Skip to main content

The Role of Integrins in Tumor Angiogenesis

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1724 Accesses

Summary

An understanding of the mechanisms regulating endothelial cell roles in angiogenesis has led to the development of novel anti-tumor agents directed against members of the integrin family of cell adhesion proteins. Several integrins play important roles in promoting endothelial cell migration and survival during angiogenesis. Antagonists of these integrins either suppress cell migration and invasion of endothelial cells, suppress intercellular adhesion of endothelial cells and pericytes, or induce apoptosis of endothelial cells. Integrin antagonists also block tumor angiogenesis and metastasis. Currently, humanized or chimeric antibody antagonists of integrins α5β1, αvβ3 and αvβ5 and peptide inhibitors of these integrins are in clinical trials as angiogenesis-inhibiting agents for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hynes, RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69(1):11–25.

    Article  PubMed  CAS  Google Scholar 

  2. Varner JA, Cheresh DA. Integrins and cancer. Curr Opin Cell Biol 1996;8:724–730.

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27–31.

    Article  PubMed  CAS  Google Scholar 

  4. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 1995;147:9–19.

    PubMed  CAS  Google Scholar 

  5. Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 2001;7:462–468.

    PubMed  CAS  Google Scholar 

  6. Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. Br J Cancer 2004;90:561–565.

    Article  PubMed  CAS  Google Scholar 

  7. Mould AP, Humphries MJ. Regulation of integrin function through conformational complexity: not simply a knee-jerk reaction? Curr Opin Cell Biol 2004;16:544–551.

    Article  PubMed  CAS  Google Scholar 

  8. Hogervorst F, Kuikman I, von dem Borne AE, Sonnenberg A. Cloning and sequence analysis of beta-4 cDNA: an integrin subunit that contains a unique 118 kd cytoplasmic domain. EMBO J 1990;9:765–770.

    PubMed  CAS  Google Scholar 

  9. Springer TA. Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain. Proc Natl Acad Sci USA 1997;94:65–72.

    Article  PubMed  CAS  Google Scholar 

  10. Xiong JP, Stehle T, Diefenbach B, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 2001;294:339–345.

    Article  PubMed  CAS  Google Scholar 

  11. Humphries MJ. Integrin structure. Biochem Soc Trans 2000;28:311–339.

    Article  PubMed  CAS  Google Scholar 

  12. Shimaoka M, Takagi J, Springer TA. Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct 2002;31:485–516.

    Article  PubMed  CAS  Google Scholar 

  13. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110:673–687.

    Article  PubMed  CAS  Google Scholar 

  14. Fagerholm SC, Hilden TJ, Gahmberg CG. P marks the spot: site-specific integrin phosphorylation regulates molecular interactions. Trends Biochem Sci 2004;29:504–512.

    Article  PubMed  CAS  Google Scholar 

  15. Ylanne J. Conserved functions of the cytoplasmic domains of integrin beta subunits. Front Biosci 1998;3:877–886.

    Google Scholar 

  16. Tamura RN, Rozzo C, Starr L, et al. Epithelial integrin alpha 6 beta 4: complete primary structure of alpha 6 and variant forms of beta 4. J Cell Biol 1990;111:1593–1604.

    Article  PubMed  CAS  Google Scholar 

  17. Iacovacci S, Gagnoux-Palacios L, Zambruno G, Meneguzzi G, D’Alessio M. Genomic organization of the human integrin beta4 gene. Mamm Genome 1997;8:448–450.

    Article  PubMed  CAS  Google Scholar 

  18. Loftus JC, Smith JW, Ginsberg MH. Integrin-mediated cell adhesion: the extracellular face. J Biol Chem 1994;269:25235–25238.

    PubMed  CAS  Google Scholar 

  19. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem 2000;275:21785–21788.

    Article  PubMed  CAS  Google Scholar 

  20. van der Flier A, Sonnenberg A. Function and interactions of integrins. Cell Tissue Res 2001;305:285–298.

    Article  PubMed  CAS  Google Scholar 

  21. Smith JW, Piotrowicz RS, Mathis D. A mechanism for divalent cation regulation of beta 3-integrins. J Biol Chem 1994;269:960–967.

    PubMed  CAS  Google Scholar 

  22. Mould AP, Akiyama SK, Humphries MJ. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+, Mg2+, and Ca2+. J Biol Chem 1995;270:26270–26277.

    Article  PubMed  CAS  Google Scholar 

  23. Nermut MV, Green NM, Eason P, Yamada SS, Yamada KM. Electron microscopy and structural model of human fibronectin receptor. EMBO J 1988;7:4093–4099.

    PubMed  CAS  Google Scholar 

  24. Weisel JW, Nagaswami C, Vilaire G, Bennett JS. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem 1992;267:16637–16643.

    PubMed  CAS  Google Scholar 

  25. Xiong JP, Stehle T, Zhang R, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 2002;296:151–155.

    Article  PubMed  CAS  Google Scholar 

  26. Beglova N, Blacklow SC, Takagi J, Springer TA. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nat Struct Biol 2002;9:282–287.

    Article  PubMed  CAS  Google Scholar 

  27. Vinogradova O, Velyvis A, Velyviene A, et al. A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 2002;110:587–597.

    Article  PubMed  CAS  Google Scholar 

  28. Springer TA. Predicted and experimental structures of integrins and beta-propellers. Curr Opin Struct Biol 2002;12:802–813.

    Article  PubMed  CAS  Google Scholar 

  29. Lu C, Takagi J, Springer TA. Association of the membrane proximal regions of the alpha and beta subunit cytoplasmic domains constrains an integrin in the inactive state. J Biol Chem 2001;276:14642–14648.

    Article  PubMed  CAS  Google Scholar 

  30. Brakebusch C, Fassler R. The integrin-actin connection, an eternal love affair. EMBO J 2003;22:2324–2333.

    Article  PubMed  CAS  Google Scholar 

  31. Liu S, Calderwood DA, Ginsberg MH. Integrin cytoplasmic domain-binding proteins. J Cell Sci 2000;113:3563–3571.

    PubMed  CAS  Google Scholar 

  32. Kumar CC. Signaling by integrin receptors. Oncogene 1998;17:1365–1373.

    Article  PubMed  CAS  Google Scholar 

  33. Horwitz A, Duggan K, Buck C, Beckerle MC, Burridge K. Interaction of plasma membrane fibronectin receptor with talin–a transmembrane linkage. Nature 1986;320:531–533.

    Article  PubMed  CAS  Google Scholar 

  34. Burridge K, Nuckolls G, Otey C, Pavalko F, Simon K, Turner C. Actin-membrane interaction in focal adhesions. Cell Differ Dev 1990;32:337–342.

    Article  PubMed  CAS  Google Scholar 

  35. Otey CA, Pavalko FM, Burridge K. An interaction between alpha-actinin and the beta 1 integrin subunit in vitro. J Cell Biol 1990;111(2):721–729.

    Article  PubMed  CAS  Google Scholar 

  36. Otey CA, Vasquez GB, Burridge K, Erickson BW. Mapping of the alpha-actinin binding site within the beta 1 integrin cytoplasmic domain. J Biol Chem 1993;268:21193–21197.

    PubMed  CAS  Google Scholar 

  37. Liu S, Thomas SM, Woodside DG, et al. Binding of paxillin to alpha4 integrins modifies integrin-dependent biological responses. Nature 1999;402:676–681.

    Article  PubMed  CAS  Google Scholar 

  38. Ren XD, Kiosses WB, Schwartz MA. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 1999;18:578–585.

    Article  PubMed  CAS  Google Scholar 

  39. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 1997;137:481–492.

    Article  PubMed  CAS  Google Scholar 

  40. Assoian RK, Schwartz MA. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr Opin Genet Dev 2001;11:48–53.

    Article  PubMed  CAS  Google Scholar 

  41. Stupack DG, Cheresh DA. Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 2002;115:3729–3738.

    Article  PubMed  CAS  Google Scholar 

  42. Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 2001;155:459–470.

    Article  PubMed  CAS  Google Scholar 

  43. Travis MA, Humphries JD, Humphries MJ. An unraveling tale of how integrins are activated from within. Trends Pharmacol Sci 2003;24:192–197.

    Article  PubMed  CAS  Google Scholar 

  44. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct alpha v integrins. Science 1995;270:1500–1502.

    Article  PubMed  CAS  Google Scholar 

  45. Gu J, Taniguchi N. Regulation of integrin functions by N-glycans. Glycoconj J 2004;21:9–15.

    Article  PubMed  CAS  Google Scholar 

  46. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9(6):653–660.

    Article  PubMed  CAS  Google Scholar 

  47. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275(5302):964–967.

    Article  PubMed  CAS  Google Scholar 

  48. Peters BA, Diaz LA, Polyak K, et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 2005;11:261–262.

    Article  PubMed  CAS  Google Scholar 

  49. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005;438(7070):967–974.

    Article  PubMed  CAS  Google Scholar 

  50. Kim S, Bell K, Mousa SA, Varner JA. Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 2000;156:1345–1362.

    PubMed  CAS  Google Scholar 

  51. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 1993;119:1079–1091.

    PubMed  CAS  Google Scholar 

  52. George EL, Baldwin HS, Hynes RO. Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood 1997;90:3073–3081.

    PubMed  CAS  Google Scholar 

  53. Yang JT, Rayburn H, Hynes RO. Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 1993;119:1093–1105.

    PubMed  CAS  Google Scholar 

  54. Francis SE, Goh KL, Hodivala-Dilke K, et al. Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 2002;22:927–933.

    Article  PubMed  CAS  Google Scholar 

  55. Taverna D, Hynes RO. Reduced blood vessel formation and tumor growth in alpha5-integrin-negative teratocarcinomas and embryoid bodies. Cancer Res 2001;61:5255–5261.

    PubMed  CAS  Google Scholar 

  56. Kim S, Bakre M, Yin H, Varner JA. Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J Clin Invest 2002;110:933–941.

    Article  PubMed  CAS  Google Scholar 

  57. Kim S, Harris M, Varner JA. Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. J Biol Chem 2000;275:33920–33928.

    Article  PubMed  CAS  Google Scholar 

  58. Yang JT, Rayburn H, Hynes RO. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 1995;121:549–560.

    PubMed  CAS  Google Scholar 

  59. Elices MJ, Osborn L, Takada Y, et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990;60:577–584.

    Article  PubMed  CAS  Google Scholar 

  60. Garmy-Susini B, Jin H, Zhu Y, Sung RJ, Hwang R, Varner J. Integrin alpha4beta1-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation. J Clin Invest 2005;115:1542–1551.

    Article  PubMed  CAS  Google Scholar 

  61. Ruzinova MB, Schoer RA, Gerald W, et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 2003;4:277–289.

    Article  PubMed  CAS  Google Scholar 

  62. Jin H, Aiyer A, Su J, et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Invest 2006;116:652–662.

    Article  PubMed  CAS  Google Scholar 

  63. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994;264:569–571.

    Article  PubMed  CAS  Google Scholar 

  64. Drake CJ, Cheresh DA, Little CD. An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 1995;108:2655–2661.

    PubMed  CAS  Google Scholar 

  65. Brooks PC, Montgomery AM, Rosenfeld M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994;79:1157–1164.

    Article  PubMed  CAS  Google Scholar 

  66. Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995;96:1815–1822.

    PubMed  CAS  Google Scholar 

  67. Max R, Gerritsen RR, Nooijen PT, et al. Immunohistochemical analysis of integrin alpha vbeta3 expression on tumor-associated vessels of human carcinomas. Int J Cancer 1997;71:320–324.

    Article  PubMed  CAS  Google Scholar 

  68. Bader BL, Rayburn H, Crowley D, Hynes RO. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 1998;95(4):507–519.

    Article  PubMed  CAS  Google Scholar 

  69. McCarty JH, Lacy-Hulbert A, Charest A, et al. Selective ablation of alpha v integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneratiotion and premature death. Development 2005;132:165–176.

    Article  PubMed  CAS  Google Scholar 

  70. Hodivala-Dilke KM, McHugh KP, Tsakiris DA, et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 1999;103:229–238.

    PubMed  CAS  Google Scholar 

  71. Huang X, Griffiths M, Wu J, Farese RV, Jr., Sheppard D. Normal development, wound healing, and adenovirus susceptibility in beta5-deficient mice. Mol Cell Biol 2000;20:755–759.

    Article  PubMed  CAS  Google Scholar 

  72. Reynolds LE, Wyder L, Lively JC, et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 2002;8:27–34.

    Article  PubMed  CAS  Google Scholar 

  73. Calzada MJ, Roberts DD. Novel integrin antagonists derived from thrombospondins. Curr Pharm Des 2005;11:849–866.

    Article  PubMed  CAS  Google Scholar 

  74. de Melker AA, Sterk LM, Delwel GO, et al. The A and B variants of the alpha 3 integrin subunit: tissue distribution and functional characterization. Lab Invest 1997;76:547–563.

    PubMed  Google Scholar 

  75. Yanez-Mo M, Alfranca A, Cabanas C, et al. Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with alpha3 beta1 integrin localized at endothelial lateral junctions. J Cell Biol 1998;141:791–804.

    Article  PubMed  CAS  Google Scholar 

  76. Chandrasekaran L, He CZ, Al-Barazi H, Krutzsch HC, Iruela-Arispe ML, Roberts DD. Cell contact-dependent activation of alpha3beta1 integrin modulates endothelial cell responses to thrombospondin-1. Mol Biol Cell 2000;11:2885–2900.

    PubMed  CAS  Google Scholar 

  77. Chen MS, Almeida EA, Huovila AP, et al. Evidence that distinct states of the integrin alpha6beta1 interact with laminin and an ADAM. J Cell Biol 1999;144:549–561.

    Article  PubMed  CAS  Google Scholar 

  78. Bauer J, Margolis M, Schreiner C, et al. in vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J Cell Physiol 1992;153:437–449.

    Article  PubMed  CAS  Google Scholar 

  79. Enenstein J, Kramer RH. Confocal microscopic analysis of integrin expression on the microvasculature and its sprouts in the neonatal foreskin. J Invest Dermatol 1994;103:381–386.

    Article  PubMed  CAS  Google Scholar 

  80. Davis GE, Camarillo CW. Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways. Exp Cell Res 1995;216:113–123.

    Article  PubMed  CAS  Google Scholar 

  81. Hiran TS, Mazurkiewicz JE, Kreienberg P, Rice FL, LaFlamme SE. Endothelial expression of the alpha6beta4 integrin is negatively regulated during angiogenesis. J Cell Sci 2003;116:3771–3781.

    Article  PubMed  CAS  Google Scholar 

  82. Nikolopoulos SN, Blaikie P, Yoshioka T, Guo W, Giancotti FG. Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell 2004;6:471–483.

    Article  PubMed  CAS  Google Scholar 

  83. Senger DR, Claffey KP, Benes JE, Perruzzi CA, Sergiou AP, Detmar M. Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci USA 1997;94:13612–13617.

    Article  PubMed  CAS  Google Scholar 

  84. Senger DR, Perruzzi CA, Streit M, Koteliansky VE, de Fougerolles AR, Detmar M. The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 2002;160:195–204.

    PubMed  CAS  Google Scholar 

  85. Oliver G. Lymphatic vasculature development. Nat Rev Immunol 2004;4:35–45.

    Article  PubMed  CAS  Google Scholar 

  86. Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999;98:769–778.

    Article  PubMed  CAS  Google Scholar 

  87. Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 2002;21:1505–1513.

    Article  PubMed  CAS  Google Scholar 

  88. Banerji S, Ni J, Wang SX, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999;144:789–801.

    Article  PubMed  CAS  Google Scholar 

  89. Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995;92:3566–3570.

    Article  PubMed  CAS  Google Scholar 

  90. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996;15:290–298.

    PubMed  CAS  Google Scholar 

  91. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997;276:1423–1425.

    Article  PubMed  CAS  Google Scholar 

  92. Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 1998;95:548–553.

    Article  PubMed  CAS  Google Scholar 

  93. Makinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 2001;20:4762–4773.

    Article  PubMed  CAS  Google Scholar 

  94. Karpanen T, Egeblad M, Karkkainen MJ, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001;61:1786–1790.

    PubMed  CAS  Google Scholar 

  95. Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001;20:672–682.

    Article  PubMed  CAS  Google Scholar 

  96. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001;7:192–198.

    Article  PubMed  CAS  Google Scholar 

  97. Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001;7:186–191.

    Article  PubMed  CAS  Google Scholar 

  98. Huang XZ, Wu JF, Ferrando R, et al. Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1. Mol Cell Biol 2000;20:5208–5215.

    Article  PubMed  CAS  Google Scholar 

  99. Vlahakis NE, Young BA, Atakilit A, Sheppard D. The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. J Biol Chem 2005;280:4544–4552.

    Article  PubMed  CAS  Google Scholar 

  100. Hong YK, Lange-Asschenfeldt B, Velasco P, et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J 2004;18:1111–1113.

    PubMed  CAS  Google Scholar 

  101. Conforti G, Dominguez-Jimenez C, Zanetti A, et al. Human endothelial cells express integrin receptors on the luminal aspect of their membrane. Blood 1992;80:437–446.

    PubMed  CAS  Google Scholar 

  102. Bretscher MS. Endocytosis and recycling of the fibronectin receptor in CHO cells. EMBO J 1989;8:1341–1348.

    PubMed  CAS  Google Scholar 

  103. Bretscher MS. Circulating integrins: alpha 5 beta 1, alpha 6 beta 4 and Mac-1, but not alpha 3 beta 1, alpha 4 beta 1 or LFA-1. EMBO J 1992;11:405–410.

    PubMed  CAS  Google Scholar 

  104. Caswell PT, Norman JC. Integrin trafficking and the control of cell migration. Traffic 2006;7:14–21.

    Article  PubMed  CAS  Google Scholar 

  105. Gladson CL. Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 1996;55:1143–1149.

    Article  PubMed  CAS  Google Scholar 

  106. Bello L, Francolini M, Marthyn P, et al. Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 2001;49:380–389.

    Article  PubMed  CAS  Google Scholar 

  107. Vonlaufen A, Wiedle G, Borisch B, Birrer S, Luder P, Imhof, BA. Integrin alpha(v)beta(3) expression in colon carcinoma correlates with survival. Mod Pathol 2001;14:1126–1132.

    Article  PubMed  CAS  Google Scholar 

  108. Haubner R, Wester HJ, Weber WA, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61:1781–1785.

    PubMed  CAS  Google Scholar 

  109. Chen X, Park R, Shahinian AH, et al. 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 2004;31:179–189.

    Article  PubMed  CAS  Google Scholar 

  110. Chen X, Park R, Hou Y, et al. MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur J Nucl Med Mol Imaging 2004;31:1081–1089.

    Article  PubMed  CAS  Google Scholar 

  111. Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS. Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 2004;3:96–104.

    Article  PubMed  CAS  Google Scholar 

  112. Chen X, Sievers E, Hou Y, et al. Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia 2005;7:271–279.

    Article  PubMed  CAS  Google Scholar 

  113. Chen X, Park R, Khankaldyyan V, et al. Longitudinal microPET imaging of brain tumor growth with F-18-labeled RGD peptide. Mol Imaging Biol 2006;8:9–15.

    Article  PubMed  CAS  Google Scholar 

  114. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 1998;4:623–626.

    Article  PubMed  CAS  Google Scholar 

  115. Winter PM, Caruthers SD, Kassner A, et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 2003;63:5838–5843.

    PubMed  CAS  Google Scholar 

  116. Leong-Poi H, Christiansen J, Klibanov AL, Kaul S, Lindner JR. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 2003;107:455–460.

    Article  PubMed  CAS  Google Scholar 

  117. Ellegala DB, Leong-Poi H, Carpenter JE, et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 2003;108:336–341.

    Article  PubMed  Google Scholar 

  118. Dayton PA, Pearson D, Clark J, et al. Ultrasonic analysis of peptide- and antibody-targeted microbubble contrast agents for molecular imaging of alphavbeta3-expressing cells. Mol Imaging 2004;3:125–134.

    Article  PubMed  CAS  Google Scholar 

  119. Gutheil JC, Campbell TN, Pierce PR, et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res 2000;6:3056–3061.

    PubMed  CAS  Google Scholar 

  120. Posey JA, Khazaeli MB, DelGrosso A, et al. A pilot trial of Vitaxin, a humanized anti-vitronectin receptor (anti alpha v beta 3) antibody in patients with metastatic cancer. Cancer Biother Radiopharm 2001;16:125–132.

    Article  PubMed  CAS  Google Scholar 

  121. Patel SR, Jenkins J, Papadopolous N, et al. Pilot study of vitaxin–an angiogenesis inhibitor-in patients with advanced leiomyosarcomas. Cancer 2001;92:1347–1348.

    Article  PubMed  CAS  Google Scholar 

  122. Trikha M, Zhou Z, Nemeth JA, et al. CNTO 95, a fully human monoclonal antibody that inhibits alphav integrins, has antitumor and antiangiogenic activity in vivo. Int J Cancer 2004;110:326–335.

    Article  PubMed  CAS  Google Scholar 

  123. Martin PL, Jiao Q, Cornacoff J, et al. Absence of adverse effects in cynomolgus macaques treated with CNTO 95, a fully human anti-alphav integrin monoclonal antibody, despite widespread tissue binding. Clin Cancer Res 2005;11:6959–6965.

    Article  PubMed  CAS  Google Scholar 

  124. Felding-Habermann B, Lerner RA, Lillo A, et al. Combinatorial antibody libraries from cancer patients yield ligand-mimetic Arg-Gly-Asp-containing immunoglobulins that inhibit breast cancer metastasis. Proc Natl Acad Sci USA 2004;101:17210–17215.

    Article  PubMed  CAS  Google Scholar 

  125. Li LS, Rader C, Matsushita M, et al. Chemical adaptor immunotherapy: design, synthesis, and evaluation of novel integrin-targeting devices. J Med Chem 2004;47:5630–5640.

    Article  PubMed  CAS  Google Scholar 

  126. Eskens FA, Dumez H, Hoekstra R, et al. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumors. Eur J Cancer 2003;39:917–926.

    Article  PubMed  CAS  Google Scholar 

  127. Smith JW. Cilengitide Merck. Curr Opin Investig Drugs 2003;4:741–745.

    PubMed  CAS  Google Scholar 

  128. Stoeltzing O, Liu W, Reinmuth N, et al. Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int J Cancer 2003;104:496–503.

    Article  PubMed  CAS  Google Scholar 

  129. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998;279:377–380.

    Article  PubMed  CAS  Google Scholar 

  130. Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem 2005;48:1098–1106.

    Article  PubMed  CAS  Google Scholar 

  131. Belvisi L, Riccioni T, Marcellini M, et al. Biological and molecular properties of a new alpha(v)beta3/alpha(v)beta5 integrin antagonist. Mol Cancer Ther 2005;4:1670–1680.

    Article  PubMed  CAS  Google Scholar 

  132. Lee Y, Kang DK, Chang SI, Han MH, Kang IC. High-throughput screening of novel peptide inhibitors of an integrin receptor from the hexapeptide library by using a protein microarray chip. J Biomol Screen 2004;9:687–694.

    Article  PubMed  CAS  Google Scholar 

  133. Hood JD, Bednarski M, Frausto R, et al. Tumor regression by targeted gene delivery to the neovasculature. Science 2002;296:2404–2407.

    Article  PubMed  CAS  Google Scholar 

  134. Li L, Wartchow CA, Danthi SN, et al. A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys 2004;58:1215–1227.

    PubMed  CAS  Google Scholar 

  135. Reinmuth N, Liu W, Ahmad SA, et al. Alphavbeta3 integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res 2003;63:2079–2087.

    PubMed  CAS  Google Scholar 

  136. Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL. Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 2002;62:4263–4272.

    PubMed  CAS  Google Scholar 

  137. Raguse JD, Gath HJ, Bier J, Riess H, Oettle H. Cilengitide (EMD 121974) arrests the growth of a heavily pretreated highly vascularised head and neck tumour. Oral Oncol 2004;40:228–230.

    Article  PubMed  CAS  Google Scholar 

  138. Abdollahi A, Griggs DW, Zieher H, et al. Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 2005;11:6270–6279.

    Article  PubMed  CAS  Google Scholar 

  139. Hallahan D, Geng L, Qu S, et al. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 2003;3:63–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Aiyer, A.R., Varner, J.A. (2008). The Role of Integrins in Tumor Angiogenesis. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics