Skip to main content

Lymphatic System in the Pathology of Cancer

  • Chapter
  • 1700 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

Blood vessels in general and micro-vessels in particular, must be maintained in a highly dynamic state. The ability of the circulation to alter vessel permeability during inflammation or to repeatedly grow and regress during the female reproductive cycle are but two examples of such dynamism. One consequence that stems from above considerations is that the microcirculation cannot be both flexible and completely impermeable to plasma. Thus, certain amount of plasma escapes from blood vessels into the interstitial tissue under normal conditions and this leakage is greatly increased during pathological states. The lymphatic system represents a parallel vasculature whose primary function is to return excess interstitial fluid to the circulation. The lymphatic system also acquired a secondary function as a conduit of leukocytes from the periphery to lymph nodes thus facilitating immune response to pathogens. This function is frequently subverted by cancer cells that invade tumor-associated lymphatic vessels and migrate to the regional lymph nodes. The presence of tumor cells in lymph nodes is an important clinical predictor of disease severity and prognosis. In some cancers, lymphatic invasion also represents a route of tumor dissemination to distant organs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steeg PS: Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 2006, 12:895–904.

    Article  PubMed  CAS  Google Scholar 

  2. Oliver G, Detmar M: The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev. 2002, 16:773–783.

    Article  PubMed  CAS  Google Scholar 

  3. Oliver G: Lymphatic vasculature development. Nat. Rev. Immunol. 2004, 4:35–45.

    Article  PubMed  CAS  Google Scholar 

  4. Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M: Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am. J. Pathol. 2003, 162:575–586.

    PubMed  CAS  Google Scholar 

  5. Jackson DG: Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS 2004, 112:526–538.

    Article  PubMed  CAS  Google Scholar 

  6. Gale NW, Prevo R, Espinosa J, Ferguson, DJ, doiminguez MG, Yancopousloas GD, Thurston G, Jackon DG. Normal lymphatic development and function in mice deficient for thelymphatic hyaluronan receptor LYVE-1. Mol cell Biol. 2007; 27:595–604.

    Article  PubMed  CAS  Google Scholar 

  7. Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D: Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol. 1999, 154:385–394.

    PubMed  CAS  Google Scholar 

  8. Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver G, Detmar M: T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003, 22:3546–3556.

    Article  PubMed  CAS  Google Scholar 

  9. Swartz MA: The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 2001, 50:3–20.

    Article  PubMed  CAS  Google Scholar 

  10. Witte MH, Bernas MJ, Martin CP, Witte CL: Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology. Microsc. Res. Tech. 2001, 55:122–145.

    Article  PubMed  CAS  Google Scholar 

  11. Lauweryns JM: Stereomicroscopic funnel-like architecture of pulmonary lymphatic valves. Lymphology 1971, 4:125–132.

    PubMed  CAS  Google Scholar 

  12. Shibuya M, Claesson-Welsh L: Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res. 2006, 312:549–560.

    Article  PubMed  CAS  Google Scholar 

  13. Alitalo K, Tammela T, Petrova TV: Lymphangiogenesis in development and human disease. Nature 2005, 438:946–953.

    Article  PubMed  CAS  Google Scholar 

  14. Pajusola K, Aprelikova O, Korhonen J, Kaipainen A, Pertovaara L, Alitalo R, Alitalo K: FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res. 1992, 52:5738–5743.

    PubMed  CAS  Google Scholar 

  15. Kaipainen A, Korhonen J, Mustonen T, van H, V, Fang GH, Dumont D, Breitman M, Alitalo K: Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA 1995, 92:3566–3570.

    Article  PubMed  CAS  Google Scholar 

  16. Jussila L, Alitalo K: Vascular growth factors and lymphangiogenesis. Physiol. Rev. 2002, 82:673–700.

    PubMed  CAS  Google Scholar 

  17. Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, Saksela O, Kalkkinen N, Alitalo K: Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 1997, 16:3898–3911.

    Article  PubMed  CAS  Google Scholar 

  18. Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA: Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl. Acad. Sci. USA 1998, 95:548–553.

    Article  PubMed  CAS  Google Scholar 

  19. Dixelius J, Makinen T, Wirzenius M, Karkkainen MJ, Wernstedt C, Alitalo K, Claesson-Welsh L: Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites.J. Biol. Chem. 2003, 278:40973–40979.

    Article  PubMed  CAS  Google Scholar 

  20. Manokaran G: Lymphatic filariasis. Lymphology 2005, 38:105.

    PubMed  CAS  Google Scholar 

  21. Albertini JJ, Lyman GH, Cox C, Yeatman T, Balducci L, Ku N, Shivers S, Berman C, Wells K, Rapaport D, Shons A, Horton J, Greenberg H, Nicosia S, Clark R, Cantor A, Reintgen DS: Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 1996, 276:1818–1822.

    Article  PubMed  CAS  Google Scholar 

  22. Lohela M, Saaristo A, Veikkola T, Alitalo K: Lymphangiogenic growth factors, receptors and therapies. Thromb. Haemost. 2003, 90:167–184.

    PubMed  CAS  Google Scholar 

  23. Cozen W, Bernstein L, Wang F, Press MF, Mack TM: The risk of angiosarcoma following primary breast cancer. Br. J. Cancer 1999, 81:532–536.

    Article  PubMed  CAS  Google Scholar 

  24. Weninger W, Partanen TA, Breiteneder-Geleff S, Mayer C, Kowalski H, Mildner M, Pammer J, Sturzl M, Kerjaschki D, Alitalo K, Tschachler E: Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi’s sarcoma tumor cells. Lab. Invest. 1999, 79:243–251.

    PubMed  CAS  Google Scholar 

  25. Pepper MS: Lymphangiogenesis and tumor metastasis: myth or reality? Clin. Cancer Res. 2001, 7:462–468.

    PubMed  CAS  Google Scholar 

  26. Nisato RE, Tille JC, Pepper MS: Lymphangiogenesis and tumor metastasis. Thromb. Haemost. 2003, 90:591–597.

    PubMed  CAS  Google Scholar 

  27. Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K: Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2002, 2:573–583.

    Article  PubMed  CAS  Google Scholar 

  28. Streit M, Detmar M: Angiogenesis, lymphangiogenesis, and melanoma metastasis. Oncogene 2003, 22:3172–3179.

    Article  PubMed  CAS  Google Scholar 

  29. Nishida N, Yano H, Komai K, Nishida T, Kamura T, Kojiro M: ascular endothelial growth factor C and vascular endothelial growth factor receptor 2 are related closely to the prognosis of patients with ovarian carcinoma. Cancer. 2004, 101:1364–1374.

    Article  PubMed  CAS  Google Scholar 

  30. Ueda M, Terai Y, Yamashita Y, Kumagai K, Ueki K, Yamaguchi H, Akise D, Hung YC, Ueki M: Correlation between vascular endothelial growth factor-C expression and invasion phenotype in cervical carcinomas. Int.J. Cancer 2002, 98:335–343.

    Article  PubMed  CAS  Google Scholar 

  31. Yokoyama Y, Charnock-Jones DS, Licence D, Yanaihara A, Hastings JM, Holland CM, Emoto M, Umemoto M, Sakamoto T, Sato S, Mizunuma H, Smith SK: Vascular endothelial growth factor-D is an independent prognostic factor in epithelial ovarian carcinoma. Br. J. Cancer 2003, 88:237–244.

    Article  PubMed  CAS  Google Scholar 

  32. White JD, Hewett PW, Kosuge D, McCulloch T, Enholm BC, Carmichael J, Murray JC: Vascular endothelial growth factor-D expression is an independent prognostic marker for survival in colorectal carcinoma. Cancer Res. 2002, 62:1669–1675.

    PubMed  CAS  Google Scholar 

  33. Juttner S, Wissmann C, Jons T, Vieth M, Hertel J, Gretschel S, Schlag PM, Kemmner W, Hocker M: Vascular endothelial growth factor-D and its receptor VEGFR-3: two novel independent prognostic markers in gastric adenocarcinoma. J. Clin. Oncol. 2006, 24:228–240.

    Article  PubMed  CAS  Google Scholar 

  34. Mattila MM, Ruohola JK, Karpanen T, Jackson DG, Alitalo K, Harkonen PL: VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int.J. Cancer 2002, 98:946–951.

    Article  PubMed  CAS  Google Scholar 

  35. Skobe M, Hamberg LM, Hawighorst T, Schirner M, Wolf GL, Alitalo K, Detmar M: Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am. J. Pathol. 2001, 159:893–903.

    PubMed  CAS  Google Scholar 

  36. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG: VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med. 2001, 7:186–191.

    Article  PubMed  CAS  Google Scholar 

  37. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS: Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 2001, 20:672–682.

    Article  PubMed  CAS  Google Scholar 

  38. Jain RK, Padera TP: Prevention and treatment of lymphatic metastasis by antilymphangiogenic therapy. J. Natl. Cancer Inst. 2002, 94:785–787.

    PubMed  Google Scholar 

  39. Gasparini G, Longo R, Toi M, Ferrara N: Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat. Clin. Pract. Oncol. 2005, 2:562–577.

    Article  PubMed  CAS  Google Scholar 

  40. Feldmann M, Brennan FM, Foxwell BM, Taylor PC, Williams RO, Maini RN: Anti-TNF therapy: where have we got to in 2005? J. Autoimmun. 2005, 25 Suppl:26–8. Epub@2005 November2:26–28.

    Article  PubMed  CAS  Google Scholar 

  41. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S, Jaattela M, Alitalo K: Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 2001, 61:1786–1790.

    PubMed  CAS  Google Scholar 

  42. Achen MG, Roufail S, Domagala T, Catimel B, Nice EC, Geleick DM, Murphy R, Scott AM, Caesar C, Makinen T, Alitalo K, Stacker SA: Monoclonal antibodies to vascular endothelial growth factor-D block its interactions with both VEGF receptor-2 and VEGF receptor-3. Eur. J. Biochem. 2000, 267:2505–2515.

    Article  PubMed  CAS  Google Scholar 

  43. He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, Alitalo K: Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J. Natl. Cancer Inst. 2002, 94:819–825.

    PubMed  CAS  Google Scholar 

  44. Lin J, Lalani AS, Harding TC, Gonzalez M, Wu WW, Luan B, Tu GH, Koprivnikar K, VanRoey MJ, He Y, Alitalo K, Jooss K: Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res. 2005, 65:6901–6909.

    Article  PubMed  CAS  Google Scholar 

  45. Krishnan J, Kirkin V, Steffen A, Hegen M, Weih D, Tomarev S, Wilting J, Sleeman JP: Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res. 2003, 63:713–722.

    PubMed  CAS  Google Scholar 

  46. Chen Z, Varney ML, Backora MW, Cowan K, Solheim JC, Talmadge JE, Singh RK: Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res. 2005, 65:9004–9011.

    Article  PubMed  CAS  Google Scholar 

  47. Mendelsohn J, Baselga J: Epidermal growth factor receptor targeting in cancer. Semin. Oncol. 2006, 33:369–385.

    Article  PubMed  CAS  Google Scholar 

  48. Kubo H, Fujiwara T, Jussila L, Hashi H, Ogawa M, Shimizu K, Awane M, Sakai Y, Takabayashi A, Alitalo K, Yamaoka Y, Nishikawa SI: Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 2000, 96:546–553.

    PubMed  CAS  Google Scholar 

  49. Kubo H, Cao R, Brakenhielm E, Makinen T, Cao Y, Alitalo K: Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc. Natl. Acad. Sci. USA 2002, 99:8868–8873.

    Article  PubMed  CAS  Google Scholar 

  50. Pytowski B, Goldman J, Persaud K, Wu Y, Witte L, Hicklin DJ, Skobe M, Boardman KC, Swartz MA: Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J. Natl. Cancer Inst. 2005, 97:14–21.

    PubMed  CAS  Google Scholar 

  51. Persaud K, Tille JC, Liu M, Zhu Z, Jimenez X, Pereira DS, Miao HQ, Brennan LA, Witte L, Pepper MS, Pytowski B: Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J. Cell Sci. 2004, 117:2745–2756.

    Article  PubMed  CAS  Google Scholar 

  52. Karpanen T, Wirzenius M, Makinen T, Veikkola T, Haisma HJ, Achen MG, Stacker SA, Pytowski B, Yla-Herttuala S, Alitalo K: Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am. J. Pathol. 2006, 169:708–718.

    Article  PubMed  CAS  Google Scholar 

  53. Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y, Pytowski B, Skobe M: Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res. 2006, 66:2650–2657.

    Article  PubMed  CAS  Google Scholar 

  54. Hoshida T, Isaka N, Hagendoorn J, di TE, Chen YL, Pytowski B, Fukumura D, Padera TP, Jain RK: Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res. 2006, 66:8065–8075.

    Article  PubMed  CAS  Google Scholar 

  55. He Y, Rajantie I, Pajusola K, Jeltsch M, Holopainen T, Yla-Herttuala S, Harding T, Jooss K, Takahashi T, Alitalo K: Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 2005, 65:4739–4746.

    Article  PubMed  CAS  Google Scholar 

  56. Valtola R, Salven P, Heikkila P, Taipale J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, deWaal R, Alitalo K: VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol. 1999, 154:1381–1390.

    PubMed  CAS  Google Scholar 

  57. Partanen TA, Alitalo K, Miettinen M: Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer. 1999, 86:2406–2412.

    Article  PubMed  CAS  Google Scholar 

  58. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M: VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood. 2007, 109:1010–1017.

    Article  PubMed  CAS  Google Scholar 

  59. Ruddell A, Mezquita P, Brandvold KA, Farr A, Iritani BM: B lymphocyte-specific c-Myc expression stimulates early and functional expansion of the vasculature and lymphatics during lymphomagenesis. Am. J. Pathol. 2003, 163:2233–2245.

    PubMed  CAS  Google Scholar 

  60. Coussens LM, Fingleton B, Matrisian LM: Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002, 295:2387–2392.

    Article  PubMed  CAS  Google Scholar 

  61. Achen MG, Mann GB, Stacker SA: Targeting lymphangiogenesis to prevent tumour metastasis. Br. J. Cancer. 2006, 94:1355–1360.

    Article  PubMed  CAS  Google Scholar 

  62. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Jr., Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N: Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 2005, 353:1673–1684.

    Article  PubMed  CAS  Google Scholar 

  63. Dirix LY, Dam PV, Prove A, Vermeulen PB: Inflammatory breast cancer: current understanding. Curr. Opin. Oncol. 2006, 18:563–571.

    Article  PubMed  CAS  Google Scholar 

  64. Van dA, I, Van Laere SJ, Van den Eynden GG, Benoy I, van DP, Colpaert CG, Fox SB, Turley H, Harris AL, Van Marck EA, Vermeulen PB, Dirix LY: Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin. Cancer Res. 2004, 10:7965–7971.

    Article  Google Scholar 

  65. Van dA, I, Van den Eynden GG, Colpaert CG, Van Laere SJ, van DP, Van Marck EA, Dirix LY, Vermeulen PB: Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin. Cancer Res. 2005, 11:7637–7642.

    Article  CAS  Google Scholar 

  66. Van Laere SJ, Van dA, I, Van den Eynden GG, Elst HJ, Weyler J, Harris AL, van DP, Van Marck EA, Vermeulen PB, Dirix LY: Nuclear factor-kappaB signature of inflammatory breast cancer by cDNA microarray validated by quantitative real-time reverse transcription-PCR, immunohistochemistry, and nuclear factor-kappaB DNA-binding. Clin. Cancer Res. 2006, 12:3249–3256.

    Article  PubMed  Google Scholar 

  67. Ristimaki A, Narko K, Enholm B, Joukov V, Alitalo K: Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J. Biol. Chem. 1998, 273:8413–8418.

    Article  PubMed  CAS  Google Scholar 

  68. Cueni LN, Detmar M: New insights into the molecular control of the lymphatic vascular system and its role in disease. J. Invest Dermatol. 2006, 126:2167–2177.

    Article  PubMed  CAS  Google Scholar 

  69. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST: Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J. Natl. Cancer Inst. 2001, 93:1638–1643.

    Article  PubMed  CAS  Google Scholar 

  70. Yang CH, Cristofanilli M: Systemic treatments for inflammatory breast cancer. Breast Dis. 2005, 22:55–65.

    PubMed  CAS  Google Scholar 

  71. Cabioglu N, Yazici MS, Arun B, Broglio KR, Hortobagyi GN, Price JE, Sahin A: CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin. Cancer Res. 2005, 11:5686–5693.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Pytowski, B. (2008). Lymphatic System in the Pathology of Cancer. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics