Skip to main content

Metronomic Low-Dose Antiangiogenic Chemotherapy in Mice and Man

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Summary

Metronomic (antiangiogenic) chemotherapy refers to a form of dose dense chemotherapy involving close regular, even daily, administration of conventional chemotherapy drugs at relatively low doses over long periods in the absence of prolonged drug-free periods. Anti-tumor efficacy, which in some cases can be remarkably effective in various experimental mouse models of cancer, even in the absence of toxicity, is thought to be mediated mainly by antiangiogenic effects, either locally, by direct targeting of activated/dividing endothelial cells in the angiogenic tumor neovasculature, or systemically, by effects on circulating (bone marrow derived) endothelial progenitor cells (CEPs). However, additional mechanisms may also be involved, including stimulation of the immune system by targeting regulatory T cells, and possibly also direct effects on tumor cells—which could include the tumor stem cell(-like) subpopulation. Metronomic chemotherapy, because of its relatively nontoxic nature, is ideal for combination therapy using various targeted biologic agents, especially antiangiogenic drugs. Other promising combinatorial strategies include “doublet” metronomic chemotherapy using two different chemotherapy drugs, interspersing low-dose chemotherapy with higher bolus dose (BD) injections of the same drug, or short-course maximum tolerated dose (MTD) chemotherapy followed by long-term metronomic chemotherapy combined with a targeted biologic agent. Such combinations can sometimes have striking preclinical anti-tumor effects, even in models involving large primary tumors or widespread high-volume metastatic disease.

A number of clinical trials and pilot studies testing various combinatorial metronomic chemotherapy regimens have been undertaken which, in aggregate, appear to confirm encouraging clinical activity in certain advanced-stage cancers, with only modest or minimal host toxicity being observed. Larger randomized phase III trials are thus warranted, especially considering some of the potential advantages of metronomic chemotherapy. These include increased convenience when using oral chemotherapeutic drugs, reduced costs when off-patent chemotherapeutic drugs are used, and reduced severity of toxic side effects. These features make metronomic chemotherapy-type regimens ideal for adjuvant chemotherapy of early-stage cancers, an example of which is long-term, nontoxic daily oral tegafur-uracil (UFT) (a 5-FU prodrug composed of uracil and tegafur) for treatment of early-stage non-small cell lung cancer (NSCLC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Browder T, Butterfield CE, Kraling BM, Marshall B, O’Reilly MS, Folkman J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000;60:1878–1886.

    PubMed  CAS  Google Scholar 

  2. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 2000;105:1045–1047.

    PubMed  CAS  Google Scholar 

  3. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin D, Bohlen P, Kerbel RS. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000;105:R15–R24.

    Article  PubMed  CAS  Google Scholar 

  4. Kerbel RS, Kamen BA. Antiangiogenic basis of low-dose metronomic chemotherapy. Nat Rev Cancer 2004;4:423–436.

    Article  PubMed  CAS  Google Scholar 

  5. Gasparini G. Metronomic scheduling: the future of chemotherapy? Lancet Oncol 2001;2:733–740.

    Article  PubMed  CAS  Google Scholar 

  6. Hahnfeldt P, Folkman J, Hlatky L. Minimizing long-term tumor burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J Theor Biol 2003;220:545–554.

    Article  PubMed  Google Scholar 

  7. Maraveyas A, Lam T, Hetherington JW, Greenman J. Can a rational design for metronomic chemotherapy dosing be devised? Br J Cancer 2005;92:1588–1590.

    Article  PubMed  CAS  Google Scholar 

  8. Kamen BA. Metronomic therapy: it makes sense and is patient friendly. J Pediatr Hematol Oncol 2005;27:571–572.

    Article  PubMed  Google Scholar 

  9. Vogelzang N. Metronomic chemotherapy: teaching old drugs new tricks? Clin Adv Hematol Oncol 2004;2:432–433.

    PubMed  Google Scholar 

  10. Baruchel S, Stempak D. Low-dose metronomic chemotherapy: myth or truth? Onkologie 2006;29:305–307.

    Article  PubMed  Google Scholar 

  11. Kaur H, Budd GT. Metronomic therapy for breast cancer. Curr Oncol Rep 2004;6:49–52.

    Article  PubMed  Google Scholar 

  12. Kamen BA, Glod J, Cole PD. Metronomic therapy from a pharmacologist’s view. J Pediatr Hematol Oncol 2006;28:325–327.

    Article  PubMed  Google Scholar 

  13. Kerbel RS. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. BioEssays 1991;13:31–36.

    Article  PubMed  CAS  Google Scholar 

  14. Miller KD, Sweeney CJ, Sledge GW, Jr. Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol 2001;19:1195–1206.

    PubMed  CAS  Google Scholar 

  15. Kim JT, Kim JS, Ko KW, Kong DS, Kang CM, Kim MH, Son MJ, Song HS, Shin HJ, Lee DS, Eoh W, Nam DH. Metronomic treatment of temozolomide inhibits tumor cell growth through reduction of angiogenesis and augmentation of apoptosis in orthotopic models of gliomas. Oncol Rep 2006;16:33–39.

    PubMed  Google Scholar 

  16. Kong DS, Lee JI, Kim WS, Son MJ, Lim dH, Kim ST, Park K, Kim JH, Eoh W, Nam DH. A pilot study of metronomic temozolomide treatment in patients with recurrent temozolomide-refractory glioblastoma. Oncol Rep 2006;16:1117–1121.

    PubMed  CAS  Google Scholar 

  17. Yap R, Veliceasa D, Emmenegger U, Kerbel RS, McKay LM, Henkin J, Volpert OV. Metronomic low-dose chemotherapy boosts CD95-dependent antiangiogenic effect of the thrombospondin peptide ABT-510: a complementation antiangiogenic strategy. Clin Cancer Res 2005;11:6678–6685.

    Article  PubMed  CAS  Google Scholar 

  18. Quesada AJ, Nelius T, Yap R, Zaichuk TA, Alfranca A, Filleur S, Volpert OV, Redondo JM. In vivo upregulation of CD95 and CD95L causes synergistic inhibition of angiogenesis by TSP1 peptide and metronomic doxorubicin treatment. Cell Death Differ 2005;12:649–658.

    Article  PubMed  CAS  Google Scholar 

  19. Pietras K, Hanahan D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 2005;23:939–952.

    Article  PubMed  CAS  Google Scholar 

  20. Bello L, Carrabba G, Giussani C, Lucini V, Cerutti F, Scaglione F, Landre J, Pluderi M, Tomei G, Villani R, Carroll RS, McL BP, Bikfalvi A. Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res 2001;61:7501–7506.

    PubMed  CAS  Google Scholar 

  21. Bergers G, Hanahan D. Combining antiangiogenic agents with metronomic chemotherapy enhances efficacy against late-stage pancreatic islet carcinomas in mice. Cold Spring Harb Symp Quant Biol 2002;67:293–300.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang L, Yu D, Hicklin DJ, Hannay JA, Ellis LM, Pollock RE. Combined anti-fetal liver kinase 1 monoclonal antibody and continuous low-dose doxorubicin inhibits angiogenesis and growth of human soft tissue sarcoma xenografts by induction of endothelial cell apoptosis. Cancer Res 2002;62:2034–2042.

    PubMed  CAS  Google Scholar 

  23. Citron ML. Dose density in adjuvant chemotherapy for breast cancer. Cancer Invest 2004;22:555–568.

    Article  PubMed  CAS  Google Scholar 

  24. Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer 2005;5:516–525.

    Article  PubMed  CAS  Google Scholar 

  25. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 2000;60:1388–1393.

    PubMed  CAS  Google Scholar 

  26. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.

    Article  PubMed  CAS  Google Scholar 

  27. Shaked Y, Bertolini F, Man S, Rogers MS, Cervi D, Foutz T, Rawn K, Voskas D, Dumont DJ, Ben-David Y, Lawler J, Henkin J, Huber J, Hicklin DJ, D’Amato RJ, Kerbel RS. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 2005;7:101–111.

    PubMed  CAS  Google Scholar 

  28. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, Kerbel RS. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 2003;63:4342–4346.

    PubMed  CAS  Google Scholar 

  29. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R, Kerbel RS. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 2006;313:1785–1787.

    Article  PubMed  CAS  Google Scholar 

  30. Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer 2005;5:423–435.

    Article  PubMed  CAS  Google Scholar 

  31. Cooney MM, van Heeckeren W, Bhakta S, Ortiz J, Remick SC. Drug insight: vascular disrupting agents and angiogenesis–novel approaches for drug delivery. Nat Clin Pract Oncol 2006;3:682–692.

    Article  PubMed  CAS  Google Scholar 

  32. Colleoni M, Rocca A, Sandri MT, Zorzino L, Masci G, Nole F, Peruzzotti G, Robertson C, Orlando L, Cinieri S, De Braud F, Viale G, Goldhirsch A. Low dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol 2002;13:73–80.

    Article  PubMed  CAS  Google Scholar 

  33. Emmenegger U, Man S, Shaked Y, Francia G, Wong JW, Hicklin DJ, Kerbel RS. A comparative analysis of low dose metronomic cyclophosphamide reveals absent or low grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens. Cancer Res 2004;64:3994–4000.

    Article  PubMed  CAS  Google Scholar 

  34. Vacca A, Iurlaro M, Ribatti D, Minischetti M, Nico B, Ria R, Pellegrino A, Dammacco F. Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 1999;94:4143–4155.

    PubMed  CAS  Google Scholar 

  35. Bocci G, Nicolaou KC, Kerbel R. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 2002;62:6938–6943.

    PubMed  CAS  Google Scholar 

  36. Wang J, Lou P, Lesniewski R, Henkin J. Paclitaxel at ultra low concentrations inhibits angiogenesis without affecting cellular microtubule assembly. Anticancer Drugs 2003;14:13–19.

    Article  PubMed  Google Scholar 

  37. Shaked Y, Emmengger U, Man S, Cervi D, Bertolini F, Ben-David Y, Kerbel RS. The optimal biological dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 2005;106:3058–3061.

    Article  PubMed  CAS  Google Scholar 

  38. Bocci G, Francia G, Man S, Lawler J, Kerbel RS. Thrombospondin-1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA 2003;100:12917–12922.

    Article  PubMed  CAS  Google Scholar 

  39. Hamano Y, Sugimoto H, Soubasakos MA, Kieran M, Olsen BR, Lawler J, Sudhakar A, Kalluri R. Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res 2004;64:1570–1574.

    Article  PubMed  CAS  Google Scholar 

  40. Damber JE, Vallbo C, Albertsson P, Lennernas B, Norrby K. The anti-tumour effect of low-dose continuous chemotherapy may partly be mediated by thrombospondin. Cancer Chemother Pharmacol 2006;58:354–360.

    Article  PubMed  CAS  Google Scholar 

  41. Rozados VR, Sanchez AM, Gervasoni SI, Berra HH, Matar P, Scharovsky OG. Metronomic therapy with cyclophosphamide induces rat lymphoma and sarcoma regression, and is devoid of toxicity. Ann Oncol 2004;15:1543–1550.

    Article  PubMed  CAS  Google Scholar 

  42. Kieran MW, Turner CD, Rubin JB, Chi SN, Zimmerman MA, Chordas C, Klement G, Laforme A, Gordon A, Thomas A, Neuberg D, Browder T, Folkman J. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 2005;27:573–581.

    Article  PubMed  Google Scholar 

  43. Kato H, Ichinose Y, Ohta M, Hata E, Tsubota N, Tada H, Watanabe Y, Wada H, Tsuboi M, Hamajima N, Ohta M. A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N Engl J Med 2004;350:1713–1721.

    Article  PubMed  CAS  Google Scholar 

  44. Bocci G, Tuccori M, Emmenegger U, Liguori V, Kerbel RS, Del Tacca M. Cyclophosphamide-methotrexate “metronomic” chemotherapy for the palliative treatment of metastatic breast cancer. A comparative pharmacoeconomic evaluation. Ann Oncol 2004;16:1243–1252.

    Article  Google Scholar 

  45. Schrag D. The price tag on progress—chemotherapy for colorectal cancer. N Engl J Med 2004;351:317–319.

    Article  PubMed  CAS  Google Scholar 

  46. Hermans IF, Chong TW, Palmowski MJ, Harris AL, Cerundolo V. Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model. Cancer Res 2003;63:8408–8413.

    PubMed  CAS  Google Scholar 

  47. Loeffler M, Kruger JA, Reisfeld RA. Immunostimulatory effects of low-dose cyclophosphamide are controlled by inducible nitric oxide synthase. Cancer Res 2005;65:5027–5030.

    Article  PubMed  CAS  Google Scholar 

  48. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 2004;34:336–344.

    Article  PubMed  CAS  Google Scholar 

  49. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B. Metronomic cyclophosphamide regimen selectively depletes CD4(+)CD25 (+) regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 2006;56:641–648.

    Article  PubMed  CAS  Google Scholar 

  50. Buckstein R, Crump M, Shaked Y, Nayar R, Foden C, Turner R, Taylor D, Man S, Baruchel S, Stempak D, Bertolini F, Kerbel RS. High dose celecoxib and metronomic ‘low dose’ cyclophosphamide is effective and safe therapy in patients with relapsed and refractory aggressive histology NHL. Clin Cancer Res 2006;12:5190–5198.

    Article  PubMed  CAS  Google Scholar 

  51. Hafner C, Reichle A, Vogt T. New indications for established drugs: combined tumor-stroma-targeted cancer therapy with PPARgamma agonists, COX-2 inhibitors, mTOR antagonists and metronomic chemotherapy. Curr Cancer Drug Targets 2005;5:393–419.

    Article  PubMed  CAS  Google Scholar 

  52. Vogt T, Hafner C, Bross K, Bataille F, Jauch KW, Berand A, Landthaler M, Andreesen R, Reichle A. Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer 2003;98:2251–2256.

    Article  PubMed  CAS  Google Scholar 

  53. Reichle A, Bross K, Vogt T, Bataille F, Wild P, Berand A, Krause SW, Andreesen R. Pioglitazone and rofecoxib combined with angiostatically scheduled trofosfamide in the treatment of far-advanced melanoma and soft tissue sarcoma. Cancer 2004;101:2247–2256.

    Article  PubMed  CAS  Google Scholar 

  54. Bottini A, Generali D, Brizzi MP, Fox SB, Bersiga A, Bonardi S, Allevi G, Aguggini S, Bodini G, Milani M, Dionisio R, Bernardi C, Montruccoli A, Bruzzi P, Harris AL, Dogliotti L, Berruti A. Randomized phase II trial of letrozole and letrozole plus low-dose metronomic oral cyclophosphamide as primary systemic treatment in elderly breast cancer patients. J Clin Oncol 2006;24:3623–3628.

    Article  PubMed  CAS  Google Scholar 

  55. du Manoir JM, Francia G, Man S, Mossoba M, Medin JA, Viloria-Petit A, Hicklin DJ, Emmenegger U, Kerbel RS. Strategies for delaying or treating in vivo acquired resistance to trastuzumab (Herceptin®) in human breast cancer xenografts. Clin Cancer Res 2006;12:904–916.

    Google Scholar 

  56. Glode LM, Crighton F, Barqawi A, Kerbel RS, Berman C, Crawford D. Metronomic therapy with cyclophosphamide and dexamethasone for prostate cancer. Cancer 2003;98:1643–1648.

    Article  PubMed  CAS  Google Scholar 

  57. Viloria-Petit AM, Rak J, Hung M-C, Rockwell P, Goldstein N, Kerbel RS. Neutralizing antibodies against EGF and ErbB-2/neu receptor tyrosine kinases down-regulate VEGF production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 1997;151:1523–1530.

    Google Scholar 

  58. Lam T, Hetherington JW, Greenman J, Maraveyas A. From total empiricism to a rational design of metronomic chemotherapy phase I dosing trials. Anticancer Drugs 2006;17:113–121.

    Article  PubMed  CAS  Google Scholar 

  59. Cristofanilli M, Charnsangavej C, Hortobagyi GN. Angiogenesis modulation in cancer research: novel clinical approaches. Nat Rev Drug Discov 2002;1:415–426.

    Article  PubMed  CAS  Google Scholar 

  60. Bocci G, Man SM, Green SK, Francia G, Ebos JML, du Manoir JM, Emmenegger U, Ma L, Thorpe P, Davidoff AM, Huber J, Hicklin DJ, Kerbel RS. Increased plasma VEGF as a surrogate marker for optimal therapeutic dosing of VEGFR-2 monoclonal antibodies. Cancer Res 2004;64:6616–6625.

    Google Scholar 

  61. Ng SS, Sparreboom A, Shaked Y, Lee C, Man S, Desai N, Soon-Shiong P, Figg WD, Kerbel RS. Influence of formulation vehicle on metronomic taxane chemotherapy: albumin-bound versus cremophor EL-based paclitaxel. Clin Cancer Res 2006;12:4331–4338.

    Article  PubMed  CAS  Google Scholar 

  62. Munoz R, Man S, Shaked Y, Lee C, Wong J, Francia G, Kerbel RS. Highly efficacious non-toxic treatment for advanced metastatic breast cancer using combination UFT-cyclophosphamide metronomic chemotherapy. Cancer Res 2006;66:3386–3391.

    Article  PubMed  CAS  Google Scholar 

  63. Bertolini F, Shaked Y, Mancuso P, Kerbel RS. The multifaceted circulating endothelial cell in cancer: from promiscuity to surrogate marker and target identification. Nat Rev Cancer 2006;6:835–845.

    Article  PubMed  CAS  Google Scholar 

  64. Mancuso P, Colleoni M, Calleri A, Orlando L, Maisonneuve P, Pruneri G, Agliano A, Goldhirsch A, Shaked Y, Kerbel RS, Bertolini F. Circulating endothelial cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 2006;108:452–459.

    Article  PubMed  CAS  Google Scholar 

  65. Man S, Bocci G, Francia G, Green S, Jothy S, Bergers G, Hanahan D, Bohlen P, Hicklin DJ, Kerbel RS. Antitumor and anti-angiogenic effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res 2002;62:2731–2735.

    PubMed  CAS  Google Scholar 

  66. Shaked Y, Emmenegger U, Francia G, Chen L, Lee CR, Man S, Paraghamian A, Ben David Y, Kerbel RS. Low-dose metronomic combined with intermittent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy. Cancer Res 2005;65:7045–7051.

    Article  PubMed  CAS  Google Scholar 

  67. Young SD, Whissell M, Noble JC, Cano PO, Lopez PG, Germond CJ. Phase II clinical trial results involving treatment with low-dose daily oral cyclophosphamide, weekly vinblastine, and rofecoxib in patients with advanced solid tumors. Clin Cancer Res 2006;12:3092–3098.

    Article  PubMed  CAS  Google Scholar 

  68. Correale P, Cerretani D, Remondo C, Martellucci I, Marsili S, La Placa M, Sciandivasci A, Paolelli L, Pascucci A, Rossi M, Di Bisceglie M, Giorgi G, Gotti G, Francini G. A novel metronomic chemotherapy regimen of weekly platinum and daily oral etoposide in high-risk non-small cell lung cancer patients. Oncol Rep 2006;16:133–140.

    PubMed  CAS  Google Scholar 

  69. Krzyzanowska MK, Tannock IF, Lockwood G, Knox J, Moore M, Bjarnason GA. A phase II trial of continuous low-dose oral cyclophosphamide and celecoxib in patients with renal cell carcinoma. Cancer Chemother Pharmacol 2006;60:135–141.

    Article  PubMed  CAS  Google Scholar 

  70. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature 2004;432:396–401.

    Article  PubMed  CAS  Google Scholar 

  71. Al Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983–3988.

    Article  PubMed  CAS  Google Scholar 

  72. Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci USA 2003;100:3547–3549.

    Article  PubMed  CAS  Google Scholar 

  73. Wicha MS. Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res 2006;12:5606–5607.

    Article  PubMed  Google Scholar 

  74. Tuma RS. The root of tumor growth: stem cell research thrives. J Natl Cancer Inst 2004;96:502–503.

    Article  PubMed  Google Scholar 

  75. Schulenburg A, Ulrich-Pur H, Thurnher D, Erovic B, Florian S, Sperr WR, Kalhs P, Marian B, Wrba F, Zielinski CC, Valent P. Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer 2006;107:2512–2520.

    Article  PubMed  CAS  Google Scholar 

  76. Folkins C, Man S, Shaked Y, Xu P, Hickins DJ, Kerbel RS. Therapies combining a targeted antiangiogenic drug and cytotoxic or metronomic chemotherapy reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 2006;67:3560–3564.

    Article  CAS  Google Scholar 

  77. Garcia AA, Oza AM, Hirte H, et al. Interim report of a phase II clinical trial of bevacizumab (Bev) and low dose metronomic oral cyclophosphamide (mCTX) in recurrent ovarian (OC) and primary peritoneal carcinoma: A California Cancer Consortium Trial. Proc Am Soc Clin Oncol abstract 5000 (2005). (Abstract)

    Google Scholar 

  78. Canady C. Metronomic chemo/Avastin may be effective in ovarian cancer. Oncol News Int 2005;14:8–22.

    Google Scholar 

  79. http: // www.dana-farber.org / abo / news / press / low-dose-chemotherapy-plus-antiangiogenesis-drug- activity-advanced-breast-cancer.html

    Google Scholar 

  80. Orlando L, Cardillo A, Rocca A, Balduzzi A, Ghisini R, Peruzzotti G, Goldhirsch A, D’Alessandro C, Cinieri S, Preda L, Colleoni M. Prolonged clinical benefit with metronomic chemotherapy in patients with metastatic breast cancer. Anticancer Drugs 2006;17:961–967.

    Article  PubMed  CAS  Google Scholar 

  81. Yonekura K, Basaki Y, Chikahisa L, Okabe S, Hashimoto A, Miyadera K, Wierzba K, Yamada Y. UFT and its metabolites inhibit the angiogenesis induced by murine renal cell carcinoma, as determined by a dorsal air sac assay in mice. Clin Cancer Res 1999;5:2185–2191.

    PubMed  CAS  Google Scholar 

  82. Klink T, Bela C, Stoelting S, Peters SO, Broll R, Wagner T. Metronomic trofosfamide inhibits progression of human lung cancer xenografts by exerting anti-angiogenic effects. J Cancer Res Clin Oncol 2006;132:643–652.

    Article  PubMed  CAS  Google Scholar 

  83. Kopp HG, Kanz L, Hartmann JT. Complete remission of relapsing high-grade angiosarcoma with single-agent metronomic trofosfamide. Anticancer Drugs 2006;17:997–998.

    Article  PubMed  CAS  Google Scholar 

  84. Mross K, Ruther A, Gierlich T, Unger C. Tumor growth control by oral trofosfamide in patients with metastatic breast cancer. Onkologie 1998;21:52–56.

    Article  Google Scholar 

  85. Baruchel S, Diezi M, Hargrave D, Stempak D, Gammon J, Moghrabi A, Coppes MJ, Fernandez CV, Bouffet E. Safety and pharmacokinetics of temozolomide using a dose-escalation, metronomic schedule in recurrent paediatric brain tumours. Eur J Cancer 2006;42:2335–2342.

    Article  PubMed  CAS  Google Scholar 

  86. Sterba J, Pavelka Z, Slampa P. Concomitant radiotherapy and metronomic temozolomide in pediatric high-risk brain tumors. Neoplasma 2002;49:117–120.

    PubMed  CAS  Google Scholar 

  87. Klement G, Huang P, Mayer B, Green SK, Man S, Bohlen P, Hicklin D, Kerbel RS. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug resistant human breast cancer xenograft. Clin Cancer Res 2002;8:221–232.

    PubMed  CAS  Google Scholar 

  88. Takahashi N, Haba A, Matsuno F, Seon BK. Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD105) monoclonal antibodies, and synergy between anti-endoglin antibody and cyclophosphamide. Cancer Res 2001;61:7846–7854.

    PubMed  CAS  Google Scholar 

  89. Soffer SZ, Moore JT, Kim E, Huang J, Yokoi A, Manley C, O’Toole K, Stolar C, Middlesworth W, Yamashiro DJ, Kandel JJ. Combination antiangiogenic therapy: increased efficacy in a murine model of Wilms tumor. J Pediatr Surg 2001;36:1177–1181.

    Article  PubMed  CAS  Google Scholar 

  90. Abraham D, Abri S, Hofmann M, Holtl W, Aharinejad S. Low dose carboplatin combined with angiostatic agents prevents metastasis in human testicular germ cell tumor xenografts. J Urol 2003;170:1388–1393.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Kerbel, R.S., Emmenegger, U., Man, S., Munoz, R., Folkins, C., Shaked, Y. (2008). Metronomic Low-Dose Antiangiogenic Chemotherapy in Mice and Man. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics