1198.

    PubMed  CAS  Google Scholar 

  30. McDermott MW. Intracranial Gliomas. In: Barnett GH, Roberts DW, Maciunas RJ, eds. Image-Guided Neurosurgery: Clinical Applications of Surgical Navigation. St. Louis, MO: Quality Medical Publishing Inc. 1998;77-86.

    Google Scholar 

  31. Murphy MA, Barnett GH, Kormos DW, Weisenberger J. Astrocytoma resection using an interactive frameless stereotactic wand. An early experience. J Clinical Neuroscience 1994;1:33–37.

    Article  CAS  Google Scholar 

  32. Walters CL, Schmidek HH. Surgical management of intracranial gliomas. In: Schmidek HH, Sweet WH, eds. Operative neurosurgical techniques: Indications, methods and results. Philadelphia: WB Saunders 1988;431-450.

    Google Scholar 

  33. Bernstein M, Al-Anazi AR, Kucharczyk W, Manninen P, Bronskill M, Henkelman M. Brain tumor surgery with the Toronto open magnetic resonance imaging system: preliminary results for 36 patients and analysis of advantages, disadvantages, and future prospects. Neurosurgery 2000;46(4):900–907.

    Article  PubMed  CAS  Google Scholar 

  34. Bohinski RJ, Kokkino AK, Warnick RE, et al. Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 2001;48:731–742.

    Article  PubMed  CAS  Google Scholar 

  35. Gering DT, Nabavi A, Kikinis R, et al. An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 2001;13:967–975.

    Article  PubMed  CAS  Google Scholar 

  36. Hall WA, Kowalik K, Liu H, Truwit CL, Kucharczyk J. Costs and benefits of intraoperative MR-guided brain tumor resection. Acta Neurochir 2002;85:137–142.

    Google Scholar 

  37. Hall WA, Liu H, Maxwell RE, Truwit CL. Influence of 1.5-Tesla intraoperative MR imaging on surgical decision making. Acta Neurochir Suppl. 2003;85:29–37.

    PubMed  CAS  Google Scholar 

  38. Kanner AA, Vogelbaum MA, Mayberg MR, Weisenberger JP, Barnett GH. Intracranial navigation by using low-field intraoperative magnetic resonance imaging: preliminary experience. J Neurosurg 2002;97(5):1115–1124.

    PubMed  Google Scholar 

  39. Lindseth F, Kaspersen JH, Ommedal S, et al. Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound. Comput Aided Surg 2003;8:49–69.

    PubMed  Google Scholar 

  40. Nabavi A, Black PM, Gering DT, et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 2001;48:787–797.

    Article  PubMed  CAS  Google Scholar 

  41. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 2000;47:1070–1079.

    Article  PubMed  CAS  Google Scholar 

  42. Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R. Intraoperative compensation for brain shift. Surg Neurol 2001;56:357–365.

    Article  PubMed  CAS  Google Scholar 

  43. Siomin V, Barnett G. Intraoperative imaging in glioblastoma resection. Cancer J 2003;9:91–98.

    PubMed  Google Scholar 

  44. Trobaugh JW, Richard WD, Smith KR, Bucholz RD. Frameless stereotactic ultrasonography: Method and applications. Comput Med Imaging Graph 1994;18:235–246.

    Article  PubMed  CAS  Google Scholar 

  45. Tummala RP, Chu RM, Liu H, Truwit CL, Hall WA. Optimizing brain tumor resection. High-field interventional MR imaging. Neuroimaging Clin N Am 2001;11:673–683.

    PubMed  CAS  Google Scholar 

  46. Unsgaard G, Gronningsaeter A, Ommedal S, Nagelhaus Hernes TA. Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality. Neurosurgery 2002;51:402–411.

    Article  PubMed  Google Scholar 

  47. Unsgaard G, Ommedal S, Muller T, Gronningsaeter A, Nagelhaus Hernes TA. Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery 2002;50:804–812.

    Article  PubMed  Google Scholar 

  48. Evidence-Based Medicine Working Group. Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA 1992;68(17):2420–2425.

    Google Scholar 

  49. Vuorinen V, Hinkka S, Farkkila M, Jaaskelainen J, Debulking or biopsy of malignant glioma in elderly people-randomised study. Acta Neurochir (Wien) 2003;145(1):5–10.

    Article  CAS  Google Scholar 

  50. Brown RA. A computerized tomography-computer graphics approach to stereotaxic localization. J Neurosurg 1979;50(6):715–720.

    PubMed  CAS  Google Scholar 

  51. Couldwell WT, Apuzzo ML. Initial experience related to the use of the Cosman-Roberts-Wells stereotactic instrument. Technical note. J Neurosurg 1990;72(1):145–148.

    PubMed  CAS  Google Scholar 

  52. Heilbrun MP, Roberts TS, Apuzzo ML, Wells TH Jr, Sabshin JK. Preliminary experience with Brown-Roberts-Wells (BRW) computerized tomography stereotaxic guidance system. J Neurosurg 1983;59(2):217–222.

    PubMed  CAS  Google Scholar 

  53. Lunsford LD, Martinez AJ. Stereotactic exploration of the brain in the era of computed tomography. Surg Neurol. 1984;22(3):222–230.

    Article  PubMed  CAS  Google Scholar 

  54. Maciunas RJ, Galloway RL Jr, Fitzpatrick JM, et al. A universal system for interactive image-directed neurosurgery. Stereotact Funct Neurosurg 1992;58:108–113.

    Article  PubMed  CAS  Google Scholar 

  55. Roberts DW, Strohbehn JW, Friets EM, Kettenberger J, Hartov A. The stereotactic operating microscope: accuracy refinement and clinical experience. Acta Neurochir Suppl (Wien) 1989;46:112–114.

    CAS  Google Scholar 

  56. Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD. Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 1998;43(4):749–758

    Article  PubMed  CAS  Google Scholar 

  57. Smith KR, Frank KJ, Bucholz RD. The NeuroStation—a highly accurate, minimally invasive solution to frameless stereotactic neurosurgery. Comput Med Imaging Graph 1994;18:247–256.

    Article  PubMed  CAS  Google Scholar 

  58. Adler JR. Surgical guidance now and in the future: the next generation of instrumentation. Clin Neurosurg 2002;49:105–114.

    PubMed  Google Scholar 

  59. Hall WA, Martin A, Liu H, Truwit CL. Improving diagnostic yield in brain biopsy: coupling spectroscopic targeting with real-time needle placement. J Magn Reson Imaging 2001;13(1):12–15.

    Article  PubMed  CAS  Google Scholar 

  60. Kaakaji W, Barnett GH, Bernhard D, Warbel A, Valaitis K, Stamp S. Clinical and economic consequences of early discharge of patients following supratentorial stereotactic brain biopsy. J Neurosurg 2001;94(6):892–898.

    PubMed  CAS  Google Scholar 

  61. Kulkarni A, Bernstein M. Stereotactic biopsy. In: Bernstein M, Berger M. eds. Neurooncology: the essentials., New York: Thieme Medical Publishers Inc. 2000;122-129.

    Google Scholar 

  62. Moriarty TM, Quinones-Hinojosa A, Larson PS, et al. Frameless stereotactic neurosurgery using intraoperative magnetic resonance imaging: stereotactic brain biopsy. Neurosurgery 2000;47(5):1138–1145; discussion 1145-1146.

    Article  PubMed  CAS  Google Scholar 

  63. Cairncross JG, Ueki K, Zlatescu MC, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998;90(19):1473–1479.

    Article  PubMed  CAS  Google Scholar 

  64. Field M, Witham TF, Flickinger JC, Kondziolka D, Lunsford LD. Comprehensive assessment of hemorrhage risks and outcomes after stereotactic brain biopsy. J Neurosurg 2001;94(4):545–551.

    PubMed  CAS  Google Scholar 

  65. Barnett GH. The role of image-guided technology in the surgical planning and resection of gliomas. J Neuro-Oncol 1999;42(3):247–258.

    Article  CAS  Google Scholar 

  66. Burtscher IM, Skagerberg G, Geijer B, Englund E, Stahlberg F, Holtas S. Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR Am J Neuroradiol 2004;21(1):84–93.

    Google Scholar 

  67. Friedman WA, Sceats DJ Jr, Nestok BR, Ballinger WE Jr. The incidence of unexpected pathological findings in an image-guided biopsy series: a review of 100 consecutive cases. Neurosurgery 1989;25(2):180–184.

    Article  PubMed  CAS  Google Scholar 

  68. Hassenbusch SJ, Anderson JS, Pillay PK. Brain tumor resection aided with markers placed using stereotaxis guided by magnetic resonance imaging and computed tomography. Neurosurgery 1991;28(6):801–805.

    Article  PubMed  CAS  Google Scholar 

  69. Martin AJ, Liu H, Hall WA, Truwit CL. Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. AJNR Am J Neuroradiol 2001;22(5):959–968.

    PubMed  CAS  Google Scholar 

  70. Pirotte B, Goldman S, Brucher JM, et al. PET in stereotactic conditions increases the diagnostic yield of brain biopsy. Stereotact Funct Neurosurg 1994;63(1-4):144–149.

    Article  PubMed  CAS  Google Scholar 

  71. Roessler K, Czech T, Dietrich W, et al. Frameless stereotactic-directed tissue sampling during surgery of suspected low-grade gliomas to avoid histological undergrading. Minim Invasive Neurosurg 1998;41(4):183–186.

    PubMed  CAS  Google Scholar 

  72. Soo TM, Bernstein M, Provias J, Tasker R, Lozano A, Guha A. Failed stereotactic biopsy in a series of 518 cases. Stereotact Funct Neurosurg 1995;64(4):183–196.

    PubMed  CAS  Google Scholar 

  73. Galloway RL, Maciunas RJ, Latimer JW. The accuracies of four stereotactic frame systems: an independent assessment. Biomed Instrum Tech 1991;25:457–460.

    Google Scholar 

  74. Maciunas RJ, Galloway RL, Latimer JW, Galloway RL Jr. The application accuracy of stereotactic frames. Neurosurgery 1994;35(4):682–694.

    Article  PubMed  CAS  Google Scholar 

  75. Maurer CR Jr, Fitzpatrick JM, Wang MY, Galloway RL Jr, Maciunas RJ, Allen GS. Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 1997;16(4):447–462.

    Article  PubMed  Google Scholar 

  76. Wang MY, Maurer CR Jr, Fitzpatrick JM, Maciunas RJ. An automatic technique for finding and localizing externally attached markers in CT and MR volume images of the head. IEEE Trans Biomed Eng 1996;43(6):627–637.

    Article  PubMed  CAS  Google Scholar 

  77. West JB, Fitzpatrick JM, Toms SA, Maurer CR, Maciunas RJ. Fiducial Point Placement and the Accuracy of Point-based, Rigid Body Registration. Neurosurgery 2001;48(4):810–816; discussion 816-817.

    Article  PubMed  CAS  Google Scholar 

  78. Winston KR. Hair and neurosurgery. Neurosurgery 1992;31:320–329.

    Article  PubMed  CAS  Google Scholar 

  79. Barnett GH, Steiner CP, and Weisenberger J. Target and traj ectory guidance for interactive surgical navigation systems. Stereotact Funct Neurosurg 1996;66:91–95.

    Article  PubMed  CAS  Google Scholar 

  80. Brainard JA, Prayson RA, Barnett GH. Frozen section evaluation of stereotactic brain biopsies: diagnostic yield at the stereotactic target position in 188 cases. Arch Pathol Lab Med 1997;121(5):481–484.

    PubMed  CAS  Google Scholar 

  81. Chimowitz MI, Barnett GH, Palmer J. Treatment of intractable arterial hemorrhage during stereotactic brain biopsy with thrombin. Report of three patients. J Neurosurg 1991;74(2):301–303.

    Article  PubMed  CAS  Google Scholar 

  82. Bhardwaj RD, Bernstein M. Prospective feasibility study of outpatient stereotactic brain lesion biopsy. Neurosurgery. 2002;51(2):358–361.

    Article  PubMed  Google Scholar 

  83. Devaux BC, O’eFallon JR, Kelly PJ. Resection, biopsy and survival in malignant glial neoplasms. A retrospective study of clinical parameters, therapy and outcome. J Neurosurg 1993;78:767–775.

    PubMed  CAS  Google Scholar 

  84. Grady MS, Howard MA, Dacey RG, et al. Experimental study of the magnetic stereotaxis system for catheter manipulation within the brain. J Neurosurg 2000;93(2):282–288.

    PubMed  CAS  Google Scholar 

  85. Nathoo N, Cavusoglu MC, Vogelbaum MA, Barnett GH. In Touch with Robotics: Neurosurgery for the Third Millennium. Neuosurgery 2005;56(3):421–433.

    Article  Google Scholar 

  86. Luciano MG, Rhoten RLP, Barnett GH. Hydrocephalus. In: Barnett GH, Roberts DW, Maciunas RJ, eds. Image-Guided Neurosurgery: Clinical Applications of Surgical Navigation. St. Louis, Misouri; Quality Medical Publishing Inc. 1998;149-162.

    Google Scholar 

  87. Rhoten RL, Luciano MG, Barnett GH. Computer-assisted endoscopy for neurosurgical procedures: technical note. Neurosurgery 1997;40(3):632–637.

    Article  PubMed  CAS  Google Scholar 

  88. Bernstein M, Laperriere N, Glen J, Leung P, Thomason C, Landon AEBrachytherapy forrecurrent malignant astrocytoma. Int J Radiat Oncol Biol Phys 1994;30(5):1213–1217.

    PubMed  CAS  Google Scholar 

  89. Larson DA, Gutin PH, Leibel SA, Phillips TL, Sneed PK, Wara WM. Stereotaxic irradiation of brain tumors. Cancer 1990;65(3 Suppl):792–799.

    Article  PubMed  CAS  Google Scholar 

  90. Prados MD, Gutin PH, Phillips TL, et al. Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: the UCSF experience. Int J Radiat Oncol Biol Phys 1992;24(4):593–597.

    PubMed  CAS  Google Scholar 

  91. Laperriere NJ, Leung PM, McKenzie S, et al. Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int J Radiat Oncol Biol Phys 1998;41(5):1005–1011.

    Article  PubMed  CAS  Google Scholar 

  92. Selker RG, Shapiro WR, Burger P, et al. The Brain Tumor Cooperative Group NIH Trial 87-01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery 2002;51(2):343–355.

    Article  PubMed  Google Scholar 

  93. Barnett GH and Suh JH. Stereotactic radiosurgery for gliomas. In: Pollock BE ed. Contemporary Stereotactic Radiosurgery: Technique and Evaluation., Armonk, NY: Futura Publishing Company;2002:265–279.

    Google Scholar 

  94. Souhami L, Seiferheld W, Brachman D, et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of radiation therapy oncology group 93-05 protocol. Int J Radiation Oncology Biol Phys 2004;60:853–860.

    Article  Google Scholar 

  95. Tatter SB, Shaw EG, Rosenblum ML, Karvelis KC, et al. An inflatable balloon catheter and liquid 1251 radiation source (GliaSite Radiation Therapy System) for treatment of recurrent malignant glioma: multicenter safety and feasibility trial. J Neurosurg 2003;99(2):297–303.

    Article  PubMed  Google Scholar 

  96. Broaddus WC, Gillies GT, Kucharczyk J. Minimally invasive procedures. Advances in image-guided delivery of drug and cell therapies into the central nervous system. Neuroimaging Clin N Am 2001;11:727–735.

    PubMed  CAS  Google Scholar 

  97. Laws ER, Parney IF, Huang W, et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg 2003;99(3):467–473.

    PubMed  Google Scholar 

  98. Lunsford LD, Niranjan A. The rationale for rational surgery for fibrillary astrocytomas. Clin Neurosurg 2001;48:20–36.

    PubMed  CAS  Google Scholar 

  99. Rostomily RC, Spence AM, Duong D, et al. Multimodality management of recurrent adult malignant gliomas: results of a phase II multiagent chemotherapy study and analysis of cytoreductive surgery. Neurosurgery 1994;35:378–388.

    Article  PubMed  CAS  Google Scholar 

  100. Simpson JR, Horton J, Scott C, et al. Influence of extent of surgical resection on survival in patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 1993;26:239–244.

    PubMed  CAS  Google Scholar 

  101. Barnett GH. Definition of Functional Anatomy. In: Barnett GH, Roberts DW, Maciunas RJ, eds. Image-Guided Neurosurgery: Clinical Applications of Surgical Navigation. St. Louis, MO; Quality Medical Publishing Inc. 1998;205-214.

    Google Scholar 

  102. Berman JI, Berger MS, Mukherjee P, Henry RG. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg 2004;101(1):66–72.

    PubMed  Google Scholar 

  103. Coenen VA, Krings T, Axer H, et al. Intraoperative three-dimensional visualization of the pyramidal tract in a neuronavigation system (PTV) reliably predicts true position of principal motor pathways. Surg Neurol 2003;60:381–390.

    Article  PubMed  Google Scholar 

  104. Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS. Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 2004;100(3):369–375.

    Article  PubMed  Google Scholar 

  105. Hartkens T, Hill DL, Castellano-Smith AD, et al. Measurement and analysis of brain deformation during neurosurgery. IEEE Trans Med Imaging 2003;22:82–92.

    Article  PubMed  CAS  Google Scholar 

  106. Hastreiter P, Engel K, Soza G, et al. Remote computing environment compensating for brain shift. Comp Aided Surg 2003;8:169–179.

    Google Scholar 

  107. Stummer W, Reulen H-J. Prospektiv-randomisierte Studie zur fluoreszenzgestützten Resektion maligner Gliome mit 5-Aminolävulinsäure. MANUALHirntumoren und primäre Tumoren des Rückenmarks. Tumorzentrum München und W. Zuckschwerdt Verlag München. 2004;203-206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Barnett, G.H. (2007). Surgical Techniques. In: Barnett, G.H. (eds) High-Grade Gliomas. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-185-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-185-7_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-511-8

  • Online ISBN: 978-1-59745-185-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics