Skip to main content

The Genetic Basis of the Polycystic Ovary Syndrome

  • Chapter
Androgen Excess Disorders in Women

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Polycystic ovary syndrome (PCOS) is a common, complex genetic disorder. Its inherited basis was established by studies demonstrating an increased prevalence of PCOS, hyperandrogenemia, insulin resistance, and disordered insulin secretion in relatives of women with PCOS. To date, efforts to elucidate the genetic basis of PCOS have focused on candidate genes chosen from logical pathways, including steroid synthesis and action, insulin sensitivity and secretion, obesity and fuel regulation, gonadotropin production and action, and, most recently, cardiovascular risk modifiers. Although several positive results have been reported, no gene or genes are universally accepted as important in PCOS pathogenesis, largely because of lack of replication of positive results. This has resulted, in part, from various factors, most importantly inadequate coverage of genes by the analysis of only one or two variants and of small study cohorts in many studies. In the future, optimal application of the candidate gene approach using haplotype-based analyses, intermediate phenotypes, and internal replication of positive results will enhance gene discovery in PCOS, as will the application of pharmacogenetics and whole-genome analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. King RA, Rotter JI, Motulsky AG. The Genetic Basis of Common Diseases, 2nd ed. New York: Oxford University Press, 2002.

    Google Scholar 

  2. Legro RS, Strauss JF. Molecular progress in infertility: polycystic ovary syndrome. Fertil Steril 2002;78:569–576.

    Article  PubMed  Google Scholar 

  3. Kahsar-Miller MD, Nixon C, Boots LR, Go RC, Azziz R. Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS. Fertil Steril 2001;75:53–58.

    Article  PubMed  CAS  Google Scholar 

  4. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004;89:2745–2749.

    Article  PubMed  CAS  Google Scholar 

  5. Legro RS, Driscoll D, Strauss JF 3rd, Fox J, Dunaif A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci USA 1998;95:14956–14960.

    Article  PubMed  CAS  Google Scholar 

  6. Legro RS, Kunselman AR, Demers L, Wang SC, Bentley-Lewis R, Dunaif A. Elevated dehydroepiandrosterone sulfate levels as the reproductive phenotype in the brothers of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2002;87:2134–2138.

    Article  PubMed  CAS  Google Scholar 

  7. Nelson VL, Legro RS, Strauss JF, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol 1999;13:946–957.

    Article  PubMed  CAS  Google Scholar 

  8. Legro RS, Bentley-Lewis R, Driscoll D, Wang SC, Dunaif A. Insulin resistance in the sisters of women with polycystic ovary syndrome: association with hyperandrogenemia rather than menstrual irregularity. J Clin Endocrinol Metab 2002;87:2128–2133.

    Article  PubMed  CAS  Google Scholar 

  9. Norman RJ, Masters S, Hague W. Hyperinsulinemia is common in family members of women with polycystic ovary syndrome. Fertil Steril 1996;66:942–947.

    PubMed  CAS  Google Scholar 

  10. Yildiz BO, Yarali H, Oguz H, Bayraktar M. Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003;88:2031–2036.

    Article  PubMed  CAS  Google Scholar 

  11. Kaushal R, Parchure N, Bano G, Kaski JC, Nussey SS. Insulin resistance and endothelial dysfunction in the brothers of Indian subcontinent Asian women with polycystic ovaries. Clin Endocrinol (Oxf) 2004;60:322–328.

    Article  CAS  Google Scholar 

  12. Colilla S, Cox NJ, Ehrmann DA. Heritability of insulin secretion and insulin action in women with polycystic ovary syndrome and their first degree relatives. J Clin Endocrinol Metab 2001;86:2027–2031.

    Article  PubMed  CAS  Google Scholar 

  13. Ehrmann DA, Sturis J, Byrne MM, Karrison T, Rosenfield RL, Polonsky KS. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest 1995;96:520–527.

    Article  PubMed  CAS  Google Scholar 

  14. Dunaif A, Wu X, Lee A, Diamanti-Kandarakis E. Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab 2001;281:E392–E399.

    PubMed  CAS  Google Scholar 

  15. Rosenbaum D, Haber RS, Dunaif A. Insulin resistance in polycystic ovary syndrome: decreased expression of GLUT-4 glucose transporters in adipocytes. Am J Physiol 1993;264:E197–E202.

    PubMed  CAS  Google Scholar 

  16. Ciaraldi TP, el-Roeiy A, Madar Z, Reichart D, Olefsky JM, Yen SS. Cellular mechanisms of insulin resistance in polycystic ovarian syndrome. J Clin Endocrinol Metab 1992;75:577–583.

    Article  PubMed  CAS  Google Scholar 

  17. Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet 2001;27:234–236.

    Article  PubMed  CAS  Google Scholar 

  18. Parikh H, Groop L. Candidate genes for type 2 diabetes. Rev Endocr Metab Disord 2004;5:151–176.

    Article  PubMed  CAS  Google Scholar 

  19. Escobar-Morreale HF, Luque-Ramirez M, San Millan JL. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev 2005;26:251–282.

    Article  PubMed  CAS  Google Scholar 

  20. Carmina E, Legro RS, Stamets K, Lowell J, Lobo RA. Difference in body weight between American and Italian women with polycystic ovary syndrome: influence of the diet. Hum Reprod 2003;1 8:2289–2293.

    Article  Google Scholar 

  21. Judson R, Salisbury B, Schneider J, Windemuth A, Stephens JC. How many SNPs does a genome-wide haplotype map require? Pharmacogenomics 2002;3:379–391.

    Article  PubMed  CAS  Google Scholar 

  22. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002;296:2225–2229.

    Article  PubMed  CAS  Google Scholar 

  23. The International HapMap Consortium. The International HapMap Project. Nature 2003;426:789–796.

    Article  CAS  Google Scholar 

  24. Horikawa Y, Oda N, Cox NJ, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000;26:163–175.

    Article  PubMed  CAS  Google Scholar 

  25. Gharani N, Waterworth DM, Batty S, et al. Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism. Hum Mol Genet 1997;6:397–402.

    Article  PubMed  CAS  Google Scholar 

  26. Soderlund D, Canto P, Carranza-Lira S, Mendez JP. No evidence of mutations in the P450 aromatase gene in patients with polycystic ovary syndrome. Hum Reprod 2005;20:965–969.

    Article  PubMed  CAS  Google Scholar 

  27. Petry CJ, Ong KK, Michelmore KF, et al. Association of aromatase (CYP 19) gene variation with features of hyperandrogenism in two populations of young women. Hum Reprod 2005;20:1837–1843.

    Article  PubMed  CAS  Google Scholar 

  28. Ghosh S, Watanabe RM, Valle TT, et al. The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes. Am J Hum Genet 2000;67:1174–1185.

    PubMed  CAS  Google Scholar 

  29. Silander K, Scott LJ, Valle TT, et al. A large set of Finnish affected sibling pair families with type 2 diabetes suggests susceptibility loci on chromosomes 6, 11, and 14. Diabetes 2004;53:821–829.

    Article  PubMed  CAS  Google Scholar 

  30. Ertunc D, Tok EC, Aktas A, Erdal EM, Dilek S. The importance of IRS-1 Gly972Arg polymorphism in evaluating the response to metformin treatment in polycystic ovary syndrome. Hum Reprod 2005;20:1207–1212.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Goodarzi, M.O. (2006). The Genetic Basis of the Polycystic Ovary Syndrome. In: Azziz, R., Nestler, J.E., Dewailly, D. (eds) Androgen Excess Disorders in Women. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-179-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-179-6_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-663-4

  • Online ISBN: 978-1-59745-179-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics