Skip to main content

The Extracellular Matrix and VEGF Processing

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1710 Accesses

Summary

Tumor neovascularization requires the activation of a subset of endothelial cells from normal vascular beds, the digestion of the underlying basement membrane, and the directional migration of these cells toward an avascular site. The contribution of vascular endothelial growth factor (VEGF) to each one of these steps has received large experimental support, and it has been demonstrated that pharmacological and/or genetic inactivation of this growth factor can impact the angiogenic response and consequently suppress tumor growth. Thus, understanding the mechanisms that control VEGF levels has become an important focus of investigation. Today, we have a fairly comprehensive understanding of the mechanisms that regulate VEGF transcriptional rate and half-life. In contrast, little emphasis has been placed on the regulation of VEGF biology post-secretion. In this chapter, we focus our attention on the question of how VEGF becomes released from the extracellular environment and contributes to tumor neovascularization. We discuss this point in the larger context of matrix interaction with growth factors and their modulation by matrix metalloproteinases (MMPs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rundhaug, J. E. Matrix metalloproteinases and angiogenesis. J Cell Mol Med 2005:9:267–285.

    Article  PubMed  CAS  Google Scholar 

  2. Serini, G., Valdembri, D., Bussolino, F. Integrins and angiogenesis: a sticky business. Exp Cell Res 2006;312:651–658.

    Article  PubMed  CAS  Google Scholar 

  3. Davis, G. E., Senger, D. R. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 2005;97:1093–1107.

    Article  PubMed  CAS  Google Scholar 

  4. Armstrong, L. C., Bornstein, P. Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 2003;22:63–71.

    Article  PubMed  CAS  Google Scholar 

  5. Rodriguez-Manzaneque, J. C., Lane, T. F., Ortega, M. A., Hynes, R. O., Lawler, J., Iruela-Arispe, M. L. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA 2001;98:12485–12490.

    Article  PubMed  CAS  Google Scholar 

  6. Streit, M., Velasco, P., Brown, L. F., Skobe, M., Richard, L., Riccardi, L., Lawler, J., Detmar, M. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol 1999;155:441–452.

    PubMed  CAS  Google Scholar 

  7. Roy, R., Zhang, B., Moses, M. A. Making the cut: protease-mediated regulation of angiogenesis. Exp Cell Res 2006;312:608–622.

    Article  PubMed  CAS  Google Scholar 

  8. Herren, B., Levkau, B., Raines, E. W., Ross, R. Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol Biol Cell 1998;9:1589–1601.

    PubMed  CAS  Google Scholar 

  9. Lee, S., Jilani, S. M., Nikolova, G. V., Carpizo, D., Iruela-Arispe, M. L. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 2005;169:681–691.

    Article  PubMed  CAS  Google Scholar 

  10. Brooke, B. S., Karnik, S. K., Li, D. Y. Extracellular matrix in vascular morphogenesis and disease: structure versus signal. Trends Cell Biol 2003;13:51–56.

    Article  PubMed  CAS  Google Scholar 

  11. Raines, E. W. The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int J Exp Pathol 2000;81:173–182.

    Article  PubMed  CAS  Google Scholar 

  12. Paulsson, M. Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 1992;27:93–127.

    Article  PubMed  CAS  Google Scholar 

  13. Schittny, J. C., Yurchenco, P. D. Basement membranes: molecular organization and function in development and disease. Curr Opin Cell Biol 1989;1:983–988.

    Article  PubMed  CAS  Google Scholar 

  14. Yurchenco, P. D., Schittny, J. C. Molecular architecture of basement membranes. FASEB J 1990;4:1577–1590.

    PubMed  CAS  Google Scholar 

  15. Xu, J., Rodriguez, D., Petitclerc, E., Kim, J. J., Hangai, M., Moon, Y. S., Davis, G. E., Brooks, P. C. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 2001;154:1069–1079.

    Article  PubMed  CAS  Google Scholar 

  16. Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003;3:422–433.

    Article  PubMed  CAS  Google Scholar 

  17. Jain, R. K. Molecular regulation of vessel maturation. Nat Med 2003;9:685–693.

    Article  PubMed  CAS  Google Scholar 

  18. Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., Betsholtz, C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003;161:1163–1177.

    Article  PubMed  CAS  Google Scholar 

  19. Houck, K. A., Leung, D. W., Rowland, A. M., Winer, J., Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 1992;267:26031–26037.

    PubMed  CAS  Google Scholar 

  20. Sahni, A., Francis, C. W. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 2000;96:3772–3778.

    PubMed  CAS  Google Scholar 

  21. Wijelath, E. S., Murray, J., Rahman, S., Patel, Y., Ishida, A., Strand, K., Aziz, S., Cardona, C., Hammond, W. P., Savidge, G. F., Rafii, S., Sobel, M. Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ Res 2002;91:25–31.

    Article  PubMed  CAS  Google Scholar 

  22. Folkman, J., Shing, Y. Angiogenesis. J Biol Chem 1992;267:10931–10934.

    PubMed  CAS  Google Scholar 

  23. Friesel, R. E., Maciag, T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J 1995;9:919–925.

    PubMed  CAS  Google Scholar 

  24. Seno, M., Sasada, R., Kurokawa, T., Igarashi, K. Carboxyl-terminal structure of basic fibroblast growth factor significantly contributes to its affinity for heparin. Eur J Biochem 1990;188:239–245.

    Article  PubMed  CAS  Google Scholar 

  25. Vlodavsky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J., Klagsbrun, M. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 1987;84:2292–2296.

    Article  PubMed  CAS  Google Scholar 

  26. Folkman, J., Klagsbrun, M., Sasse, J., Wadzinski, M., Ingber, D., Vlodavsky, I. A heparin-binding angiogenic protein–basic fibroblast growth factor–is stored within basement membrane. Am J Pathol 1988;130:393–400.

    PubMed  CAS  Google Scholar 

  27. Li, J., Zhang, Y. P., Kirsner, R. S. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech 2003;60:107–114.

    Article  PubMed  CAS  Google Scholar 

  28. Annes, J. P., Munger, J. S., Rifkin, D. B. Making sense of latent TGFbeta activation. J Cell Sci 2003;116:217–224.

    Article  PubMed  CAS  Google Scholar 

  29. Ameye, L., Young, M. F. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 2002;12:107R–116R.

    Article  PubMed  CAS  Google Scholar 

  30. Iozzo, R. V. The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol 1997;32:141–174.

    PubMed  CAS  Google Scholar 

  31. Crawford, S. E., Stellmach, V., Murphy-Ullrich, J. E., Ribeiro, S. M., Lawler, J., Hynes, R. O., Boivin, G. P., Bouck, N. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 1998;93:1159–1170.

    Article  PubMed  CAS  Google Scholar 

  32. Tkachenko, E., Rhodes, J. M., Simons, M. Syndecans: new kids on the signaling block. Circ Res 2005;96:488–500.

    Article  PubMed  CAS  Google Scholar 

  33. Mali, M., Elenius, K., Miettinen, H. M., Jalkanen, M. Inhibition of basic fibroblast growth factor-induced growth promotion by overexpression of syndecan-1. J Biol Chem 1993;268:24215–24222.

    PubMed  CAS  Google Scholar 

  34. Abramsson, A., Lindblom, P., Betsholtz, C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 2003;112:1142–1151.

    Article  PubMed  CAS  Google Scholar 

  35. Droguett, R., Cabello-Verrugio, C., Riquelme, C., Brandan, E. Extracellular proteoglycans modify TGF-beta bio-availability attenuating its signaling during skeletal muscle differentiation. Matrix Biol 2006;25:332–341.

    Article  PubMed  CAS  Google Scholar 

  36. Ruhrberg, C., Gerhardt, H., Golding, M., Watson, R., Ioannidou, S., Fujisawa, H., Betsholtz, C., Shima, D. T. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 2002;16:2684–2698.

    Article  PubMed  CAS  Google Scholar 

  37. van Hinsbergh, V. W., Engelse, M. A., Quax, P. H. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 2006;26:716–728.

    Article  PubMed  Google Scholar 

  38. Ferreras, M., Felbor, U., Lenhard, T., Olsen, B. R., Delaisse, J. Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 2000;486:247–251.

    Article  PubMed  CAS  Google Scholar 

  39. Sudhakar, A., Sugimoto, H., Yang, C., Lively, J., Zeisberg, M., Kalluri, R. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA 2003;100:4766–4771.

    Article  PubMed  CAS  Google Scholar 

  40. Kim, Y. M., Jang, J. W., Lee, O. H., Yeon, J., Choi, E. Y., Kim, K. W., Lee, S. T., Kwon, Y. G. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 2000;60:5410–5413.

    PubMed  CAS  Google Scholar 

  41. Nyberg, P., Heikkila, P., Sorsa, T., Luostarinen, J., Heljasvaara, R., Stenman, U. H., Pihlajaniemi, T., Salo, T. Endostatin inhibits human tongue carcinoma cell invasion and intravasation and blocks the activation of matrix metalloprotease-2, -9, and -13. J Biol Chem 2003;278:22404–22411.

    Article  PubMed  CAS  Google Scholar 

  42. Hamano, Y., Zeisberg, M., Sugimoto, H., Lively, J. C., Maeshima, Y., Yang, C., Hynes, R. O., Werb, Z., Sudhakar, A., Kalluri, R. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 2003;3:589–601.

    Article  PubMed  CAS  Google Scholar 

  43. Courtoy, P. J., Boyles, J. Fibronectin in the microvasculature: localization in the pericyte-endothelial interstitium. J Ultrastruct Res 1983;83:258–273.

    Article  PubMed  CAS  Google Scholar 

  44. Grant, M. B., Caballero, S., Bush, D. M., Spoerri, P. E. Fibronectin fragments modulate human retinal capillary cell proliferation and migration. Diabetes 1998;47:1335–1340.

    Article  PubMed  CAS  Google Scholar 

  45. Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., Tanzawa, K., Thorpe, P., Itohara, S., Werb, Z., Hanahan, D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000;2:737–744.

    Article  PubMed  CAS  Google Scholar 

  46. Mira, E., Lacalle, R. A., Buesa, J. M., de Buitrago, G. G., Jimenez-Baranda, S., Gomez-Mouton, C., Martinez, A. C., Manes, S. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Sci 2004;117:1847–1857.

    Article  PubMed  CAS  Google Scholar 

  47. Stamenkovic, I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 2003;200:448–464.

    Article  PubMed  CAS  Google Scholar 

  48. Hashimoto, G., Inoki, I., Fujii, Y., Aoki, T., Ikeda, E., Okada, Y. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 2002;277:36288–36295.

    Article  PubMed  CAS  Google Scholar 

  49. McCawley, L. J., Matrisian, L. M. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 2001;13:534–540.

    Article  PubMed  CAS  Google Scholar 

  50. Ge, G., Greenspan, D. S. BMP1 controls TGFbeta1 activation via cleavage of latent TGFbeta-binding protein. J Cell Biol 2006;175:111–120.

    Article  PubMed  CAS  Google Scholar 

  51. Opdenakker, G., Van den Steen, P. E., Van Damme, J. Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol 2001;22:571–579.

    Article  PubMed  CAS  Google Scholar 

  52. Levi, E., Fridman, R., Miao, H. Q., Ma, Y. S., Yayon, A., Vlodavsky, I. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA 1996;93:7069–7074.

    Article  PubMed  CAS  Google Scholar 

  53. Patterson, B. C., Sang, Q. A. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 1997;272:28823–28825.

    Article  PubMed  CAS  Google Scholar 

  54. O’Reilly, M. S., Wiederschain, D., Stetler-Stevenson, W. G., Folkman, J., Moses, M. A. Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 1999;274:29568–29571.

    Article  PubMed  CAS  Google Scholar 

  55. Dong, Z., Kumar, R., Yang, X., Fidler, I. J. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 1997;88:801–810.

    Article  PubMed  CAS  Google Scholar 

  56. Helmlinger, G., Endo, M., Ferrara, N., Hlatky, L., Jain, R. K. Formation of endothelial cell networks. Nature 2000;405:139–141.

    Article  PubMed  CAS  Google Scholar 

  57. Damert, A., Miquerol, L., Gertsenstein, M., Risau, W., Nagy, A. Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development 2002;129:1881–1892.

    PubMed  CAS  Google Scholar 

  58. Ferrara, N., Gerber, H. P., LeCouter, J. The biology of VEGF and its receptors. Nat Med 2003;9:669–676.

    Article  PubMed  CAS  Google Scholar 

  59. Gerber, H. P., Malik, A. K., Solar, G. P., Sherman, D., Liang, X. H., Meng, G., Hong, K., Marsters, J. C., Ferrara, N. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002;417:954–958.

    Article  PubMed  CAS  Google Scholar 

  60. Gerber, H. P., Hillan, K. J., Ryan, A. M., Kowalski, J., Keller, G. A., Rangell, L., Wright, B. D., Radtke, F., Aguet, M., Ferrara, N. VEGF is required for growth and survival in neonatal mice. Development 1999;126:1149–1159.

    PubMed  CAS  Google Scholar 

  61. Inoue, M., Hager, J. H., Ferrara, N., Gerber, H. P., Hanahan, D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 2002;1:193–202.

    Article  PubMed  CAS  Google Scholar 

  62. Ferrara, N., Hillan, K. J., Gerber, H. P., Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004;3:391–400.

    Article  PubMed  CAS  Google Scholar 

  63. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S., Ferrara, N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993;362:841–844.

    Article  PubMed  CAS  Google Scholar 

  64. Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., Nagy, A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435–439.

    Article  PubMed  CAS  Google Scholar 

  65. Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., Powell-Braxton, L., Hillan, K. J., Moore, M. W. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380:439–442.

    Article  PubMed  CAS  Google Scholar 

  66. Miquerol, L., Langille, B. L., Nagy, A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 2000;127:3941–3946.

    PubMed  CAS  Google Scholar 

  67. Shibuya, M., Claesson-Welsh, L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 2006;312:549–560.

    Article  PubMed  CAS  Google Scholar 

  68. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92:735–745.

    Article  PubMed  CAS  Google Scholar 

  69. Fong, G. H., Rossant, J., Gertsenstein, M., Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995;376:66–70.

    Article  PubMed  CAS  Google Scholar 

  70. Autiero, M., Luttun, A., Tjwa, M., Carmeliet, P. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 2003;1:1356–1370.

    Article  PubMed  CAS  Google Scholar 

  71. Luttun, A., Autiero, M., Tjwa, M., Carmeliet, P. Genetic dissection of tumor angiogenesis: are PlGF and VEGFR-1 novel anti-cancer targets? Biochim Biophys Acta 2004;1654:79–94.

    PubMed  CAS  Google Scholar 

  72. Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N., Shibuya, M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci USA 2005;102:1076–1081.

    Article  PubMed  CAS  Google Scholar 

  73. Takahashi, T., Yamaguchi, S., Chida, K., Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 2001;20:2768–2778.

    Article  PubMed  CAS  Google Scholar 

  74. Dayanir, V., Meyer, R. D., Lashkari, K., Rahimi, N. Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J Biol Chem 2001;276:17686–17692.

    Article  PubMed  CAS  Google Scholar 

  75. Fujio, Y., Walsh, K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 1999;274:16349–16354.

    Article  PubMed  CAS  Google Scholar 

  76. Sakai, R., Henderson, J. T., O’Bryan, J. P., Elia, A. J., Saxton, T. M., Pawson, T. The mammalian ShcB and ShcC phosphotyrosine docking proteins function in the maturation of sensory and sympathetic neurons. Neuron 2000;28:819–833.

    Article  PubMed  CAS  Google Scholar 

  77. Holmqvist, K., Cross, M. J., Rolny, C., Hagerkvist, R., Rahimi, N., Matsumoto, T., Claesson-Welsh, L., Welsh, M. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 2004;279:22267–22275.

    Article  PubMed  CAS  Google Scholar 

  78. Matsumoto, T., Bohman, S., Dixelius, J., Berge, T., Dimberg, A., Magnusson, P., Wang, L., Wikner, C., Qi, J. H., Wernstedt, C., Wu, J., Bruheim, S., Mugishima, H., Mukhopadhyay, D., Spurkland, A., Claesson-Welsh, L. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 2005;24:2342–2353.

    Article  PubMed  CAS  Google Scholar 

  79. Zeng, H., Sanyal, S., Mukhopadhyay, D. Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. J Biol Chem 2001;276:32714–32719.

    Article  PubMed  CAS  Google Scholar 

  80. Weis, S. M., Cheresh, D. A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 2005;437:497–504.

    Article  PubMed  CAS  Google Scholar 

  81. Lamalice, L., Houle, F., Jourdan, G., Huot, J. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 2004;23:434–445.

    Article  PubMed  CAS  Google Scholar 

  82. Issbrucker, K., Marti, H. H., Hippenstiel, S., Springmann, G., Voswinckel, R., Gaumann, A., Breier, G., Drexler, H. C., Suttorp, N., Clauss, M. p38 MAP kinase–a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. FASEB J 2003;17:262–264.

    PubMed  Google Scholar 

  83. Matsumoto, T., Turesson, I., Book, M., Gerwins, P., Claesson-Welsh, L. p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J Cell Biol 2002;156:149–160.

    Article  PubMed  CAS  Google Scholar 

  84. McMullen, M. E., Bryant, P. W., Glembotski, C. C., Vincent, P. A., Pumiglia, K. M. Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. J Biol Chem 2005;280:20995–21003.

    Article  PubMed  CAS  Google Scholar 

  85. Rousseau, S., Houle, F., Landry, J., Huot, J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997;15:2169–2177.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Lee, S., Iruela-Arispe, M.L. (2008). The Extracellular Matrix and VEGF Processing. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics