Skip to main content

Normalization of Tumor Vasculature and Microenvironment

A Potential Mechanism of Action of Antiangiogenic Therapies

  • Chapter
Book cover Antiangiogenic Agents in Cancer Therapy

Summary

Solid tumors require blood vessels for growth, and many new cancer therapies are targeted against the tumor vasculature. The widely held view is that these antiangiogenic therapies destroy the tumor vasculature, thereby depriving the tumor of oxygen and nutrients. Indeed that is the ultimate goal of antiangiogenic therapies. However, emerging preclinical and clinical evidence support an alternative hypothesis, that judicious application of agents that block angiogenesis directly (e.g., bevacizumab and cediranib) and indirectly (e.g., trastuzumab) can also transiently “normalize” the abnormal structure and function of tumor vasculature. In addition to being more efficient for oxygen and drug delivery, the normalized vessels are fortified with pericytes, which can hinder intravasation of cancer cells, a necessary step in hematogenous metastasis. Drugs that induce vascular normalization can also normalize the tumor microenvironment—reduce hypoxia and interstitial fluid pressure—and thus increase the efficacy of many conventional therapies if both are carefully scheduled. Reduced interstitial fluid pressure can decrease tumor-associated edema as well as the probability of lymphatic dissemination. Independent of these effects, alleviation of hypoxia can decrease the selection pressure for a more malignant phenotype. Finally, the increase in proliferation of cancer cells during the “vascular normalization window” can potentially sensitize tumors to cytotoxic agents. Results from our recent phase II clinical trial of cediranib, an oral, pan-vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor (TKI) in glioblastoma patients, show that the normalization window—identified using advanced magnetic resonance imaging (MRI) techniques—can last 1–4 months, and the resulting changes in tumor vasculature correlate with blood circulating molecular and cellular biomarkers in these patients. Antiangiogenic therapies may provide benefit for cancer patients by working through different mechanisms at different points in time. Normalization may be an early consequence of antiangiogenic therapy and offers an opportunity for optimizing delivery and facilitating the cytotoxic effects of chemotherapy and radiation. However, additional consequences of antiangiogenic therapies may include vessel “pruning” and nutrient deprivation of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, R. K., Duda, D. G., Clark, J. W., and Loeffler, J. S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol, 3: 24–40, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R., and Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 350: 2335–2342, 2004.

    Article  PubMed  CAS  Google Scholar 

  3. Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., Lilenbaum, R., and Johnson, D. H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med, 355: 2542–2550, 2006.

    Article  PubMed  CAS  Google Scholar 

  4. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature, 438: 932–936, 2005.

    Article  PubMed  CAS  Google Scholar 

  5. Willett, C. G., Boucher, Y., di Tomaso, E., Duda, D. G., Munn, L. L., Tong, R. T., Chung, D. C., Sahani, D. V., Kalva, S. P., Kozin, S. V., Mino, M., Cohen, K. S., Scadden, D. T., Hartford, A. C., Fischman, A. J., Clark, J. W., Ryan, D. P., Zhu, A. X., Blaszkowsky, L. S., Chen, H. X., Shellito, P. C., Lauwers, G. Y., and Jain, R. K. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med, 10: 145–147, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Willett, C. G., Boucher, Y., Duda, D. G., di Tomaso, E., Munn, L. L., Tong, R. T., Kozin, S. V., Petit, L., Jain, R. K., Chung, D. C., Sahani, D. V., Kalva, S. P., Cohen, K. S., Scadden, D. T., Fischman, A. J., Clark, J. W., Ryan, D. P., Zhu, A. X., Blaszkowsky, L. S., Shellito, P. C., Mino-Kenudson, M., and Lauwers, G. Y. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol, 23: 8136–8139, 2005.

    Article  PubMed  Google Scholar 

  7. Batchelor, T. T., Sorensen, A. G., di Tomaso, E., Zhang, W. T., Duda, D. G., Cohen, K. S., Kozak, K. R., Cahill, D. P., Chen, P. J., Zhu, M., Ancukiewicz, M., Mrugala, M. M., Plotkin, S., Drappatz, J., Louis, D. N., Ivy, P., Scadden, D. T., Benner, T., Loeffler, J. S., Wen, P. Y., and Jain, R. K. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 11: 83–95, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 307: 58–62, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med, 7: 987–989, 2001.

    Article  PubMed  CAS  Google Scholar 

  10. Carmeliet, P. and Jain, R. K. Angiogenesis in cancer and other diseases. Nature, 407: 249–257, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Folkman, J. Tumor angiogenesis: therapeutic implications. N Engl J Med, 285: 1182–1186, 1971.

    Article  PubMed  CAS  Google Scholar 

  12. Jain, R. K. Molecular regulation of vessel maturation. Nat Med, 9: 685–693, 2003.

    Article  PubMed  CAS  Google Scholar 

  13. Padera, T. P., Stoll, B. R., Tooredman, J. B., Capen, D., di Tomaso, E., and Jain, R. K. Pathology: cancer cells compress intratumour vessels. Nature, 427: 695, 2004.

    Article  PubMed  CAS  Google Scholar 

  14. Jain, R. K., Tong, R., and Munn, L. L. Effect of vascular normalization by anti-angiogenic therapy on interstitial hypertension, peri-tumor edema and lymphatic metastasis: insights from a mathematical model. Cancer Res, 67:2729–2735, 2007.

    Article  PubMed  CAS  Google Scholar 

  15. Dvorak, H. F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol, 20: 4368–4380, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Gazit, Y., Baish, J. W., Safabakhsh, N., Leunig, M., Baxter, L. T., and Jain, R. K. Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation, 4: 395–402, 1997.

    Article  PubMed  CAS  Google Scholar 

  17. Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., and Jain, R. K. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc Natl Acad Sci USA, 95: 4607–4612, 1998.

    Article  PubMed  CAS  Google Scholar 

  18. Inai, T., Mancuso, M., Hashizume, H., Baffert, F., Haskell, A., Baluk, P., Hu-Lowe, D. D., Shalinsky, D. R., Thurston, G., Yancopoulos, G. D., and McDonald, D. M. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol, 165: 35–52, 2004.

    PubMed  CAS  Google Scholar 

  19. Kadambi, A., Carreira, C. M., Yun, C., Padera, T. P., Dolmans, D., Carmeliet, P., Fukumura, D., and Jain, R. K. Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: Role of VEGF-receptor 2 and host VEGF-A. Cancer Res, 61: 2404–2408, 2001.

    PubMed  CAS  Google Scholar 

  20. Lee, C. G., Heijn, M., di Tomaso, E., Griffon-Etienne, G., Ancukiewicz, M., Koike, C., Park, K. R., Ferrara, N., Jain, R. K., Suit, H. D., and Boucher, Y. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res, 60: 5565–5570, 2000.

    PubMed  CAS  Google Scholar 

  21. Teicher, B. A. A systems approach to cancer therapy. (Antioncogenics + standard cytotoxics–>mechanism(s) of interaction). Cancer Metastasis Rev, 15: 247–272, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Tong, R. T., Boucher, Y., Kozin, S. V., Winkler, F., Hicklin, D. J., and Jain, R. K. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res, 64: 3731–3736, 2004.

    Article  PubMed  CAS  Google Scholar 

  23. Wildiers, H., Guetens, G., De Boeck, G., Verbeken, E., Landuyt, B., Landuyt, W., de Bruijn, E. A., and van Oosterom, A. T. Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer, 88: 1979–1986, 2003.

    Article  PubMed  CAS  Google Scholar 

  24. Winkler, F., Kozin, S. V., Tong, R. T., Chae, S. S., Booth, M. F., Garkavtsev, I., Xu, L., Hicklin, D. J., Fukumura, D., di Tomaso, E., Munn, L. L., and Jain, R. K. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell, 6: 553–563, 2004.

    PubMed  CAS  Google Scholar 

  25. Yuan, F., Chen, Y., Dellian, M., Safabakhsh, N., Ferrara, N., and Jain, R. K. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA, 93: 14765–14770, 1996.

    Article  PubMed  CAS  Google Scholar 

  26. Steiner, H. H., Karcher, S., Mueller, M. M., Nalbantis, E., Kunze, S., and Herold-Mende, C. Autocrine pathways of the vascular endothelial growth factor (VEGF) in glioblastoma multiforme: clinical relevance of radiation-induced increase of VEGF levels. J Neurooncol, 66: 129–138, 2004.

    Article  PubMed  Google Scholar 

  27. Holash, J., Maisonpierre, P. C., Compton, D., Boland, P., Alexander, C. R., Zagzag, D., Yancopoulos, G. D., and Wiegand, S. J. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science, 284: 1994–1998, 1999.

    Article  PubMed  CAS  Google Scholar 

  28. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 359: 843–845, 1992.

    Article  PubMed  CAS  Google Scholar 

  29. Samoto, K., Ikezaki, K., Ono, M., Shono, T., Kohno, K., Kuwano, M., and Fukui, M. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res, 55: 1189–1193, 1995.

    PubMed  CAS  Google Scholar 

  30. Schmidt, N. O., Westphal, M., Hagel, C., Ergun, S., Stavrou, D., Rosen, E. M., and Lamszus, K. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer, 84: 10–18, 1999.

    Article  PubMed  CAS  Google Scholar 

  31. Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D., and Jain, R. K. Tumor biology - Herceptin acts as an anti-angiogenic cocktail. Nature, 416: 279–280, 2002.

    Article  PubMed  CAS  Google Scholar 

  32. Jain, R. K., Safabakhsh, N., Sckell, A., Chen, Y., Jiang, P., Benjamin, L., Yuan, F., and Keshet, E. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA, 95: 10820–10825, 1998.

    Article  PubMed  CAS  Google Scholar 

  33. Kerbel, R. S. and Kamen, B. A. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer, 4: 423–436, 2004.

    Article  PubMed  CAS  Google Scholar 

  34. Duda, D. G., Cohen, K. S., di Tomaso, E., Au, P., Klein, R. J., Scadden, D. T., Willett, C. G., and Jain, R. K. Differential CD146 expression on circulating versus tissue endothelial cells in rectal cancer patients: implications for circulating endothelial and progenitor cells as biomarkers for antiangiogenic therapy. J Clin Oncol, 24: 1449–1453, 2006.

    Article  PubMed  CAS  Google Scholar 

  35. Jubb, A. M., Hurwitz, H. I., Bai, W., Holmgren, E. B., Tobin, P., Guerrero, A. S., Kabbinavar, F., Holden, S. N., Novotny, W. F., Frantz, G. D., Hillan, K. J., and Koeppen, H. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol, 24: 217–227, 2006.

    Article  PubMed  CAS  Google Scholar 

  36. Duda, D. G., Batchelor, T. T., Willett, C. G., and Jain, R. K. The current progress, hurdles and future prospects in anti-VEGF targeted cancer therapy strategies. Trends Mol Med, 13: 223–230, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Jain, R.K., Batchelor, T.T., Duda, D.G., Willett, C.G. (2008). Normalization of Tumor Vasculature and Microenvironment. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics