Skip to main content

Tumor Blood Vessels

Structure, Function and Classification

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

The tumor vasculature is largely induced by secreted VEGF-A and consists of a heterogeneous mixture of highly abnormal blood vessels. Recently, it has been possible to replicate many of these vessel types by introducing an adenovirus expressing VEGF-A164 (Ad-VEGF-A164) into mouse tissues. At least five different microvessels form in sequence from preexisting venules, each with distinctly different structural and functional properties. Mother vessels (MV) from first and evolve into several types of daugther vessels: bridged MV, capillaries, glomeruloid microvascular proliferations (GMP), and vascular malformations (VM). In addition to this angiogenic response, feeder arteries (FA) and draining veins (DV) develop from preexisting arteries and veins, respectively, to supply and drain the tumor microvasculature. This classification has helped to elucidate the steps and mechanisms by which tumors induce new blood vessels and hopefully will lead to the identification of new therapeutic targets that can improve anti-angiogenic tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Palade G. The microvascular endothelium revisited. In: Simionescu N, Simionescu M, eds. Endothelial cell biology in health and disease. New York: Plenum Press; 1988.

    Google Scholar 

  2. Schubert W, Frank PG, Woodman SE, et al. Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 2002;277(42):40091–8.

    Article  PubMed  CAS  Google Scholar 

  3. Majno G, Palade GE, Schoefl GI. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol 1961;11:607–26.

    Article  PubMed  CAS  Google Scholar 

  4. Majno G, Shea SM, Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol 1969;42(3):647–72.

    Article  PubMed  CAS  Google Scholar 

  5. Neal CR, Michel CC. Transcellular gaps in microvascular walls of frog and rat when permeability is increased by perfusion with the ionophore A23187. J Physiol 1995;488(Pt 2):427–37.

    PubMed  CAS  Google Scholar 

  6. Feng D, Nagy JA, Hipp J, Dvorak HF, Dvorak AM. Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. J Exp Med 1996;183(5):1981–6.

    Article  PubMed  CAS  Google Scholar 

  7. Feng D, Nagy JA, Hipp J, Pyne K, Dvorak HF, Dvorak AM. Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores. J Physiol 1997;504(Pt 3):747–61.

    Article  PubMed  CAS  Google Scholar 

  8. Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA, Dvorak HF. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J Leukoc Biol 1996;59(1):100–15.

    PubMed  CAS  Google Scholar 

  9. Carman CV, Springer TA. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 2004;167(2):377–88.

    Article  PubMed  CAS  Google Scholar 

  10. Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 1998;187(6):903–15.

    Article  PubMed  CAS  Google Scholar 

  11. Warren B. The vascular morphology of tumors. In: Peterson H-I, ed. Tumor blood circulation: angiogenesis, vascular morphology and blood flow of experimental and human tumors. Boca Raton: CRC Press; 1979:1–47.

    Google Scholar 

  12. Weidner N. Angiogenesis as a predictor of clinical outcome in cancer patients. Hum Pathol 2000;31(4):403–5.

    Article  PubMed  CAS  Google Scholar 

  13. Chaplin DJ, Olive PL, Durand RE. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 1987;47(2):597–601.

    PubMed  CAS  Google Scholar 

  14. Peterson H-I. The microcirculation of tumors. In: Orr F, Buchanan M, Weiss L, eds. Microcirculation in cancer metastasis. Boca Raton: CRC Press; 1991:277–98.

    Google Scholar 

  15. Gullino P. Extracellular compartments of solid tumors. In: Becker F, ed. Cancer: A comprehensive treatise. New York: Plenum Press; 1975:327–54.

    Google Scholar 

  16. Jain RK. Determinants of tumor blood flow: a review. Cancer Res 1988;48(10):2641–58.

    PubMed  CAS  Google Scholar 

  17. Sevick EM, Jain RK. Geometric resistance to blood flow in solid tumors perfused ex vivo: effects of tumor size and perfusion pressure. Cancer Res 1989;49(13):3506–12.

    PubMed  CAS  Google Scholar 

  18. Sevick EM, Jain RK. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity. Cancer Res 1989;49(13):3513–9.

    PubMed  CAS  Google Scholar 

  19. Stubbs M, McSheehy PM, Griffiths JR, Bashford CL. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 2000;6(1):15–9.

    Article  PubMed  CAS  Google Scholar 

  20. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 1999;237:97–132.

    PubMed  CAS  Google Scholar 

  21. Bates DO, Lodwick D, Williams B. Vascular endothelial growth factor and microvascular permeability. Microcirculation 1999;6(2):83–96.

    Article  PubMed  CAS  Google Scholar 

  22. Michel CC, Curry FE. Microvascular permeability. Physiol Rev 1999;79(3):703–61.

    PubMed  CAS  Google Scholar 

  23. Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 1994;74(1):163–219.

    PubMed  CAS  Google Scholar 

  24. Dvorak H. Tumor architecture and targeted delivery. In: Abrams P, Fritzberg A, eds. Radioimmunotherapy of cancer. New York: Marcel Dekker, Inc.; 2000:107–35.

    Google Scholar 

  25. Dvorak H. Tumor blood vessels. In: Aird W, ed. The endothelium: A comprehensive reference. Cambridge: Cambridge University Press; 2007 (in press).

    Google Scholar 

  26. Denekamp J, Hobson B. Endothelial-cell proliferation in experimental tumours. Br J Cancer 1982;46(5):711–20.

    PubMed  CAS  Google Scholar 

  27. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999;284(5422):1994–8.

    Article  PubMed  CAS  Google Scholar 

  28. Leenders WP, Kusters B, de Waal RM. Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium 2002;9(2):83–7.

    Article  PubMed  Google Scholar 

  29. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407(6801):249–57.

    Article  PubMed  CAS  Google Scholar 

  30. Folkman J, Klagsbrun M. Angiogenic factors. Science 1987;235(4787):442–7.

    Article  PubMed  CAS  Google Scholar 

  31. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407(6801):242–8.

    Article  PubMed  CAS  Google Scholar 

  32. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002;20(21):4368–80.

    Article  PubMed  CAS  Google Scholar 

  33. Dvorak HF. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol 2003;162(6):1747–57.

    PubMed  CAS  Google Scholar 

  34. Guidi AJ, Abu-Jawdeh G, Berse B, et al. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst 1995;87(16):1237–45.

    Article  PubMed  CAS  Google Scholar 

  35. Brown LF, Berse B, Jackman RW, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Human Pathol 1995;26(1):86–91.

    Article  CAS  Google Scholar 

  36. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350(23):2335–42.

    Article  PubMed  CAS  Google Scholar 

  37. Crane CH, Ellis LM, Abbruzzese JL, et al. Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capecitabine in locally advanced pancreatic cancer. J Clin Oncol 2006;24(7):1145–51.

    Article  PubMed  CAS  Google Scholar 

  38. Ellis LM. Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. Semin Oncol 2006;33(5 Suppl 10):S1–7.

    Article  PubMed  CAS  Google Scholar 

  39. Ellis LM, Rosen L, Gordon MS. Overview of anti-VEGF therapy and angiogenesis. Part 1: Angiogenesis inhibition in solid tumor malignancies. Clin Adv Hematol Oncol 2006;4(1):suppl 1–10; quz 1–2.

    PubMed  Google Scholar 

  40. Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract 2006;3(1):24–40.

    CAS  Google Scholar 

  41. Willett CG, Kozin SV, Duda DG, et al. Combined vascular endothelial growth factor-targeted therapy and radiotherapy for rectal cancer: theory and clinical practice. Semin Oncol 2006;33(5 Suppl 10):S35–40.

    Article  PubMed  CAS  Google Scholar 

  42. Pettersson A, Nagy JA, Brown LF, et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 2000;80(1):99–115.

    Article  PubMed  CAS  Google Scholar 

  43. Zeng H, Qin L, Zhao D, et al. Orphan nuclear receptor TR3/Nur77 regulates VEGF-A-induced angiogenesis through its transcriptional activity. J Exp Med 2006;203(3):719–29.

    Article  PubMed  CAS  Google Scholar 

  44. Nagy JA, Feng D, Vasile E, et al. Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab Invest 2006;86(8):767–80.

    PubMed  CAS  Google Scholar 

  45. Stiver SI, Tan X, Brown LF, Hedley-Whyte ET, Dvorak HF. VEGF-A angiogenesis induces a stable neovasculature in adult murine brain. J Neuropathol Exp Neurol 2004;63(8):841–55.

    PubMed  CAS  Google Scholar 

  46. Nagy JA, Dvorak AM, Dvorak HF. VEGF-A(164/165) and PlGF: roles in angiogenesis and arteriogenesis. Trends Cardiovasc Med 2003;13(5):169–75.

    Article  PubMed  CAS  Google Scholar 

  47. Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002;196(11):1497–506.

    Article  PubMed  CAS  Google Scholar 

  48. Dadras SS, Detmar M. Angiogenesis and lymphangiogenesis of skin cancers. Hematol Oncol Clin North Am 2004;18(5):1059–70, viii.

    Article  PubMed  Google Scholar 

  49. He Y, Karpanen T, Alitalo K. Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta 2004;1654(1):3–12.

    PubMed  CAS  Google Scholar 

  50. Jain RK. Angiogenesis and lymphangiogenesis in tumors: insights from intravital microscopy. Cold Spring Harb Symp Quant Biol 2002;67:239–48.

    Article  PubMed  CAS  Google Scholar 

  51. Paku S, Paweletz N. First steps of tumor-related angiogenesis. Lab Invest 1991;65(3):334–46.

    PubMed  CAS  Google Scholar 

  52. Swayne GT, Smaje LH, Bergel DH. Distensibility of single capillaries and venules in the rat and frog mesentery. Int J Microcirc Clin Exp 1989;8(1):25–42.

    PubMed  CAS  Google Scholar 

  53. Feng D, Nagy J, Dvorak A, Dvorak H. Different pathways of macromolecule extravasation from hyperpermeable tumor vessels. Microvasc Res 2000;59:24–37.

    Article  PubMed  CAS  Google Scholar 

  54. Nagy JA, Morgan ES, Herzberg KT, Manseau EJ, Dvorak AM, Dvorak HF. Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining. Cancer Res 1995;55(2):376–85.

    PubMed  CAS  Google Scholar 

  55. Ren G, Michael LH, Entman ML, Frangogiannis NG. Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem 2002;50(1):71–9.

    PubMed  CAS  Google Scholar 

  56. Egginton S, Zhou AL, Brown MD, Hudlicka O. Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res 2001;49(3):634–46.

    Article  PubMed  CAS  Google Scholar 

  57. Clauss M, Grell M, Fangmann C, Fiers W, Scheurich P, Risau W. Synergistic induction of endothelial tissue factor by tumor necrosis factor and vascular endothelial growth factor: functional analysis of the tumor necrosis factor receptors. FEBS Lett 1996;390(3):334–8.

    Article  PubMed  CAS  Google Scholar 

  58. Sundberg C, Nagy JA, Brown LF, et al. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am J Pathol 2001;158(3):1145–60.

    PubMed  CAS  Google Scholar 

  59. Straume O, Chappuis PO, Salvesen HB, et al. Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers. Cancer Res 2002;62(23):6808–11.

    PubMed  CAS  Google Scholar 

  60. Goffin JR, Straume O, Chappuis PO, et al. Glomeruloid microvascular proliferation is associated with p53 expression, germline BRCA1 mutations and an adverse outcome following breast cancer. Br J Cancer 2003;89(6):1031–4.

    Article  PubMed  CAS  Google Scholar 

  61. McKee P. Pathology of the skin with clinical correlations. London: Mosby International; 1996.

    Google Scholar 

  62. Baker JL. Retinal capillary hemangioma. J Am Optom Assoc 1991;62(10):776–9.

    PubMed  CAS  Google Scholar 

  63. Farah ME, Uno F, Hofling-Lima AL, Morales PH, Costa RA, Cardillo JA. Transretinal feeder vessel ligature in von Hippel-Lindau disease. Eur J Ophthalmol 2001;11(4):386–8.

    PubMed  CAS  Google Scholar 

  64. Goel A, Muzumdar D, Desai K, Chagla A. Retroorbital hemangiopericytoma and cavernous sinus schwannoma—case report. Neurol Med Chir (Tokyo) 2003;43(1):47–50.

    Article  Google Scholar 

  65. Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000;156(2):361–81.

    PubMed  CAS  Google Scholar 

  66. Hess AR, Seftor EA, Gruman LM, Kinch MS, Seftor RE, Hendrix MJ. VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry. Cancer Biol Ther 2006;5(2):228–33.

    Article  PubMed  CAS  Google Scholar 

  67. van der Schaft DW, Hillen F, Pauwels P, et al. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer research 2005;65(24):11520–28.

    Article  PubMed  CAS  Google Scholar 

  68. McDonald DM, Munn L, Jain RK. Vasculogenic mimicry: how convincing, how novel, and how significant? Am J Pathol 2000;156(2):383–8.

    PubMed  CAS  Google Scholar 

  69. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986;315(26):1650–59.

    Article  PubMed  CAS  Google Scholar 

  70. Dvorak HF, Dvorak AM, Manseau EJ, Wiberg L, Churchill WH. Fibrin gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibroplasia in guinea pigs. Role of cellular immunity, myofibroblasts, microvascular damage, and infarction in line 1 tumor regression. J Natl Cancer Inst 1979;62(6):1459–72.

    PubMed  CAS  Google Scholar 

  71. Dvorak HF, Orenstein NS, Carvalho AC, et al. Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol 1979;122(1):166–74.

    PubMed  CAS  Google Scholar 

  72. Dvorak HF. Discovery of vascular permeability factor (VPF). Exp Cell Res 2006;312(5):522–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Fu, Y., Nagy, J.A., Dvorak, A.M., Dvorak, H.F. (2008). Tumor Blood Vessels. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics