Skip to main content

The Importance of β-Lactamases to the Development of New β-Lactams

  • Chapter
Antimicrobial Drug Resistance

Part of the book series: Infectious Disease ((ID))

β-Lactams are considered to be among the safest, most efficacious, and most widely prescribed antibiotics for the treatment of bacterial infections. Their therapeutic use began with the introduction of benzylpenicillin (penicillin G) during World War II (1, 2), and continues with the development of newer cephalosporins and carbapenems for antibioticresistant infections. These agents act by inhibiting bacterial cell wall synthesis, as a result of their strong covalent binding to essential penicillin binding proteins (PBPs) that catalyze the last steps of cell wall formation in both Gram-positive and Gram-negative bacteria (3, 4). However, resistance to these agents has been a major concern to all who use, or have used, βlactams therapeutically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, E. P. 1977. β-Lactam antibiotics and related substances. Jpn. J. Antibiot 30 Suppl:S1–S26

    Google Scholar 

  2. Selwyn, S. 1980. The discovery and evolution of the penicillins and cephalosporins, in The Beta-Lactam Antibiotics: Penicillins and Cephalosporins in Perspective. Hodder and Stoughton, London, pp. 1–45

    Google Scholar 

  3. Spratt, B. G. 1983. Penicillin-binding proteins and the future of β-lactam antibiotics. J. Gen. Microbiol. 129:1247–1260

    PubMed  CAS  Google Scholar 

  4. Tipper, D. J., and Strominger, J. L. 1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc. Natl. Acad. Sci. USA 54:1133–1141

    Article  PubMed  CAS  Google Scholar 

  5. Li, X.-Z., Ma, D., Livermore, D. M., and Nikaido, H. 1994. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aerugi-nosa: Active efflux as a contributing factor to β-lactam resistance. Antimicrob. Agents Chemother. 38:1742–1752

    PubMed  CAS  Google Scholar 

  6. Rice, L. B. 1999. Successful interventions for gram-negative resistance to extended-spectrum beta-lactam antiobiotics. Pharmaco-therapy 19:120S–128S

    CAS  Google Scholar 

  7. Zimmermann, W., and Rosselet, A. 1977. Function of outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob. Agents Chemother. 12:368–372

    PubMed  CAS  Google Scholar 

  8. Rossi, L., Tonin, E., Cheng, Y. R., and Fontana, R. 1985. Regulation of penicillin-binding protein activity: description of a methicillin-inducible penicillin-binding protein in Staphylococcus aureus. Antimicrob. Agents Chemother. 27:828–831

    PubMed  CAS  Google Scholar 

  9. Kirby, W. M. M. 1945. Bacteriostatic and lytic actions of penicillin on sensitive and resistant staphylococci. J. Clin. Invest. 24:165–169

    Article  PubMed  CAS  Google Scholar 

  10. Medeiros, A. A. 1984. β-lactamases. Br. Med. Bull 40:18–27

    PubMed  CAS  Google Scholar 

  11. Matagne, A., Misselyn-Baudin, A.-M., Joris, B., Erpicum, T., Graniwer, B., and Frere, J.-M. 1990. The diversity of the catalytic properties of class A β-lactamases. Biochem. J. 265:131–146

    PubMed  CAS  Google Scholar 

  12. Bush, K., Tanaka, S. K., Bonner, D. P., and Sykes, R. B. 1985. Resistance caused by decreased penetration of β-lactam antibiotics into Enterobacter cloacae. Antimicrob. Agents Chemother. 27:555–560

    PubMed  CAS  Google Scholar 

  13. Spratt, B. G., and Cromie, K. D. 1988. Penicillin-binding proteins of gram-negative bacteria. Rev. Infect. Dis. 10:699–711

    PubMed  CAS  Google Scholar 

  14. Massova, I., and Mobashery, S. 1998. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother. 42:1–17

    Article  PubMed  CAS  Google Scholar 

  15. Chambers, H. F., and Miick, C. 1992. Characterization of penicillin-binding protein 2 of Staphylococcus aureus: deacylation reaction and identification of two penicillin-binding peptides. Antimicrob. Agents Chemother. 36:656–661

    PubMed  CAS  Google Scholar 

  16. Tuomanen, E., and Schwartz, J. 1987. Penicillin-binding protein 7 and its relationship to lysis of nongrowing Escherichia. J. Bacteriol. 169:4912–4915

    PubMed  CAS  Google Scholar 

  17. Hardy, L. W., and Kirsch, J. F. 1984. Diffusion-limited component of reactions catalyzed by Bacillus cereus beta-lactamase I. Biochemistry 23:1275–1282

    Article  PubMed  CAS  Google Scholar 

  18. Christensen, H., Martin, M. T., and Waley, S. G. 1990. Beta-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. [see comment] [erratum appears in Biochem J 1990 Jun 15;268(3):808]. Biochem. J. 266:853–861

    PubMed  CAS  Google Scholar 

  19. Jacoby, G., and Bush, K. 2005. Beta-lactam resistance in the 21st century, in Frontiers in Antibiotic Resistance: A Tribute to Stuart B. Levy (D. G. White, M. N. Alekshun, and P. F. McDermott eds.). ASM Press, Washington, D.C., pp. 53–65

    Google Scholar 

  20. Pollock, M. R. 1967. Origin and function of penicillinase: a problem in biochemical evolution. B.r Med. J. 4:71–77

    Article  CAS  Google Scholar 

  21. Datta, N., and Hughes, V. M. 1983. Plasmids of the same Inc groups in enterobacteria before and after the medical use of antibiotics. Nature 306:616–617

    Article  PubMed  CAS  Google Scholar 

  22. Hughes, V. M., and Datta, N. 1983. Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature 302:725–726

    Article  PubMed  CAS  Google Scholar 

  23. Bush, K. 1999. Beta-lactamases of increasing clinical importance. Curr. Pharm. Des. 5:839–845

    PubMed  CAS  Google Scholar 

  24. Kwon, D. H., Dore, M. P., Kim, J. J., Kato, M., Lee, M., Wu, J. Y., and Graham, D. Y. 2003. High-level beta-lactam resistance associated with acquired multidrug resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 47:2169–2178

    Article  PubMed  CAS  Google Scholar 

  25. Lu, W. P., Kincaid, E., Sun, Y., and Bauer, M. D. 2001. Kinetics of beta-lactam interactions with penicillin-susceptible and -resistant penicillin-binding protein 2x proteins from Streptococcus pneu-moniae. Involvement of acylation and deacylation in beta-lactam resistance. J. Biol. Chem. 276:31494–31501

    Article  PubMed  CAS  Google Scholar 

  26. Chesnel, L., Zapun, A., Mouz, N., Dideberg, O., and Vernet, T. 2002. Increase of the deacylation rate of PBP2x from Streptococcus pneumoniae by single point mutations mimicking the class A beta-lactamases. Eur. J. BioChem. 269:1678–1683

    Article  PubMed  CAS  Google Scholar 

  27. Luthy, L., Grutter, M. G., and Mittl, P. R. E. 2002. The crystal structure of Helicobacter pylori cysteine-rich protein B reveals a novel fold for a penicillin-binding protein. J. Biol. Chem. 277:10187–10193

    Article  PubMed  CAS  Google Scholar 

  28. Hill, P. 1972. The production of penicillins in soils and seeds by Penicillium chrysogenum and the role of penicillin -lactamase in the ecology of soil bacillus. J. Gen. Microbiol. 70:243–252

    PubMed  CAS  Google Scholar 

  29. Sykes, R. B., Cimarusti, C. M., Bonner, D. P., Bush, K., Floyd, D. M., Georgopapadakou, N. H., Koster, W. H., Liu, W. C., Parker, W. L., Principe, P. A., Rathnum, M. L., Slusarchyk, W. A., Trejo, W. H., and Wells, J. S. 1981. Moncyclic β-lactam antibiotics produced by bacteria. Nature 291:489–491

    Article  PubMed  CAS  Google Scholar 

  30. D'Costa, V. M., McGrann, K. M., Hughes, D. W., and Wright, G. D. 2006. Sampling the antibiotic resistome. Science 311:374–377

    Article  PubMed  Google Scholar 

  31. Bush, K. 1988. Recent developments in β-lactamase research and their implications for the future. Rev. Infect. Dis. 10:681–690; 739–743

    PubMed  CAS  Google Scholar 

  32. Hamilton-Miller, J. M. T. 1979. An historical introduction to beta-lactamases, in Beta-lactamases (J. M. T. Hamilton-Miller and J. T. Smith eds.). Academic Press, London, pp. 1–16

    Google Scholar 

  33. Bush, K. 1997. The evoution of beta-lactamases, in Antibiotic Resistance: Origins, Evolution, Selection and Spread (D. J. Chadwick and J. Goode eds.), vol. 207. John Wiley & Sons, Chichester, pp. 152–166

    Chapter  Google Scholar 

  34. Medeiros, A. A. 1997. Evolution and dissemination of β-lactamases accelerated by generations of b-lactam antibiotics. Clin. Infect. Dis. 24:S19–S45

    PubMed  CAS  Google Scholar 

  35. Jack, G. W., and Richmond, M. H. 1970. Comparative amino acid contents of purified β-lactamases from enteric bacteria. FEBS Lett. 12:30–32

    Article  PubMed  CAS  Google Scholar 

  36. Zscheck, K. K., and Murray, B. E. 1991. Nucleotide sequence of the beta-lactamase gene from Enterococcus faecalis HH22 and its similarity to staphylococcal beta-lactamase genes. Antimicrob. Agents Chemother. 35:1736–1740

    PubMed  CAS  Google Scholar 

  37. Voladri, R. K. R., Tummuru, M. K. R., and Kernodle, D. S. 1996. Structure-function relationships among wild-type variants of Staphylococcus aureus β-lactamase: importance of amino acids 128 and 216. J. Bacteriol. 178:7248–7253

    PubMed  CAS  Google Scholar 

  38. Pollock, M. R. 1965. Purification and properties of penicillinases from two strains of Bacillus licheniformis: a chemical physico-chemical and physiological comparison. Biochem. J. 94:666–675

    PubMed  CAS  Google Scholar 

  39. Kuwabara, S., and Abraham, E. P. 1967. Some properties of two extracellular β-lactamases from Bacillus cereus 569/H. Biochem. J. 103:27c–30c

    PubMed  CAS  Google Scholar 

  40. Sawai, T., Misuhashi, S., and Yamagishi, S. 1968. Drug resistance of enteric bacteria. XIV. Comparison of β-lactamases in gramnegative rod bacteria resistant to a-aminobenzylpenicillin. Jpn. J. Microbiol. 12:423–434

    PubMed  CAS  Google Scholar 

  41. Richmond, M. H., and Sykes, R. B. 1973. The β-lactamases of gram-negative bacteria and their possible physiological role, in Advances in Microbial Physiology (A. H. Rose and D. W. Tempest eds.), vol. 9. Academic Press, New York, pp. 31–88

    Google Scholar 

  42. Bush, K., Jacoby, G. A., and Medeiros, A. A. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:1211–1233

    PubMed  CAS  Google Scholar 

  43. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. [Biol] 289:321–331

    Article  CAS  Google Scholar 

  44. Sutcliffe, J. G. 1978. Nucleotide sequence of the ampicillin resistance gene of Escherichia plasmid pBR322. Proc. Natl. Acad. Sci. U.S.A. 75:3737–3741

    Article  PubMed  CAS  Google Scholar 

  45. Jacoby, G. A., and Bush, K. 2006. Amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant β-lactamases. Lahey Clinic

    Google Scholar 

  46. Jaurin, B., and Grundstrom, T. 1981. amp C cephalosporinase of Escherichia K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase type. Proc. Natl. Acad. Sci. U.S.A. 78:4897–4901

    Article  PubMed  CAS  Google Scholar 

  47. Huovinen, P., Huovinen, S., and Jacoby, G. A. 1988. Sequence of PSE-2 beta-lactamase. Antimicrob. Agents Chemother. 32:134–136

    PubMed  CAS  Google Scholar 

  48. Rasmussen, B. A., and Bush, K. 1997. Carbapenem-hydrolyzing β-lactamases. Antimicrob. Agents Chemother. 41:223–232

    PubMed  CAS  Google Scholar 

  49. Waksman, S. A. 1965. A quarter-century of the antibiotic era. Antimicrob. Agents Chemother. 5:9–19

    PubMed  CAS  Google Scholar 

  50. Silver, L., and Bostian, K. 1990. Screening of natural products for antimicrobial agents. European J. Clin. Microbiol. Infect. Dis. 9:455–461

    Article  CAS  Google Scholar 

  51. Wells, J. S., Hunter, J. C., Astle, G. L., Sherwood, J. C., Ricca, C. M., Trejo, W. H., Bonner, D. P., and Sykes, R. B. 1982. Distribution of β-lactam and β-lactone producing bacteria in nature. J. Antibiot. 35:814–821

    PubMed  CAS  Google Scholar 

  52. Abraham, E. P. 1987. Cephalosporins 1945–1986. Drugs 34 Suppl 2:1–14

    Article  PubMed  CAS  Google Scholar 

  53. Butterworth, D., Cole, M., Hanscomb, G., and Rolinson, G. N. 1979. Olivanic acids, a family of beta-lactam antibiotics with beta-lactamase inhibitory properties produced by Streptomyces species. I. Detection, properties and fermentation studies. J. Antibiot. 32:287–294

    PubMed  CAS  Google Scholar 

  54. Datta, N., and Kontomichalou, P. 1965. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature (London) 208:239–241

    Article  CAS  Google Scholar 

  55. Kabins, S. A., Sweeny, H. M., and Cohen, S. 1966. Resistance to cephalosporin in vivo associated with increased cephalosporinase production. Ann. Intern. Med. 65:1271–1277

    PubMed  CAS  Google Scholar 

  56. Reading, C., and Cole, M. 1977. Clavulanic acid: a beta-lactamase inhibitor from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11:852–857

    PubMed  CAS  Google Scholar 

  57. Kahan, J. S., Kahan, F. M., Goegelman, R., Currie, S. A., Jackson, M., Stapley, E. O., Miller, T. W., Miller, A. K., Hendlin, D., Mochales, S., Hernandez, S., Woodruff, H. B., and Birnbaum, J. 1979. Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J. Antibiot. 32:1–12

    PubMed  CAS  Google Scholar 

  58. Aronoff, S. C., Jacobs, M. R., Johenning, S., and Yamabe, S. 1984. Comparative activities of the β-lactamase inhibitors YTR 830, sodium clavulanate, and sulbactam combined with amoxicillin or ampicillin. Antimicrob. Agents Chemother. 26:580–582

    PubMed  CAS  Google Scholar 

  59. Sykes, R. B., Bonner, D. P., Bush, K., and Georgopapadakou, N. H. 1982. Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria. Antimicrob. Agents Chemother. 21:85–92

    PubMed  CAS  Google Scholar 

  60. Bush, K., Bonner, D. P., and Sykes, R. B. 1980. Izumenolide-a novel beta-lactamase inhibitor produced by Micromonospora. J. Antibiot. 33:1262–1269

    PubMed  CAS  Google Scholar 

  61. Gootz, T. D., Sanders, C. C., and Goering, R. V. 1982. Resistance to cefamandole: derepression of beta-lactamases by cefoxitin and mutation in Enterobacter cloacae. J. Infect. Dis. 146:34–42

    PubMed  CAS  Google Scholar 

  62. Thomson, K. S., Weber, D. A., Sanders, C. C., and W. E., Sanders, J. 1990. β-lactamase production in members of the family Enterobacteriaceae and resistance to β-lactam-enzyme inhibitor combinations. Antimicrob. Agents Chemother. 34:622–627

    PubMed  CAS  Google Scholar 

  63. Neu, H. C. 1983. What do beta-lactamases mean for clinical efficacy? Infection 11 Suppl 2:S74–S80

    Article  PubMed  Google Scholar 

  64. Vu, H., and Nikaido, H. 1985. Role of β-lactam hydrolysis in the mechanism of resistance of a β-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum β-lactams. Antimicrob. Agents Chemother. 27:393–398

    PubMed  CAS  Google Scholar 

  65. Then, R. L., and Angehrn, P. 1982. Trapping of nonhydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa as a possible resistance mechanism. Antimicrob. Agents Chemother. 21:711–717

    PubMed  CAS  Google Scholar 

  66. Kliebe, C., Nies, B. A., Meyer, J. F., Tolxdorff-Neutzling, R. M., and Wiedemann, B. 1985. Evolution of plasmic-coded resistance to broad spectrum cephalosporins. Antimicrob. Agents Chemother. 28:302–307

    PubMed  CAS  Google Scholar 

  67. Sirot, D., Sirot, J., Labia, R., Morand, A., Courvalin, P., Darfeuille-Michaud, A., Perroux, R., and Cluzel, R. 1987. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel β-lactamase. J. Antimicrob. Chemother. 20:323–334

    Article  PubMed  CAS  Google Scholar 

  68. Jacoby, G. A., Medeiros, A. A., O'Brien, T. F., Pinto, M. E., and Jiang, H. 1988. Broad-spectrum, transmissible β-lactamases [letter]. N. Engl. J. Med. 319:723–723

    Article  PubMed  CAS  Google Scholar 

  69. Quinn, J. P., Miyashiro, D., Sahm, D., Flamm, R., and Bush, K. 1989. Novel plasmid-mediated β-lactamase (TEM-10) conferring selective resistance to ceftazidime and aztreonam in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 33:1451–1456

    PubMed  CAS  Google Scholar 

  70. Meyer, K. S., Urban, C., Eagan, J. A., Berger, B. J., and Rahal, J. J. 1993. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann. Int. Med. 119:353–358

    PubMed  CAS  Google Scholar 

  71. Sirot, J., Labia, R., and Thabaut, A. 1987. Klebsiella pneumoniae strains more resistant to ceftazidime than to other third-generation cephalosporins. J. Antimicrob. Chemother. 20:611–612

    Article  PubMed  CAS  Google Scholar 

  72. Naumovski, L., Quinn, J. P., Miyashiro, D., Patel, M., Bush, K., Singer, S. B., Graves, D., Palzkill, T., and Arvin, A. M. 1992. Outbreak of ceftazidime resistance due to a novel extended-spectrum β-lactamase in isolates from cancer patients. Antimicrob. Agents Chemother. 36:1991–1996

    PubMed  CAS  Google Scholar 

  73. Papanicolaou, G., Medeiros, A. A., and Jacoby, G. A. 1990. Novel plasmid-mediated β-lactamase (MIR-1) Conferring resistance to oxyimino- and α-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 34:2200–2209

    PubMed  CAS  Google Scholar 

  74. Bradford, P. A., Urban, C., Mariano, N., Projan, S. J., Rahal, J. J., and Bush, K. 1997. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the loss of an outer membrane protein. Antimicrob. Agents Chemother. 41:563–569

    PubMed  CAS  Google Scholar 

  75. Yamaoka, K., Watanabe, K., Muto, Y., Katoh, N., Ueno, K., and Tally, F. P. 1990. R-Plasmid mediated transfer of β-lactam resistance in Bacteroides fragilis. J. Antibiot. 43:1302–1306

    PubMed  CAS  Google Scholar 

  76. Lauretti, L., Riccio, M. L., Mazzariol, A., Cornaglia, G., Amicosante, G., Fontana, R., and Rossolini, G. M. 1999. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 43:1584–1590

    PubMed  CAS  Google Scholar 

  77. Watanabe, M., Iyobe, S., Inoue, M., and Mitsuhashi, S. 1991. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 35:147–151

    PubMed  CAS  Google Scholar 

  78. Livermore, D. M. 2002. The impact of carbapenemases on antimicrobial development and therapy. Curr. Opin. Investig. Drugs 3:218–224

    PubMed  CAS  Google Scholar 

  79. Lolans, K., Queenan, A. M., Bush, K., Sahud, A., and Quinn, J. P. 2005. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-beta-lactamase (VIM-2) in the United States. Antimicrob. Agents Chemother. 49:3538–3540

    Article  PubMed  CAS  Google Scholar 

  80. Belaaouaj, A., Lapoumeroulie, C., Canica, M. M., Vedel, G., Nevot, P., Krishnamoorthy, R., and Paul, G. 1994. Nucleotide sequences of the genes coding for the TEM-like β-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). FEMS Microbiol. Lett. 120:75–80

    PubMed  CAS  Google Scholar 

  81. Chaibi, E. B., Sirot, D., Paul, G., and Labia, R. 1999. Inhibitor-resistant TEM beta-lactamases: phenotypic, genetic and biochemical characteristics. J. Antimicrob. Chemother. 43:447–458

    Article  PubMed  CAS  Google Scholar 

  82. Bradford, P. A., Bratu, S., Urban, C., Visalli, M., Mariano, N., Landman, D., Rahal, J. J., Brooks, S., Cebular, S., and Quale, J. 2004. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin. Infect. Dis. 39:55–60

    Article  PubMed  CAS  Google Scholar 

  83. Kaye, K. S., Gold, H. S., Schwaber, M. J., Venkataraman, L., Qi, Y., De Girolami, P. C., Samore, M. H., Anderson, G., Rasheed, J. K., and Tenover, F. C. 2004. Variety of beta-lactamases produced by amoxicillin-clavulanate-resistant Escherichia isolated in the northeastern United States. Antimicrob. Agents Chemother. 48:1520–1525

    Article  PubMed  CAS  Google Scholar 

  84. Berger-Bachi, B. 1999. Genetic basis of methicillin resistance in Staphylococcus aureus. Cell Mol. Life Sci. 56:764–770

    Article  PubMed  CAS  Google Scholar 

  85. Ono, S., Muratani, T., and Matsumoto, T. 2005. Mechanisms of resistance to imipenem and ampicillin in Enterococcus faecalis. Antimicrob. Agents Chemother. 49:2954–2958

    Article  PubMed  CAS  Google Scholar 

  86. Materon, I. C., Queenan, A. M., Koehler, T. M., Bush, K., and Palzkill, T. 2003. Biochemical characterization of beta-lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob. Agents Chemother. 47:2040–2042

    Article  PubMed  CAS  Google Scholar 

  87. Chen, Y., Succi, J., Tenover, F. C., and Koehler, T. M. 2003. Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J. Bacteriol. 185:823–830

    Article  PubMed  CAS  Google Scholar 

  88. Abraham, E. P., and Chain, E. 1940. An enyzme from bacteria able to destroy penicillin. Nature 146:837

    Article  CAS  Google Scholar 

  89. Jacoby, G. A. 2006. Beta-lactamase nomenclature. Antimicrob. Agents Chemother. 50:1123–1129

    Article  PubMed  CAS  Google Scholar 

  90. Philippon, A., Arlet, G., and Jacoby, G. A. 2002. Plasmid-determined AmpC-type beta-lactamases. Antimicrob. Agents Chemother. 46:1–11

    Article  PubMed  CAS  Google Scholar 

  91. Medeiros, A. A., Cohenford, M., and Jacoby, G. A. 1985. Five novel plasmid-determined β-lactamases. Antimicrob. Agents Chemother. 27:715–719

    PubMed  CAS  Google Scholar 

  92. Egawa, R., Sawai, T., and Mitsuhashi, S. 1967. Drug resistance of enteric bacteria. XII. Unique substrate specificity of penicillinase produced by R-factor. Jpn. J. Microbiol. 11:179–186

    Google Scholar 

  93. Hall, L. M. C., Livermore, D. M., Gur, D., Akova, M., and Akalin, H. E. 1993. OXA-11, an extended spectrum variant of OXA-10 (PSE-2) β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37:1637–1644

    PubMed  CAS  Google Scholar 

  94. Pitton, J. S. 1972. Mechanisms of bacterial resistance to antibiotics, in Reviews of Physiology (R. H. A. e. al. ed.), vol. 65. Springer, Berlin, pp. 15–93

    Google Scholar 

  95. Bauernfeind, A., Grimm, H., and Schweighart, S. 1990. A new plasmidic cefotaximase in a clinical isolate of Escherichia. Infection 18:294–298

    Article  PubMed  CAS  Google Scholar 

  96. Nordmann, P., Ronco, E., Naas, T., Duport, C., Michel-Briand, Y., and Labia, R. 1993. Characterization of a novel extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37:962–969

    PubMed  CAS  Google Scholar 

  97. Walther-Rasmussen, J., and Hoiby, N. 2004. Cefotaximases (CTX-M-ases), an expanding family of extended-spectrum beta-lactamases. Can. J. Microbiol. 50:137–165

    Article  PubMed  CAS  Google Scholar 

  98. Oliver, A., Perez-Diaz, J. C., Coque, T. M., Baquero, F., and Canton, R. 2001. Nucleotide sequence and characterization of a novel cefotaxime-hydrolyzing beta-lactamase (CTX-M-10) isolated in Spain. Antimicrob. Agents Chemother. 45:616–620

    Article  PubMed  CAS  Google Scholar 

  99. Miriagou, V., Tzelepi, E., Daikos, G. L., Tassios, P. T., and Tzouvelekis, L. S. 2005. Panresistance in VIM-1-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 55:810–811

    Article  PubMed  CAS  Google Scholar 

  100. Helfand, M. S., and Bonomo, R. A. 2005. Current challenges in antimicrobial chemotherapy: the impact of extended-spectrum beta-lactamases and metallo-beta-lactamases on the treatment of resistant Gram-negative pathogens. Curr. Opin. Pharmacol. 5:452–458

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bush, K. (2009). The Importance of β-Lactamases to the Development of New β-Lactams. In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-180-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-180-2_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-592-7

  • Online ISBN: 978-1-59745-180-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics