Skip to main content

Regulation of Angiogenesis in Cancer and Its Therapeutic Implications

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Summary

Starvation of tumors through eliminating their blood supply by blocking angiogenesis is an idea that is elegant in its very simplicity. In this chapter, we describe physiological and pathological angiogenesis and growth factors and microenvironmental influences that govern its initiation, promotion and inhibition. Our current understanding of the gene expression and biology of endothelial cells has led to the development of many therapeutic agents that target molecules in signal transduction pathways critical to angiogenesis in various types of cancer. It is clear that angiogenesis is a complex process which recruits multiple factors that act rapidly to produce a microvasculature in the developing tumor. As such, a multi-pronged attack against the growth factors aimed at early stages of cancer is likely to be most effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman, J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285:1182–86.

    Article  PubMed  CAS  Google Scholar 

  2. Choi, K. The hemangioblast: a common progenitor of hematopoietic and endothelial cells. J Hematother Stem Cell Res 2002; 11:91–101.

    Article  PubMed  Google Scholar 

  3. Scappaticci, FA. Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol 2002; 20:3906–27.

    Article  PubMed  CAS  Google Scholar 

  4. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 2005; 438:932–6.

    Article  PubMed  CAS  Google Scholar 

  5. Jakobisiak, M, Lasek, W, Golab, J. Natural mechanisms protecting against cancer. Immunol Lett 2003; 90:103–22.

    Article  PubMed  CAS  Google Scholar 

  6. Lyden, D et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 1999; 401:670–7.

    Article  PubMed  CAS  Google Scholar 

  7. Faruk, T et al. Angiogenesis and p53 protein expression in breast cancer: Prognostic roles and interrelationships. Am J Clin Oncol 2000; 23:546–53.

    Article  Google Scholar 

  8. Kohn, S, Nagy, JA, Dvorak, HF, Dvorak, AM. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest 1992; 67:596–607.

    PubMed  CAS  Google Scholar 

  9. Dvorak, HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315:1650–59.

    Article  PubMed  CAS  Google Scholar 

  10. Wang, GL, Jiang, B-H, Rue, EA, Semenza, GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92:5510–14.

    Article  PubMed  CAS  Google Scholar 

  11. Bruick, RK, McKnight, SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001; 294:1337–40.

    Article  PubMed  CAS  Google Scholar 

  12. Jaakkola, P et al. Targeting of HIF-a to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292:468–72.

    Article  PubMed  CAS  Google Scholar 

  13. Kamura, T et al. Activation of HIF1a ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA. 2000; 97:10430–5.

    Google Scholar 

  14. Forsythe, JA, Jiang, BH, Iyer, NV, Agani, F, Leung, SW, Koos, RD, Semenza, GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16:4604–13.

    PubMed  CAS  Google Scholar 

  15. Ferrara, N, Henzel, WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161:851–8.

    Article  PubMed  CAS  Google Scholar 

  16. Senger, DR, Galli, SJ, Dvorak, AM, Perruzzi, CA, Harvey, VS, Dvorak, HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219:983–5.

    Article  PubMed  CAS  Google Scholar 

  17. Yusuke Mizukami, Jingnan Li, Xiaobo Zhang, Michael A. Zimmer, Othon Iliopoulos, Daniel C. Chung. Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res 2004; 64:1765–72.

    Google Scholar 

  18. Pore, N, Jiang, Z, Gupta, A, Cerniglia, G, Kao, GD, Maity, A. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res 2006; 66:3197–204.

    Article  PubMed  CAS  Google Scholar 

  19. Li, X, Eriksson, U. Novel VEGF family members: VEGF-B, VEGF-C and VEGF-D. Int J Biochem Cell Biol 2001; 33:421–26.

    Article  PubMed  CAS  Google Scholar 

  20. Jeltsch, M, Kaipainen, A, Joukov, V, Meng, X, Lakso, M, Rauvala, H, Swartz, M, Fukumura, D, Jain, RK, Alitalo, K. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 1997; 276:1423–25.

    Article  PubMed  CAS  Google Scholar 

  21. Stacker, SA, Caesar, C, Baldwin, ME, Thornton, GE, Williams, RA, Prevo, R, Jackson, DG, Nishikawa, S, Kubo, H, Achen, MG. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7:186–91.

    Article  PubMed  CAS  Google Scholar 

  22. Tischer, E, Mitchell, R, Hartman, T, Silva, M, Gospodarowicz, D, Fiddes, JC, Abraham, JA. The human gene for vascular endothelial growth factor: multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991; 266:11947–54.

    PubMed  CAS  Google Scholar 

  23. Park, JE, Keller, GA, Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extra-cellular matrix-bound VEGF. Mol Biol Cell 1993; 4:1317–26.

    PubMed  CAS  Google Scholar 

  24. Jeanette Woolard et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 2004; 64:7822–35.

    Google Scholar 

  25. Zachary, I, Gliki, G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 2001; 49:568–81.

    Article  PubMed  CAS  Google Scholar 

  26. Waltenberger, J, Claesson-Welsh, L, Siegbahn, A, Shibuya, M, Heldin, CH. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 1994, 269:26988–95.

    PubMed  CAS  Google Scholar 

  27. Gille, H, Kowalski, J, Li, B, LeCouter, J, Moffat, B, Zioncheck, TF, Pelletier, N, Ferrara, N. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem 2001; 276:3222–30.

    Article  PubMed  CAS  Google Scholar 

  28. Zeng, H, Sanyal, S, Mukhopadhyay, D. Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. J Biol Chem 2001; 276:32714–9.

    Article  PubMed  CAS  Google Scholar 

  29. Dougher-Vermazen, M, Hulmes, JD, Bohlen, P, Terman, BI. Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor. Biochem Biophys Res Commun 1994; 205:728–38.

    Article  PubMed  CAS  Google Scholar 

  30. Wu, LW, Mayo, LD, Dunbar, JD, Kessler, KM, Ozes, ON, Warren, RS, Donner, DB. VRAP is an adaptor protein that binds KDR, a receptor for vascular endothelial cell growth factor. J Biol Chem 2000; 275:6059–62.

    Article  PubMed  CAS  Google Scholar 

  31. Pedram, A, Razandi, M, Levin, ER. Extracellular signal-regulated protein kinase/Jun kinase cross-talk underlies vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 1998; 273:26722–8.

    Article  PubMed  CAS  Google Scholar 

  32. Thakker, GD, Hajjar, DP, Muller, WA, Rosengart, TK. The role of phosphatidylinositol 3-kinase in vascular endothelial growth factor signaling. J Biol Chem 1999; 274:10002–7.

    Article  PubMed  CAS  Google Scholar 

  33. Gerber, HP, McMurtrey, A, Kowalski, J, Yan, M, Keyt, BA, Dixit, V, Ferrara, N. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998; 273:30336–43.

    Article  PubMed  CAS  Google Scholar 

  34. Rousseau, S, Houle, F, Kotanides, H, Witte, L, Waltenberger, J, Landry, J, Huot, J. Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 2000; 275:10661–72.

    Article  PubMed  CAS  Google Scholar 

  35. Le Boeuf, F, Houle, F, Huot, J. Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 2004; 279:39175–85.

    Article  PubMed  CAS  Google Scholar 

  36. Mohamed, KM, Le, A, Duong, H, Wu, Y, Zhang, Q, Messadi, DV. Correlation between VEGF and HIF-1alpha expression in human oral squamous cell carcinoma. Exp Mol Pathol 2004; 76:143–52.

    Article  PubMed  CAS  Google Scholar 

  37. Kyzas, PA, Stefanou, D, Batistatou, A, Agnantis, NJ. Prognostic significance of VEGF immunohistochemical expression and tumor angiogenesis in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 2005; 131:624–30.

    Article  PubMed  CAS  Google Scholar 

  38. Nishimura, T, Utsunomiya, Y, Hoshikawa, M et al. Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain. Biochim Biophys Acta 1999; 1444:148–151.

    PubMed  CAS  Google Scholar 

  39. Kirikoshi, H, Sagara, N, Saitoh, T, Tanaka, K, Sekihara, H, Shiokawa, K, Katoh, M. Molecular cloning and characterization of human FGF-20 on chromosome 8p21.3-p22. Biochem Biophys Res Commun 2000; 274:337–43.

    Article  PubMed  CAS  Google Scholar 

  40. Armelin, HA. Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci USA 1973; 70:2702–6.

    Article  PubMed  CAS  Google Scholar 

  41. Tanner, JE, Forte, A, Panchal, C. Nucleosomes bind fibroblast growth factor-2 for increased angiogenesis in vitro and in vivo. Mol Cancer Res 2004; 2:281–8.

    PubMed  CAS  Google Scholar 

  42. Muhlhauser, J, Pili, R, Merrill, MJ, Maeda, H, Passaniti, A, Crystal, RG, Capogrossi, MC. In vivo angiogenesis induced by recombinant adenovirus vectors coding either for secreted or nonsecreted forms of acidic fibroblast growth factor. Hum Gene Ther 1995; 6:1457–65.

    PubMed  CAS  Google Scholar 

  43. Takahashi, JA, Mori, H, Fukumoto, M, Igarashi, K, Jaye, M, Oda, Y, Kikuchi, H, Hatanaka, M. Gene expression of fibroblast growth factors in human gliomas and meningiomas: demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues. Proc Natl Acad Sci USA 1990; 87:5710–14.

    Article  PubMed  CAS  Google Scholar 

  44. Takahashi, JA, Fukumoto, M, Igarashi, K, Oda, Y, Kikuchi, H, Hatanaka, M. Correlation of basic fibroblast growth factor expression levels with the degree of malignancy and vascularity in human gliomas. J Neurosurg 1992; 76:792–8.

    Article  PubMed  CAS  Google Scholar 

  45. Barclay, C, Li, AW, Geldenhuys, L, Baguma-Nibasheka, M, Porter, GA, Veugelers, PJ, Murphy, PR, Casson, AG. Basic fibroblast growth factor (FGF-2) overexpression is a risk factor for esophageal cancer recurrence and reduced survival, which is ameliorated by coexpression of the FGF-2 antisense gene. Clin Cancer Res 2005; 11:7683–91.

    Article  PubMed  CAS  Google Scholar 

  46. Indraccolo, S, Stievano, L, Minuzzo, S, Tosello, V, Esposito, G, Piovan, E, Zamarchi, R, Chieco-Bianchi, L, Amadori, A. Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment. Proc Natl Acad Sci USA 2006; 103:4216–21.

    Article  PubMed  CAS  Google Scholar 

  47. Jaye, M, Howk, R, Burgess, W, Ricca, GA, Chiu, IM, Ravera, MW, O’Brien, SJ, Modi, WS, Maciag, T, Drohan, WN. Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science. 1986; 233:541–5.

    Article  PubMed  CAS  Google Scholar 

  48. McNeil, PL, Muthukrishnan, L, Warder, E, D’Amore, PA. Growth factors are released by mechanically wounded endothelial cells. J Cell Biol 1989; 109:811–22.

    Article  PubMed  CAS  Google Scholar 

  49. LaVallee, TM, Tarantini, F, Gamble, S, Mouta Carreira, C, Jackson, A, Maciag, T. Synaptotagmin-1 is required for fibroblast growth factor-1 release. J Biol Chem 1998; 273:22217–23.

    Article  PubMed  CAS  Google Scholar 

  50. Gospodarowicz, D, Cheng, J. Heparin protects basic and acidic FGF from inactivation. J Cell Physiol 1986; 128:475–84.

    Article  PubMed  CAS  Google Scholar 

  51. Sommer, A, Rifkin, DB. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J Cell Physiol 1989; 138:215–20.

    Article  PubMed  CAS  Google Scholar 

  52. Spivak-Kroizman, T, Lemmon, MA, Dikic, I, Ladbury, JE, Pinchasi, D, Huang, J, Jaye, M, Crumley, G, Schlessinger, J, Lax, I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 1994; 79:1015–24.

    Article  PubMed  CAS  Google Scholar 

  53. Mohammadi, M, Dikic, I, Sorokin, A, Burgess, WH, Jaye, M, Schlessinger, J. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell. Biol 1996; 16:977–89.

    PubMed  CAS  Google Scholar 

  54. Kan, M, Wang, F, Xu, J, Crabb, JW, Hou, J, McKeehan, WL. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science. 1993; 259:1918–21.

    Article  PubMed  CAS  Google Scholar 

  55. Klint, P, Kanda, S, Kloog, Y, Claesson-Welsh, L. Contribution of Src and Ras pathways in FGF-2 induced endothelial cell differentiation. Oncogene 1999; 18:3354–64.

    Article  PubMed  CAS  Google Scholar 

  56. Burgess, WH, Dionne, CA, Kaplow, J, Mudd, R, Friesel, R, Zilberstein, A, Schlessinger, J, Jaye, M. Characterization and cDNA cloning of phospholipase C-gamma, a major substrate for heparin-binding growth factor 1 (acidic fibroblast growth factor)-activated tyrosine kinase. Mol Cell Biol 1990; 10:4770–77.

    PubMed  CAS  Google Scholar 

  57. Van der Auwera, I, Van Laere, SJ, Van den Eynden, GG, Benoy, I, van Dam, P, Colpaert, CG, Fox, SB, Turley, H, Harris, AL, Van Marck, EA, Vermeulen, PB, Dirix, LY. Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res 2004; 10:7965–71.

    Google Scholar 

  58. Alavi, A, Hood, JD, Frausto, R, Stupack, DG, Cheresh, DA. Role of Raf in vascular protection from distinct apoptotic stimuli. Science 2003; 301:94–6.

    Article  PubMed  CAS  Google Scholar 

  59. Canfield, AE, Schor, AM. Evidence that tenascin and thrombospondin-1 modulate sprouting of endothelial cells. J Cell Sci 1995; 108:797–809.

    PubMed  CAS  Google Scholar 

  60. Hawighorst, T, Oura, H, Streit, M, Janes, L, Nguyen, L, Brown, LF, Oliver, G, Jackson, DG, Detmar, M. Thrombospondin-1 selectively inhibits early-stage carcinogenesis and angiogenesis but not tumor lymphangiogenesis and lymphatic metastasis in transgenic mice. Oncogene 2002; 21:7945–56.

    Article  PubMed  CAS  Google Scholar 

  61. Nicosia, RF, Tuszynski, GP. Matrix-bound thrombospondin promotes angiogenesis in vitro. J Cell Biol 1994; 124:183–93.

    Article  PubMed  CAS  Google Scholar 

  62. Kyriakides, TR, Zhu, YH, Smith, LT, Bain, SD, Yang, Z, Lin, MT, Danielson, KG, Iozzo, RV, LaMarca, M, McKinney, CE, Ginns, EI, Bornstein, P. Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J Cell Biol 1998; 140:419–30.

    Article  PubMed  CAS  Google Scholar 

  63. Kyriakides, TR, Zhu, YH, Yang, Z, Huynh, G, Bornstein, P. Altered extracellular matrix remodeling and angiogenesis in sponge granulomas of thrombospondin 2-null mice. Am J Pathol 2001; 159:1255–62.

    PubMed  CAS  Google Scholar 

  64. Rodriguez-Manzaneque, JC, Lane, TF, Ortega, MA, Hynes, RO, Lawler, J, Iruela-Arispe, ML. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA 2001; 98:12485–90.

    Article  PubMed  CAS  Google Scholar 

  65. Yamaguchi, M, Sugio, K, Ondo, K, Yano, T, Sugimachi, K. Reduced expression of thrombospondin-1 correlates with a poor prognosis in patients with non-small cell lung cancer. Lung Cancer 2002; 36:143–50.

    Article  PubMed  Google Scholar 

  66. Tobita, K, Kijima, H, Dowaki, S, Oida, Y, Kashiwagi, H, Ishii, M, Sugio, Y, Sekka, T, Ohtani, Y, Tanaka, M, Inokuchi, S, Makuuchi, H. Thrombospondin-1 expression as a prognostic predictor of pancreatic ductal carcinoma. Int J Oncol 2002; 21:1189–95.

    PubMed  CAS  Google Scholar 

  67. De Palma, M, Venneri, MA, Galli, R, Sergi, LS, Politi, LS, Sampaolesi, M, Naldini, L. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005; 8:211–26.

    Article  PubMed  CAS  Google Scholar 

  68. Varney, ML, Johansson, SL, Singh, RK. Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A. Melanoma Res 2005; 15:417–25.

    Article  PubMed  CAS  Google Scholar 

  69. Yamaguchi, J, Kusano, KF, Masuo, O, Kawamoto, A, Silver, M, Murasawa, S, Bosch-Marce, M, Masuda, H, Losordo, DW, Isner, JM, Asahara, T. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 2003; 107:1322–8.

    Article  PubMed  CAS  Google Scholar 

  70. Mohle, R, Bautz, F, Rafii, S, Moore, MA, Brugger, W, Kanz, L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 1998; 91:4523–30.

    PubMed  CAS  Google Scholar 

  71. Okamoto, R, Ueno, M, Yamada, Y, Takahashi, N, Sano, H, Suda, T, Takakura, N. Hematopoietic cells regulate the angiogenic switch during tumorigenesis. Blood. 2005; 105:2757–63.

    Article  PubMed  CAS  Google Scholar 

  72. Ruzinova, MB, Schoer, RA, Gerald, W, Egan, JE, Pandolfi, PP, Rafii, S, Manova, K, Mittal, V, Benezra, R. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 2003; 4:277–89.

    Article  PubMed  CAS  Google Scholar 

  73. Kaplan, RN, Riba, RD, Zacharoulis, S, Bramley, AH, Vincent, L, Costa, C, MacDonald, DD, Jin, DK, Shido, K, Kerns, SA, Zhu, Z, Hicklin, D, Wu, Y, Port, JL, Altorki, N, Port, ER, Ruggero, D, Shmelkov, SV, Jensen, KK, Rafii, S, Lyden, D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438:820–7.

    Article  PubMed  CAS  Google Scholar 

  74. Chi, JT, Chang, HY, Haraldsen, G, Jahnsen, FL, Troyanskaya, OG, Chang, DS, Wang, Z, Rockson, SG, van de Rijn, M, Botstein, D, Brown, PO. Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 2003; 100:10623–8.

    Article  PubMed  CAS  Google Scholar 

  75. St Croix, B, Rago, C, Velculescu, V et al. Genes expressed in human tumor endothelium. Science 2000; 289:1197–202.

    Article  PubMed  CAS  Google Scholar 

  76. Madden, SL, Cook, BP, Nacht, M et al. Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol 2004; 165:601–8.

    PubMed  CAS  Google Scholar 

  77. Parker, BS, Argani, P, Cook, BP, Liangfeng, H, Chartrand, SD, Zhang, M, Saha, S, Bardelli, A, Jiang, Y, St Martin, TB, Nacht, M, Teicher, BA, Klinger, KW, Sukumar, S, Madden, SL. Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res 2004; 64:7857–66.

    Article  PubMed  CAS  Google Scholar 

  78. Ferrara, N, Hillan, KJ, Gerber, HP, Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3:391–400.

    Article  PubMed  CAS  Google Scholar 

  79. Cardones, AR, Banez, LL. VEGF inhibitors in cancer therapy. Curr Pharm Des 2006; 12:387–94.

    Article  PubMed  CAS  Google Scholar 

  80. Yang, JC, Haworth, L, Sherry, RM, Hwu, P, Schwartzentruber, DJ, Topalian, SL, Steinberg, SM, Chen, HX, Rosenberg, SA. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003; 349:427–34.

    Article  PubMed  CAS  Google Scholar 

  81. Yang, JC. Bevacizumab for patients with metastatic renal cancer: an update. Clin Cancer Res 2004; 10:6367S–70S.

    Article  PubMed  CAS  Google Scholar 

  82. Kabbinavar, F, Hurwitz, HI, Fehrenbacher, L, Meropol, NJ, Novotny, WF, Lieberman, G, Griffing, S, Bergsland, E. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003; 21:60–5.

    Article  PubMed  CAS  Google Scholar 

  83. Miller, KD. E2100: a phase III trial of paclitaxel versus paclitaxel/bevacizumab for metastatic breast cancer. Clin Breast Cancer 2003; 3:421–2.

    PubMed  CAS  Google Scholar 

  84. Bergsland, EK. Update on clinical trials targeting vascular endothelial growth factor in cancer. Am J Health Syst Pharm 2004; 61:S12–20.

    PubMed  CAS  Google Scholar 

  85. David, H. Johnson, Louis Fehrenbacher, William F. Novotny, Roy S. Herbst, John J. Nemunaitis, David M. Jablons, Corey J. Langer, Russell F. DeVore, III, Jacques Gaudreault, Lisa, A. Damico, Eric Holmgren, Fairooz Kabbinavar. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2004; 22:2184–91.

    Google Scholar 

  86. Zhu, Z, Hattori, K, Zhang, H, Jimenez, X, Ludwig, DL, Dias, S, Kussie, P, Koo, H, Kim, HJ, Lu, D, Liu, M, Tejada, R, Friedrich, M, Bohlen, P, Witte, L, Rafii, S. Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia. 2003; 17:604–11.

    Article  PubMed  CAS  Google Scholar 

  87. Zhang, H, Li, Y, Li, H, Bassi, R, Jimenez, X, Witte, L, Bohlen, P, Hicklin, D, Zhu, Z. Inhibition of both the autocrine and the paracrine growth of human leukemia with a fully human antibody directed against vascular endothelial growth factor receptor 2. Leuk Lymphoma 2004; 45:1887–97.

    Article  PubMed  CAS  Google Scholar 

  88. Jimenez, X, Lu, D, Brennan, L, Persaud, K, Liu, M, Miao, H, Witte, L, Zhu, Z. A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3. Mol Cancer Ther 2005; 4:427–34.

    PubMed  CAS  Google Scholar 

  89. Graff, JR, McNulty, AM, Hanna, KR, Konicek, BW, Lynch, RL, Bailey, SN, Banks, C, Capen, A, Goode, R, Lewis, JE, Sams, L, Huss, KL, Campbell, RM, Iversen, PW, Neubauer, BL, Brown, TJ, Musib, L, Geeganage, S, Thornton, D. The protein kinase Cbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res 2005;65:7462–9.

    Article  PubMed  CAS  Google Scholar 

  90. Kouraklis, G, Theocharis, S. Histone deacetylase inhibitors: a novel target of anticancer therapy (review). Oncol Rep 2006; 15:489–94.

    PubMed  CAS  Google Scholar 

  91. Loprevite, M, Favoni, RE, De Cupis, A, Scolaro, T, Semino, C, Mazzanti, P, Ardizzoni, A. In vitro study of farnesyltransferase inhibitor SCH 66336, in combination with chemotherapy and radiation, in non-small cell lung cancer cell lines. Oncol Rep 2004; 11:407–14.

    PubMed  CAS  Google Scholar 

  92. Pauer, LR, Olivares, J, Cunningham, C, Williams, A, Grove, W, Kraker, A, Olson, S, Nemunaitis, J. Phase I study of oral CI-994 in combination with carboplatin and paclitaxel in the treatment of patients with advanced solid tumors. Cancer Invest 2004; 22:886–96.

    Article  PubMed  CAS  Google Scholar 

  93. Carlomagno, F, Vitagliano, D, Guida, T, Ciardiello, F, Tortora, G, Vecchio, G, Ryan, AJ, Fontanini, G, Fusco, A, Santoro, M. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 2002; 62:7284–90.

    PubMed  CAS  Google Scholar 

  94. Ciardiello, F, Caputo, R, Damiano, V, Caputo, R, Troiani, T, Vitagliano, D, Carlomagno, F, Veneziani, BM, Fontanini, G, Bianco, AR, Tortora, G. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res 2003; 9:1546–56.

    PubMed  CAS  Google Scholar 

  95. Heymach, JV. ZD6474–clinical experience to date. Br J Cancer 2005; 92:S14–20.

    Article  PubMed  CAS  Google Scholar 

  96. Arao, T, Yanagihara, K, Takigahira, M, Takeda, M, Koizumi, F, Shiratori, Y, Nishio, K. ZD6474 inhibits tumor growth and intraperitoneal dissemination in a highly metastatic orthotopic gastric cancer model. Int J Cancer 2006; 118:483–9.

    Article  PubMed  CAS  Google Scholar 

  97. Yano, S, Muguruma, H, Matsumori, Y, Goto, H, Nakataki, E, Edakuni, N, Tomimoto, H, Kakiuchi, S, Yamamoto, A, Uehara, H, Ryan, A, Sone, S. Antitumor vascular strategy for controlling experimental metastatic spread of human small-cell lung cancer cells with ZD6474 in natural killer cell-depleted severe combined immunodeficient mice. Clin Cancer Res 2005;11:8789–98.

    Article  PubMed  CAS  Google Scholar 

  98. Rich, JN, Sathornsumetee, S, Keir, ST, Kieran, MW, Laforme, A, Kaipainen, A, McLendon, RE, Graner, MW, Rasheed, BK, Wang, L, Reardon, DA, Ryan, AJ, Wheeler, C, Dimery, I, Bigner, DD, Friedman, HS. ZD6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors. Clin Cancer Res 2005; 11:8145–57.

    Article  PubMed  CAS  Google Scholar 

  99. Bergsland, EK. Update on clinical trials targeting vascular endothelial growth factor in cancer. Am J Health Syst Pharm 2004; 61:S12–20.

    PubMed  CAS  Google Scholar 

  100. Nobuaki Amino, Yukitaka Ideyama, Mayumi Yamano, Sadao Kuromitsu, Katsuinori Tajinda, Kiyohiro Samizu, Hiroyuki Hisamichi, Akira Matsuhisa, Kenna Shirasuna, Masafumi Kudoh, Masayuki Shibasaki. YM-359445, an orally bioavailable vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor, has highly potent antitumor activity against established tumors. Clin Cancer Res 2006; 12:1630–8.

    Google Scholar 

  101. Marzola, P, Degrassi, A, Calderan, L, Farace, P, Nicolato, E, Crescimanno, C, Sandri, M, Giusti, A, Pesenti, E, Terron, A, Sbarbati, A, Osculati, F. Early antiangiogenic activity of SU11248 evaluated in vivo by dynamic contrast-enhanced magnetic resonance imaging in an experimental model of colon carcinoma. Clin Cancer Res 2005; 11:5827–32.

    Article  PubMed  CAS  Google Scholar 

  102. Motzer, RJ, Michaelson, MD, Redman, BG, Hudes, GR, Wilding, G, Figlin, RA, Ginsberg, MS, Kim, ST, Baum, CM, DePrimo, SE, Li, JZ, Bello, CL, Theuer, CP, George, DJ, Rini, BI. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 2006; 24:16–24.

    Article  PubMed  CAS  Google Scholar 

  103. Konner, J, Dupont, J. Use of soluble recombinant decoy receptor vascular endothelial growth factor trap (VEGF Trap) to inhibit vascular endothelial growth factor activity. Clin Colorectal Cancer 2004; 4:S81–5.

    PubMed  CAS  Google Scholar 

  104. Dalal, S, Berry, AM, Cullinane, CJ, Mangham, DC, Grimer, R, Lewis, IJ, Johnston, C, Laurence, V, Burchill, SA. Vascular endothelial growth factor: a therapeutic target for tumors of the Ewing’s sarcoma family. Clin Cancer Res 2005; 11:2364–78.

    Article  PubMed  CAS  Google Scholar 

  105. Fraser, HM, Wilson, H, Morris, KD, Swanston, I, Wiegand, SJ. Vascular endothelial growth factor Trap suppresses ovarian function at all stages of the luteal phase in the macaque. J Clin Endocrinol Metab 2005; 90:5811–8.

    Article  PubMed  CAS  Google Scholar 

  106. Frischer, JS, Huang, J, Serur, A, Kadenhe-Chiweshe, A, McCrudden, KW, O’Toole, K, Holash, J, Yancopoulos, GD, Yamashiro, DJ, Kandel, JJ. Effects of potent VEGF blockade on experimental Wilms tumor and its persisting vasculature. Int J Oncol 2004; 25:549–53.

    PubMed  CAS  Google Scholar 

  107. Fukasawa, M, Korc, M. Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clin Cancer Res 2004; 10:3327–32.

    Article  PubMed  CAS  Google Scholar 

  108. Hu, L, Hofmann, J, Holash, J, Yancopoulos, GD, Sood, AK, Jaffe, RB. Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clin Cancer Res 2005; 11:6966–71.

    Article  PubMed  CAS  Google Scholar 

  109. Fraser, HM, Wilson, H, Rudge, JS, Wiegand, SJ. Single injections of vascular endothelial growth factor trap block ovulation in the macaque and produce a prolonged, dose-related suppression of ovarian function. J Clin Endocrinol Metab 2005; 90:1114–22.

    Article  PubMed  CAS  Google Scholar 

  110. Weng, DE, Usman, N. Angiozyme: a novel angiogenesis inhibitor. Curr Oncol Rep 2001; 3:141–6.

    Article  PubMed  CAS  Google Scholar 

  111. Ciafre, SA, Niola, F, Wannenes, F, Farace, MG. An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro. J Vasc Res 2004; 41:220–8.

    Article  PubMed  CAS  Google Scholar 

  112. Weng, DE, Masci, PA, Radka, SF, Jackson, TE, Weiss, PA, Ganapathi, R, Elson, PJ, Capra, WB, Parker, VP, Lockridge, JA, Cowens, JW, Usman, N, Borden, EC. A phase I clinical trial of a ribozyme-based angiogenesis inhibitor targeting vascular endothelial growth factor receptor-1 for patients with refractory solid tumors. Mol Cancer Ther 2005; 4:948–55.

    Article  PubMed  CAS  Google Scholar 

  113. Bergsland, EK. Vascular endothelial growth factor as a therapeutic target in cancer. Am J Health Syst Pharm 2004; 61:S4–11.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Han, L., Lorincz, A.M., Sukumar, S. (2008). Regulation of Angiogenesis in Cancer and Its Therapeutic Implications. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics