Skip to main content

Normalization of Tumor Vasculature and Improvement of Radiation Response by Antiangiogenic Agents

  • Chapter
  • 1718 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

Recent preclinical studies have suggested that radiotherapy in combination with antiangiogenic/vasculature-targeting agents enhances the therapeutic ratio of ionizing radiation. Because radiotherapy is one of the most widely used treatments for cancer, it is important to understand how best to use these two modalities to aid in the design of rational patient protocols. The mechanisms of interaction between antiangiogenic/vasculature-targeting agents and ionizing radiation are complex and involve interactions between the tumor stroma and vasculature and the tumor cells themselves. These agents can decrease overall tumor resistance to radiation by affecting both tumor cells and tumor vasculature, thereby breaking the codependent cycle of tumor growth and angiogenesis. Because the mechanisms of interaction between ionizing radiation and antiangiogenic/vascular targeting agents are not fully understood, the ideal way to use this potentially powerful combination for tumor cure has yet to be determined. We have described a number of possible mechanisms of interaction between antiangiogenic agents and radiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrara, N., Gerber, H. P., & LeCouter, J. 2003. The biology of VEGF and its receptors. Nat Med 9: 669–676.

    Article  PubMed  CAS  Google Scholar 

  2. Nieder, C., Wiedenmann, N., Andratschke, N., & Molls, M. 2006. Current status of angiogenesis inhibitors combined with radiation therapy. Cancer Treat Rev 32: 348–364.

    Article  PubMed  CAS  Google Scholar 

  3. McMahon, G. 2000. VEGF receptor signaling in tumor angiogenesis. Oncologist 5(Suppl 1): 3–10.

    Article  PubMed  CAS  Google Scholar 

  4. Dvorak, H. F. 2002. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20: 4368–4380.

    Article  PubMed  CAS  Google Scholar 

  5. Tozer, G. M. & Bicknell, R. 2004. Therapeutic targeting of the tumor vasculature. Semin Radiat Oncol 14: 222–232.

    Article  PubMed  Google Scholar 

  6. Wachsberger, P., Burd, R., & Dicker, A. P. 2004. Improving tumor response to radiotherapy by targeting angiogenesis signaling pathways. Hematol Oncol Clin North Am 18: 1039–1057, viii.

    Article  PubMed  Google Scholar 

  7. Semenza, G. L. 1999. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15: 551–578.

    Article  PubMed  CAS  Google Scholar 

  8. Jain, R. K. 2003. Molecular regulation of vessel maturation. Nat Med 9: 685–693.

    Article  PubMed  CAS  Google Scholar 

  9. Gorski, D. H., Beckett, M. A., Jaskowiak, N. T., Calvin, D. P., Mauceri, H. J., Salloum, R. M., et al. 1999. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59: 3374–3378.

    PubMed  CAS  Google Scholar 

  10. Lanza-Jacoby, S., Dicker, A. P., Miller, S., Rosato, F. E., Flynn, J. T., Lavorgna, S. N., et al. 2004. Cyclooxygenase (COX)-2-dependent effects of the inhibitor SC236 when combined with ionizing radiation in mammary tumor cells derived from HER-2/neu mice. Mol Cancer Ther 3: 417–424.

    PubMed  CAS  Google Scholar 

  11. Saha, D., Pyo, H., & Choy, H. 2003. COX-2 inhibitor as a radiation enhancer: new strategies for the treatment of lung cancer. Am J Clin Oncol 26: S70–S74.

    PubMed  Google Scholar 

  12. Steinauer, K. K., Gibbs, I., Ning, S., French, J. N., Armstrong, J., & Knox, S. J. 2000. Radiation induces upregulation of cyclooxygenase-2 (COX-2) protein in PC-3 cells. Int J Radiat Oncol Biol Phys 48: 325–328.

    Article  PubMed  CAS  Google Scholar 

  13. Dent, P., Yacoub, A., Contessa, J., Caron, R., Amorino, G., Valerie, K., et al. 2003. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 159: 283–300.

    Article  PubMed  CAS  Google Scholar 

  14. Wachsberger, P. R., Burd, R., Marero, N., Daskalakis, C., Ryan, A., McCue, P., et al. 2005. Effect of the tumor vascular-damaging agent, ZD6126, on the radioresponse of U87 glioblastoma. Clin Cancer Res 11: 835–842.

    PubMed  CAS  Google Scholar 

  15. Siemann, D. W., Bibby, M. C., Dark, G. G., Dicker, A. P., Eskens, F. A., Horsman, M. R., et al. 2005. Differentiation and definition of vascular-targeted therapies. Clin Cancer Res 11: 416–420.

    PubMed  CAS  Google Scholar 

  16. Winkler, F., Kozin, S. V., Tong, R. T., Chae, S. S., Booth, M. F., Garkavtsev, I., et al. 2004. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6: 553–563.

    PubMed  CAS  Google Scholar 

  17. Lee, C. G., Heijn, M., di, T. E., Griffon-Etienne, G., Ancukiewicz, M., Koike, C., et al. 2000. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60: 5565–5570.

    PubMed  CAS  Google Scholar 

  18. Jain, R. K. 2005. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58–62.

    Article  PubMed  CAS  Google Scholar 

  19. Inai, T., Mancuso, M., Hashizume, H., Baffert, F., Haskell, A., Baluk, P., et al. 2004. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165: 35–52.

    PubMed  CAS  Google Scholar 

  20. Tong, R. T., Boucher, Y., Kozin, S. V., Winkler, F., Hicklin, D. J., & Jain, R. K. 2004. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64: 3731–3736.

    Article  PubMed  CAS  Google Scholar 

  21. Ansiaux, R., Baudelet, C., Jordan, B. F., Beghein, N., Sonveaux, P., De, W. J., et al. 2005. Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clin Cancer Res 11: 743–750.

    PubMed  CAS  Google Scholar 

  22. Ansiaux, R., Baudelet, C., Jordan, B. F., Crokart, N., Martinive, P., Dewever, J. et al. 2006. Mechanism of reoxygenation after antiangiogenic therapy using SU5416 and its importance for guiding combined antitumor therapy. Cancer Res 66: 9698–9704.

    Article  PubMed  CAS  Google Scholar 

  23. McCarty, M. F., Wey, J., Stoeltzing, O., Liu, W., Fan, F., Bucana, C., et al. 2004. ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor with additional activity against epidermal growth factor receptor tyrosine kinase, inhibits orthotopic growth and angiogenesis of gastric cancer. Mol Cancer Ther 3: 1041–1048.

    PubMed  CAS  Google Scholar 

  24. Thaker, P. H., Yazici, S., Nilsson, M. B., Yokoi, K., Tsan, R. Z., He, J., et al. 2005. Antivascular therapy for orthotopic human ovarian carcinoma through blockade of the vascular endothelial growth factor and epidermal growth factor receptors. Clin Cancer Res 11: 4923–4933.

    Article  PubMed  CAS  Google Scholar 

  25. Dings, R. P., Williams, B. W., Song, C. W., Griffioen, A. W., Mayo, K. H., & Griffin, R. J. 2005. Anginex synergizes with radiation therapy to inhibit tumor growth by radiosensitizing endothelial cells. Int J Cancer 115: 312–319.

    Article  PubMed  CAS  Google Scholar 

  26. Willet C., Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 8136–8138 [correspondence], 2006.

    Google Scholar 

  27. Seiwert T. Y., Haraf D. J., & Cohen E. E. 2006. A phase I study of bevacizumab with fluorouracil and hydroxyurea with oncomitant radiotherapy for poor prognosis head and neck cancer. Proc Am Soc Clin Oncol A5530: 287s.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Mendoza, E., Burd, R., Wachsberger, P., Dicker, A.P. (2008). Normalization of Tumor Vasculature and Improvement of Radiation Response by Antiangiogenic Agents. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics