Skip to main content

Mechanisms of Resistance of Antiviral Drugs Active Against the Human Herpes Viruses

  • Chapter
  • 3900 Accesses

Part of the book series: Infectious Disease ((ID))

The antiviral drugs against the human herpes viruses provided pioneering insights, which have led to the development of the fi eld of antiviral therapy. The fi rst successful use of antiviral drugs to treat any life-threatening viral infection was Vidarabine (adenosine arabnoside) in 1977 (1). This was followed by the development of Acyclovir as the fi rst specifi c antiviral drug which required a viral enzyme (thymidine kinase, TK) for activation to a nucleoside triphosphate, which inhibited the viral DNA polymerase and was a chain-terminator of viral DNA elongation (2, 3). When tested against clinical viral isolates, acyclovir was most effective against those herpes viruses which established latency in neuronal tissue (HSV-1, HSV-2, VZV) (4), with some activity against EBV, and very little against clinical isolates of CMV in a plaque reduction assay (4, 5). With the possible exception of infl uenza A virus and amantadine, this marked the beginnings of antiviral therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whitley RJ, Soong SJ, Dolin R, Galasso GJ, Ch'ien LT, Alford CA. Adenine arabinoside therapy of biopsy-proved herpes simplex encephalitis. National Institute of Allergy and Infectious Diseases collaborative antiviral study. N Engl J Med 1977;297(6):289–294

    PubMed  CAS  Google Scholar 

  2. Elion GB, Furman PA, Fyfe JA, de Miranda P, Beauchamp L, Schaeffer HJ. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A 1977;74(12):5716–5720

    Article  PubMed  CAS  Google Scholar 

  3. Furman PA, St Clair MH, Fyfe JA, Rideout JL, Keller PM, Elion GB. Inhibition of herpes simplex virus-induced DNA polymerase activity and viral DNA replication by 9-(2-hydroxyethoxymethyl) guanine and its triphosphate. J Virol 1979;32(1):72–77

    PubMed  CAS  Google Scholar 

  4. Crumpacker CS, Schnipper LE, Zaia JA, Levin MJ. Growth inhibition by acycloguanosine of herpesviruses isolated from human infections. Antimicrob Agents Chemother 1979;15(5):642–645

    PubMed  CAS  Google Scholar 

  5. Biron KK, Elion GB. In vitro susceptibility of varicella-zoster virus to acyclovir. Antimicrob Agents Chemother 1980;18(3):443–447

    PubMed  CAS  Google Scholar 

  6. Dorsky DI, Crumpacker CS. Drugs five years later: acyclovir. Ann Intern Med 1987;107(6):859–874

    PubMed  CAS  Google Scholar 

  7. Harris W, Collins P, Fenton RJ, Snowden W, Sowa M, Darby G. Phenotypic and genotypic characterization of clinical isolates of herpes simplex virus resistant to aciclovir. J Gen Virol 2003;84 (Pt 6):1393–1401

    Article  PubMed  CAS  Google Scholar 

  8. Darby G, Field HJ, Salisbury SA. Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resist-ance. Nature 1981;289(5793):81–83

    Article  PubMed  CAS  Google Scholar 

  9. Crumpacker CS, Schnipper LE, Marlowe SI, Kowalsky PN, Hershey BJ, Levin MJ. Resistance to antiviral drugs of herpes simplex virus isolated from a patient treated with acyclovir. N Engl J Med 1982;306(6):343–346

    Article  PubMed  CAS  Google Scholar 

  10. Sasadeusz JJ, Tufaro F, Safrin S, Schubert K, Hubinette MM, Cheung PK, et al. Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir. J Virol 1997;71(5):3872–3878

    PubMed  CAS  Google Scholar 

  11. Chatis PA, Crumpacker CS. Analysis of the thymidine kinase gene from clinically isolated acyclovir-resistant herpes simplex viruses. Virology 1991;180(2):793–797

    Article  PubMed  CAS  Google Scholar 

  12. Coen DM, Schaffer PA. Two distinct loci confer resistance to acy-cloguanosine in herpes simplex virus type 1. Proc Natl Acad Sci U S A 1980;77(4):2265–2269

    Article  PubMed  CAS  Google Scholar 

  13. Schnipper LE, Crumpacker CS. Resistance of herpes simplex virus to acycloguanosine: role of viral thymidine kinase and DNA polymer-ase loci. Proc Natl Acad Sci U S A 1980;77(4):2270–2273

    Article  PubMed  CAS  Google Scholar 

  14. Field HJ, Darby G, Wildy P. Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus. J Gen Virol 1980;49(1):115–124

    Article  PubMed  CAS  Google Scholar 

  15. Hardwicke MA, Schaffer PA. Differential effects of nerve growth factor and dexamethasone on herpes simplex virus type 1 oriL-and oriS-dependent DNA replication in PC12 cells. J Virol 1997;71(5):3580–3587

    PubMed  CAS  Google Scholar 

  16. Dorsky D, Chatis P, Crumpacker C. Functional expression of a cloned herpes simplex virus type 1 DNA polymerase gene. J Virol 1987;61(5):1704–1707

    PubMed  CAS  Google Scholar 

  17. Dorsky DI, Crumpacker CS. Expression of herpes simplex virus type 1 DNA polymerase gene by in vitro translation and effects of gene deletions on activity. J Virol 1988;62(9):3224–3232

    PubMed  CAS  Google Scholar 

  18. Gallo ML, Dorsky DI, Crumpacker CS, Parris DS. The essential 65-kilodalton DNA-binding protein of herpes simplex virus stimulates the virus-encoded DNA polymerase. J Virol 1989;63(12):5023–5029

    PubMed  CAS  Google Scholar 

  19. Gottlieb J, Marcy AI, Coen DM, Challberg MD. The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymer-ase that functions to increase processivity. J Virol 1990;64(12): 5976–5987

    PubMed  CAS  Google Scholar 

  20. Challberg MD. A method for identifying the viral genes required for herpes virus DNA replication. Proc Natl Acad Sci U S A 1986;83(23):9094–9098

    Article  PubMed  CAS  Google Scholar 

  21. Crute JJ, Mocarski ES, Lehman IR. A DNA helicase induced by herpes simplex virus type 1. Nucleic Acids Res 1988;16(14A): 6585–6596

    Article  PubMed  CAS  Google Scholar 

  22. Knopf KW, Kaufman ER, Crumpacker C. Physical mapping of drug resistance mutations defines an active center of the herpes simplex virus DNA polymerase enzyme. J Virol 1981;39(3):746–757

    PubMed  CAS  Google Scholar 

  23. Quinn JP, McGeoch DJ. DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Res 1985;13(22):8143–8163

    Article  PubMed  CAS  Google Scholar 

  24. Gibbs JS, Chiou HC, Hall JD, Mount DW, Retondo MJ, Weller SK, et al. Sequence and mapping analyses of the herpes simplex virus DNA polymerase gene predict a C-terminal substrate binding domain. Proc Natl Acad Sci U S A 1985;82(23):7969–7973

    Article  PubMed  CAS  Google Scholar 

  25. Gibbs JS, Chiou HC, Bastow KF, Cheng YC, Coen DM. Identification of amino acids in herpes simplex virus DNA polymerase involved in substrate and drug recognition. Proc Natl Acad Sci U S A 1988;85(18):6672–6676

    Article  PubMed  CAS  Google Scholar 

  26. Chou S, Lurain NS, Weinberg A, Cai GY, Sharma PL, Crumpacker CS. Interstrain variation in the human cytome-galovirus DNA polymerase sequence and its effect on genotypic diagnosis of antiviral drug resistance. Adult AIDS Clinical Trials Group CMV Laboratories. Antimicrob Agents Chemother 1999;43(6):1500–1502

    PubMed  CAS  Google Scholar 

  27. Haffey ML, Stevens JT, Terry BJ, Dorsky DI, Crumpacker CS, Wietstock SM, et al. Expression of herpes simplex virus type 1 DNA polymerase in Saccharomyces cerevisiae and detection of virus-specific enzyme activity in cell-free lysates. J Virol 1988;62(12):4493–4498

    PubMed  CAS  Google Scholar 

  28. Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, et al. DNA sequence and expression of the B95–8 Epstein-Barr virus genome. Nature 1984;310(5974):207–211

    Article  PubMed  CAS  Google Scholar 

  29. Davison AJ, Scott JE. The complete DNA sequence of varicella-zoster virus. J Gen Virol 1986;67 (Pt 9):1759–1816

    Article  PubMed  CAS  Google Scholar 

  30. Kouzarides T, Bankier AT, Satchwell SC, Weston K, Tomlinson P, Barrell BG. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene. J Virol 1987;61(1):125–133

    PubMed  CAS  Google Scholar 

  31. Larder BA, Kemp SD, Darby G. Related functional domains in virus DNA polymerases. Embo J 1987;6(1):169–175

    PubMed  CAS  Google Scholar 

  32. Dorsky DI, Crumpacker CS. Site-specific mutagenesis of a highly conserved region of the herpes simplex virus type 1 DNA polymer-ase gene. J Virol 1990;64(3):1394–1397

    PubMed  CAS  Google Scholar 

  33. Dorsky DI, Plourde C. Resistance to antiviral inhibitors caused by the mutation S889A in the highly-conserved 885-GDTDS motif of the herpes simplex virus type 1 DNA polymerase. Virology 1993;195(2):831–835

    Article  PubMed  CAS  Google Scholar 

  34. Crumpacker C. Antiviral therapy. In: Wilkins LW (ed.). Fields Virology, 4th edition, 2001. pp. 393–434

    Google Scholar 

  35. Liu S, Knafels JD, Chang JS, Waszak GA, Baldwin ET, Deibel MR, Jr, et al. Crystal structure of the herpes simplex virus 1 DNA polymerase. J Biol Chem 2006;281(26):18193–18200

    Article  PubMed  CAS  Google Scholar 

  36. Reardon JE, Spector T. Herpes simplex virus type 1 DNA polymer-ase. Mechanism of inhibition by acyclovir triphosphate. J Biol Chem 1989;264(13):7405–7411

    PubMed  CAS  Google Scholar 

  37. Vere-Hodges R. Famciclovir and Penciclovir: The mode of action of famciclovir including its conversion to penciclovir. Antivir Chem Chemother 1993;4:67–84

    Google Scholar 

  38. Crumpacker CS, Kowalsky PN, Oliver SA, Schnipper LE, Field AK. Resistance of herpes simplex virus to 9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]guanine: physical mapping of drug synergism within the viral DNA polymerase locus. Proc Natl Acad Sci U S A 1984;81(5):1556–1560

    Article  PubMed  CAS  Google Scholar 

  39. Hamzeh F, Lietman P. Intranuclear accumulation of subgenomic noninfectious human cytomegalovirus DNA in infected cells in the presence of ganciclovir. Antimicrob Agents Chemother 1991;35(9):1818–1823

    PubMed  CAS  Google Scholar 

  40. Hamzeh F, Lietman P, Gibson W, Hayward G. Identification of the lytic origin of DNA replication in human cytomegalovirus by a novel approach utilizing ganciclovir-induced chain termination. J Virol 1990;64(12):6184

    PubMed  CAS  Google Scholar 

  41. Chou S, Waldemer RH, Senters AE, Michels KS, Kemble GW, Miner RC, et al. Cytomegalovirus UL97 phosphotransferase mutations that affect susceptibility to ganciclovir. J Infect Dis 2002;185(2):162–169

    Article  PubMed  CAS  Google Scholar 

  42. Cherrington JM, Fuller MD, Lamy PD, Miner R, Lalezari JP, Nuessle S, et al. In vitro antiviral susceptibilities of isolates from cytomegalovirus retinitis patients receiving first- or second-line cidofovir therapy: relationship to clinical outcome. J Infect Dis 1998;178(6):1821–1825

    Article  PubMed  CAS  Google Scholar 

  43. Williams SL, Hartline CB, Kushner NL, Harden EA, Bidanset DJ, Drach JC, et al. In vitro activities of benzimidazole D- and L-ribo-nucleosides against herpesviruses. Antimicrob Agents Chemother 2003;47(7):2186–2192

    Article  PubMed  CAS  Google Scholar 

  44. Gershburg E, Pagano JS. Phosphorylation of the Epstein-Barr virus (EBV) DNA polymerase processivity factor EA-D by the EBV-encoded protein kinase and effects of the L-riboside benzimidazole 1263W94. J Virol 2002;76(3):998–1003

    PubMed  CAS  Google Scholar 

  45. Chou S, Wechel LC, Marousek GI. Cytomegalovirus UL97 kinase mutations that confer maribavir resistance. J Infect Dis 2007;196(1):91–94

    Article  PubMed  CAS  Google Scholar 

  46. Manischewitz JF, Quinnan G V, Jr, Lane HC, Wittek AE. Synergistic effect of ganciclovir and foscarnet on cytomegalovirus replication in vitro. Antimicrob Agents Chemother 1990;34(2): 373–375

    PubMed  CAS  Google Scholar 

  47. Cihlar T, Fuller MD, Cherrington JM. Characterization of drug resistance-associated mutations in the human cytomega-lovirus DNA polymerase gene by using recombinant mutant viruses generated from overlapping DNA fragments. J Virol 1998;72(7):5927–5936

    PubMed  CAS  Google Scholar 

  48. Weinberg A, Jabs DA, Chou S, Martin BK, Lurain NS, Forman MS, et al. Mutations conferring foscarnet resistance in a cohort of patients with acquired immunodeficiency syndrome and cytomega-lovirus retinitis. J Infect Dis 2003;187(5):777–784

    Article  PubMed  Google Scholar 

  49. Chou S, Marousek GI. Accelerated evolution of maribavir resistance in a cytomegalovirus exonuclease domain II mutant. J Virol 2008;82(1):246–53.

    Article  PubMed  CAS  Google Scholar 

  50. Prichard MN, Gao N, Jairath S, Mulamba G, Krosky P, Coen DM, et al. A recombinant human cytomegalovirus with a large deletion in UL97 has a severe replication deficiency. J Virol 1999;73(7):5663–70.

    PubMed  CAS  Google Scholar 

  51. Krosky PM, Baek MC, Jahng WJ, Barrera I, Harvey RJ, Biron KK, et al. The human cytomegalovirus UL44 protein is a substrate for the UL97 protein kinase. J Virol 2003;77(14):7720–7.

    Article  PubMed  CAS  Google Scholar 

  52. Marschall M, Freitag M, Suchy P, Romaker D, Kupfer R, Hanke M, et al. The protein kinase pUL97 of human cytomegalovirus interacts with and phosphorylates the DNA polymerase processiv-ity factor pUL44. Virology 2003;311(1):60–71.

    Article  PubMed  CAS  Google Scholar 

  53. Hume AJ, Finkel JS, Kamil JP, Coen DM, Culbertson MR, Kalejta RF. Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science 2008;320(5877):797–9.

    Article  PubMed  CAS  Google Scholar 

  54. Chou S, Marousek GI, Van Wechel LC, Li S, Weinberg A. Growth and drug resistance phenotypes resulting from cytomegalovirus DNA polymerase region III mutations observed in clinical specimens. Antimicrob Agents Chemother 2007;51(11):4160–2.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Crumpacker, C.S. (2009). Mechanisms of Resistance of Antiviral Drugs Active Against the Human Herpes Viruses. In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-180-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-180-2_30

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-592-7

  • Online ISBN: 978-1-59745-180-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics