Skip to main content

Ovarian and Adrenal Androgen Biosynthesis and Metabolism

  • Chapter
Androgen Excess Disorders in Women

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The pathways of adrenal and ovarian steroid biosynthesis use the same enzymes for the initial steps of steroidogenesis but express different enzymes that convert steroid precursors to the final active products. Both the adrenal and ovary produce dehydroepiandrosterone (DHEA), the principal precursor of androgens and estrogens. The key enzyme in DHEA production is P450c17, which catalyzes both 17α-hydroxylation and 17,20-lyase activities. The 17,20-lyase activity of human P450c17 strongly favors 17-hydroxypregnenolone rather than 17-hydroxyprogesterone (17-OHP) as a substrate, producing abundant DHEA, so that most human androgens and estrogens derive from DHEA. Understanding the biochemistry of P450c17 is central to understanding the hyperandrogenism of polycystic ovary syndrome (PCOS). Rare genetic disorders of steroidogenesis provide human genetic knockout experiments of nature, yielding important information about the biosynthesis and physiological roles of steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev 1988;9:295–318.

    PubMed  CAS  Google Scholar 

  2. Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 1996;17:221–244.

    Article  PubMed  CAS  Google Scholar 

  3. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells: Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 1994;269:28314–28322.

    PubMed  CAS  Google Scholar 

  4. Lin D, Sugawara T, Strauss JF III], et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroido-genesis. Science 1995;267:1828–

    Article  PubMed  CAS  Google Scholar 

  5. Bose HS, Sugawara T, Strauss JF III, Miller WL. The pathophysiology and genetics of congenital lipoid adrenal hyper-plasia. N Engl J Med 1996;335:1870–1878.

    Article  PubMed  CAS  Google Scholar 

  6. Arakane F, Sugawara T, Nishino H, et al. Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial targeting sequence: Implications for the mechanism of StAR action. Proc Natl Acad Sci USA 1996;93:13731–13736.

    Article  PubMed  CAS  Google Scholar 

  7. Bose HS, Lingappa VR, Miller WL. Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 200;417:87–91.

    Google Scholar 

  8. Bose HS, Whittal RM, Baldwin MA, Miller WL. The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc Natl Acad Sci USA 1999;96:7250–7253.

    Article  PubMed  CAS  Google Scholar 

  9. Yaworsky DC, Baker BY, Bose HS, et al. pH-dependent interaction of the carboxyl-terminal helix of steroidogenic acute regulatory protein with synthetic membranes. J Biol Chem 2005;280:2045–2054.

    Article  PubMed  CAS  Google Scholar 

  10. Baker BY, Yaworsky DC, Miller WL. A pH-dependent molten globule transition is required for activity of the steroidogenic acute regulatory protein (StAR). J Biol Chem 2006;280:4753–4760.

    Google Scholar 

  11. Watari H, Arakane F, Moog-Lutz C, et al. MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steriodogenesis. Proc Natl Acad Sci USA 1997;94:8462–8467.

    Article  PubMed  CAS  Google Scholar 

  12. Bose HS, Whittal RM, Huang MC, Baldwin MA, Miller WL. N-218 MLN64, a protein with StAR-like steroidogenic activity is folded and cleaved similarly to StAR. Biochemistry 2000;39:11722–11731.

    Article  PubMed  CAS  Google Scholar 

  13. Papadopoulos V. Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: Biological role in steroidogenic cell function. Endocr Rev 1993;14:222–240.

    Article  PubMed  CAS  Google Scholar 

  14. Chung B, Matteson KJ, Voutilainen R, Mohandas TK, Miller WL. Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta. Proc Natl Acad Sci USA 1986;83:8962–8966.

    Article  PubMed  CAS  Google Scholar 

  15. Yang X, Iwamoto K, Wang M, Artwohl J, Mason JI, Pang S. Inherited congenital adrenal hyperplasia in the rabbit is caused by a deletion in the gene encoding cytochrome P450 cholesterol side-chain cleavage enzyme. Endocrinology 1993;132:1977–1982.

    Article  PubMed  CAS  Google Scholar 

  16. Tajima T, Fujieda K, Kouda N, Nakae J, Miller WL. Heterozygous mutation in the cholesterol side chain cleavage enzyme (P450scc) gene in a patient with 46,XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab 2001;86:3820–3825.

    Article  PubMed  CAS  Google Scholar 

  17. Katsumata N, Ohtake M, Hojo T, et al. Compound heterozygous mutations in the cholesterol side-chain cleavage enzyme gene (CYP11A) cause congenital adrenal insufficiency in humans. J Clin Endocrinol Metab 2002;87:3808–3813.

    Article  PubMed  CAS  Google Scholar 

  18. Miller WL. Regulation of steroidogenesis by electron transfer. Endocrinology 2005;146:2544–2550.

    Article  PubMed  CAS  Google Scholar 

  19. Solish SB, Picado-Leonard J, Morel Y, et al. Human adrenodoxin reductase: Two mRNAs encoded by a single gene of chromosome 17cen →q25 are expressed in steroidogenic tissues. Proc Natl Acad Sci USA 1988;71:7104–7108.

    Article  Google Scholar 

  20. Picado-Leonard J, Voutilainen R, Kao L, Chung B, Strauss JF III, Miller WL. Human adrenodoxin: Cloning of three cDNAs and cycloheximide enhancement in JEG-3 cells. J Biol Chem 1988;263:3240–3244.

    PubMed  CAS  Google Scholar 

  21. Luu-The V, Lachance Y, Labrie C, et al. Full length cDNA structure and deduced amino acid sequence of human 3β-hydroxy-5-ene steroid dehydrogenase. Mol Endocrinol 1989;3:1310–1312.

    PubMed  CAS  Google Scholar 

  22. Lorence MC, Murry BA, Trant JM, Mason JI. Human 3β-hydroxysteroid dehydrogenase/Δ5 » Δ4 isomerase from placenta: Expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology 1990;126:2493–2498.

    Article  PubMed  CAS  Google Scholar 

  23. Morel Y, Mebarki F, Rheaume E, Sanchez R, Forest MG, Simard J. Structure-function relationships of 3β-hydroxysteroid dehydrogenase: contribution made by the molecular genetics of 3β-hydroxysteroid dehydrogenase deficiency. Steroids 1979;62:176–184.

    Article  Google Scholar 

  24. Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer. J Biol Chem 1998;273:3158–3165.

    Article  PubMed  CAS  Google Scholar 

  25. Nakajin S, Hall PF. Microsomal cytochrome P-450 from neonatal pig testis. Purification and properties of A C21 steroid side-chain cleavage system (17α-hydroxylase-C17,20-lyase). J Biol Chem 1981;256:3871–3876.

    PubMed  CAS  Google Scholar 

  26. Chung B, Picado-Leonard J, Haniu M, et al. Cytochrome P450c17 (steroid 17α-hydroxylase/17,20-lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues. Proc Natl Acad Sci USA 1987;84:407–411.

    Article  PubMed  CAS  Google Scholar 

  27. Picado-Leonard J, Miller WL. Cloning and sequence of the human gene encoding P450c17 (steroid 17α-hydroxylase/17,20-lyase): Similarity to the gene for P450c21. DNA 1987;6:439–448.

    PubMed  CAS  Google Scholar 

  28. Wang M, Roberts DL, Paschke R, Shea TM, Masters BSS, Kim JP. Three-dimensional structure of NADPH-cytochrome P450 reductase: Prototype for FMN-and FAD-containing enzymes. Proc Natl Acad Sci USA 1997;94:8411–8416.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang L, Rodriguez H, Ohno S, Miller WL. Serine phosphorylation of human P450c17 increases 17,20-lyase activity: Implications for adrenarche and for the polycystic ovary syndrome. Proc Natl Acad Sci USA 1995;92:10619–10623.

    Article  PubMed  CAS  Google Scholar 

  30. Pandey AV, Miller WL. Regulation of 17,20-lyase activity by cytochrome b5 and by serine phosphorylation of P450c17. J Biol Chem 2005;280:13265–13271.

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki T, Sasano H, Tamura M, et al. Temporal and spatial localization of steroidogenic enzymes in premenopausal human ovaries: in situ hybridization and immunohistochemical study. Mol Cell Endocrinol 1993;97:135–143.

    Article  PubMed  CAS  Google Scholar 

  32. Geller DH, Auchus RJ, Mendonça BB, Miller WL. The genetic and functional basis of isolated 17,20-lyase deficiency. Nature Genet 1997;17:201–203.

    Article  PubMed  CAS  Google Scholar 

  33. Geller DH, Auchus RJ, Miller WL. P450c17 mutations R347H and R358Q selectively disrupt 17,20-lyase activity by disrupting interactions with P450 oxidoreductase and cytochrome b5. Mol Endocrinol 1999;13:167–175.

    Article  PubMed  CAS  Google Scholar 

  34. Pandey AV, Mellon SH, Miller WL. Protein phosphatase 2A and phosphoprotein SET regulate androgen production by P450c17. J Biol Chem 2003;278:2837–2844.

    Article  PubMed  CAS  Google Scholar 

  35. Miller WL. The molecular basis of adrenarche: A hypothesis. Acta Pediatr 1999;88 (Suppl 433):60–66.

    Google Scholar 

  36. Flück CE, Tajima T, Pandey AV, et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet 2004;36:228–230.

    Article  PubMed  CAS  Google Scholar 

  37. Arlt W, Walker EA, Draper N, et al. Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet 2004;363:2128–2135.

    Article  PubMed  CAS  Google Scholar 

  38. Adachi M, Tachibana K, Asakura Y, Yamamoto T, Hanaki K, Oka A. Compound heterozygous mutations of cytochrome P450 oxidoreductase gene (POR) in two patients with Antley-Bixler syndrome. Am J Med Genet 2004;128A:333–339.

    Article  PubMed  Google Scholar 

  39. Fukami M, Horikawa R, Nagai T, et al. POR (P450 oxidoreductase) mutations and Antley-Bixler syndrome with abnormal genitalia and/or impaired steroidogenesis: molecular and clinical studies in 10 patients. J Clin Endocrinol Metab 2005;90:414–426.

    Article  PubMed  CAS  Google Scholar 

  40. Huang N, Pandey AV, Agrawal V, et al. Diversity and function of mutations in P450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis. Am J Hum Genet 2005;76:729–749.

    Article  PubMed  CAS  Google Scholar 

  41. Morel Y, Miller WL. Clinical and molecular genetics of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Adv Hum Genet 1991;20:1–68.

    PubMed  CAS  Google Scholar 

  42. Mellon SH, Miller WL. Extra-adrenal steroid 21-hydroxylation is not mediated by P450c21. J Clin Invest 1989;84:1497–1502.

    Article  PubMed  CAS  Google Scholar 

  43. White PC, Curnow KM, Pascoe L. Disorders of steroid 11 β-hydroxylase isozymes. Endocr Rev 1994;15:421–438.

    Article  PubMed  CAS  Google Scholar 

  44. Fardella CE, Miller WL. Molecular biology of mineralocorticoid metabolism. Annu Rev Nutr 1996;16:443–470.

    Article  PubMed  CAS  Google Scholar 

  45. Luu-The V, Dufort I, Paquet N, Reimnitz G, Labrie F. Structural characterization and expression of the human dehydroepiandrosterone sulfotransferase gene. DNA Cell Biol 1995;14:511–518.

    Article  PubMed  CAS  Google Scholar 

  46. Miki Y, Nakata T, Suzuki T, et al. Systemic distribution of steroid sulfatase and estrogen sulfotransferase in human adult and fetal tissues. J Clin Endocrinol Metab 2002;87:5760–5768.

    Article  PubMed  CAS  Google Scholar 

  47. Peltoketo H, Luu-The V, Simard J, Adamski J. 17β-Hydroxysteroid dehydrogenase (HSD)/17-ketosteroid reductase (KSR) family: nomenclature and main characteristics of the 17 HSD/KSR enzymes. J Mol Endocrinol 1999;23:1–11.

    Article  PubMed  CAS  Google Scholar 

  48. Mindnich R. Möller G, Adamski J. The role of 17 β-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2004;218:7–20.

    Article  PubMed  CAS  Google Scholar 

  49. Agarwal AK, Auchus RJ. Cellular redox state regulates hydroxysteroid dehydrogenase activity and intracellular hormone potency. Endocrinology 2005;146:2531–2538.

    Article  PubMed  CAS  Google Scholar 

  50. Peltoketo H, Isomaa V, Maenlavsta O, Vihko R. Complete amino acid sequence of human placental 17β-hydroxysteroid dehydrogenase deduced from cDNA. FEBS Lett 1988;239:73–77.

    Article  PubMed  CAS  Google Scholar 

  51. Tremblay Y, Ringler GE, Morel Y, et al. Regulation of the gene for estrogenic 17-ketosteroid reductase lying on chromosome 17cen→q25. J Biol Chem 1989;264:20458–20462.

    PubMed  CAS  Google Scholar 

  52. Sawicki MW, Erman M, Puranen T, Vihko P, Ghosh D. Structure of the ternary complex of human 17β-hydroxysteroid dehydrogenase type I with 3-hydroxyestra-1,3,5,7-tetraen-17-one (equilin) and NADP+. Proc Natl Acad Sci USA 1999;96:840–845.

    Article  PubMed  CAS  Google Scholar 

  53. Wu L, Einstein M, Geissler WM, Chan HK, Elliston KO, Andersson S. Expression cloning and characterization of human 17 beta-hydroxysteroid dehydrogenase type 2, a microsomal enzyme possessing 20 alpha-hydroxysteroid dehydrogenase activity. J Biol Chem 1993;268:12964–12969.

    PubMed  CAS  Google Scholar 

  54. Lu ML, Huang YW, Lin SX. Purification, reconstitution, and steady-state kinetics of the trans-membrane 17β-hydroxysteroid dehydrogenase 2. J Biol Chem 2002;277:22123–22130.

    Article  PubMed  CAS  Google Scholar 

  55. Takeyama J, Sasano H, Suzuki T, Iinuma K, Nagura H, Andersson S. 17β-Hydroxysteroid dehydrogenase types 1 and 2 in human placenta: An immunohistochemical study with correlation to placental development. J Clin EndocrinolMetab 1998;83:3710–3715.

    Article  CAS  Google Scholar 

  56. Geissler WM, David DL, Wu L, et al. Male pseudohermaphroditism caused by mutations of testicular 17β-hydroxysteroid dehydrogenase 3. Nat Genet 1994;7:34–39.

    Article  PubMed  CAS  Google Scholar 

  57. Dufort I, Rheault P, Huang XF, Soucy P, Luu-The V. Characteristics of a highly labile human type 5 17β-hydroxysteroid dehydrogenase. Endocrinology 1999;140:568–574.

    Article  PubMed  CAS  Google Scholar 

  58. Mahendroo MS, Russell DW. Male and female isoenzymes of steroid 5α-reductase. Rev Reprod 1999;4:179–183.

    Article  PubMed  CAS  Google Scholar 

  59. Simpson ER, Mahendroo MS, Means GD, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev 1994;15:342–355.

    Article  PubMed  CAS  Google Scholar 

  60. Grumbach MM, Auchus RJ. Estrogen: consequences and implications of human mutations in synthesis and action. J Clin Endocrinol Metab 1999;84:4677–4694.

    Article  PubMed  CAS  Google Scholar 

  61. Miller WL. Steroid hormone biosynthesis and actions in the materno-feto-placental unit. Clinics Perinatol 1998;25:799–817.

    CAS  Google Scholar 

  62. Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab 1984;59:551–555.

    PubMed  CAS  Google Scholar 

  63. Corbould AM, Judd SJ, Rodgers RJ. Expression of types 1, 2, and 3 17β-hydroxysteroid dehydrogenase in subcutaneous abdominal and intra-abdominal adipose tissue of women. J Clin Endocrinol Metab 1998;83:187–194.

    Article  PubMed  CAS  Google Scholar 

  64. Thiboutot D, Bayne E, Thorne J, et al. Immunolocalization of 5α-reductase isozymes in acne lesions and normal skin. Arch Dermatol 2000;136:1125–1129.

    Article  PubMed  CAS  Google Scholar 

  65. Voutilainen R, Tapanainen J, Chung BC, Matteson KJ, Miller WL. Hormonal regulation of P450scc (20,22-desmo-lase) and P450c17 (17α-hydroxylase/17,20-lyase) in cultured human granulosa cells. J Clin Endocrinol Metab 1986;63:202–207.

    PubMed  CAS  Google Scholar 

  66. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 1996;17:121–155.

    Article  PubMed  CAS  Google Scholar 

  67. McNatty KP, Moore LG, Hudson NL, et al. The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology. Reproduction 2004;128:379–386.

    Article  PubMed  CAS  Google Scholar 

  68. Voutilainen R, Miller WL. Coordinate tropic hormone regulation of mRNAs for insulin-like growth factor II and the cholesterol side-chain cleavage enzyme, P450scc, in human steroidogenic tissues. Proc Natl Acad Sci USA 1987;84:1590–1594.

    Article  PubMed  CAS  Google Scholar 

  69. Dor J, Ben-Shlomo I, Lunenfeld B, et al.Insulin-like growth factor-I (IGF-I) may not be essential for ovarian follicular development: evidence from IGF-I deficiency. J Clin Endocrinol Metab 1992;74:539–542.

    Article  PubMed  CAS  Google Scholar 

  70. Welt CK, Smith ZA, Pauler DK, Hall JE. Differential regulation of inhibin A and inhibin B by luteinizing hormone, follicle-stimulating hormone, and stage of follicle development. J Clin Endocrinol Metab 2001;86:2531–2537.

    Article  PubMed  CAS  Google Scholar 

  71. Arlt W, Martens JWM, Song M, Wang JT, Auchus RJ, Miller WL. Molecular evolution of adrenarche: structural and functional analysis of P450c17 from four primate species. Endocrinology 2002;143:4665–4672.

    Article  PubMed  CAS  Google Scholar 

  72. Suzuki T, Sasano H, Takeyama J, et al. Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies. Clin Endocrinol 2000;53:739–747.

    Article  CAS  Google Scholar 

  73. Auchus RJ, Geller DH, Lee TC, Miller WL. The regulation of human P450c17 activity: relationship to premature adrenarche, insulin resistance and the polycystic ovary syndrome. Trends Endocrinol Metab 1998;9:47–50.

    Article  CAS  PubMed  Google Scholar 

  74. Iba~nez L, Potau N, Virdis R, et al. Postpubertal outcome in girls diagnosed of premature pubarche during childhood: Increased frequency of functional ovaian hyperandrogenism. J Clin Endocrinol Metab 1993;76:1599–1603.

    Article  CAS  Google Scholar 

  75. Oppenheimer E, Linder B, DiMartino-Nardi J. Decreased insulin sensitivity in prepubertal girls with premature adrenarche and acanthosis nigricans. J Clin Endocrinol Metab 1995;80:614–618.

    Article  PubMed  CAS  Google Scholar 

  76. Iba~nez L, Potau N, Zampolli M, et al. Hyperinsulinemia in post-pubertal girls with a history of premature pubarche and functional ovarian hyperandrogenism. J Clin Endocrinol Metab 1996;81:1237–1243.

    Article  CAS  Google Scholar 

  77. Ehrmann DA, Barnes RB, Rosenfield RL. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev 1995;16:322–353.

    Article  PubMed  CAS  Google Scholar 

  78. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanisms and implications for pathogenesis. Endocr Rev 1997;18:774–800.

    Article  PubMed  CAS  Google Scholar 

  79. Bollag G, Roth R, Beaudoin J, Mochley-Rosen D, Koshland D Jr. Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity. Proc Natl Acad Sci USA 1986;83:5822–5824.

    Article  PubMed  CAS  Google Scholar 

  80. Stadtmauer L, Rosen OM. Increasing the cAMP content of IM-9 cells alters the phosphorylation state and protein kinase activity of the insulin receptor. J Biol Chem 1986;261:3402–3407.

    PubMed  CAS  Google Scholar 

  81. Takayama S, White MF, Kahn CR. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity. J Biol Chem 1988;263:3440–3447.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Miller, W.L., Geller, D.H., Rosen, M. (2006). Ovarian and Adrenal Androgen Biosynthesis and Metabolism. In: Azziz, R., Nestler, J.E., Dewailly, D. (eds) Androgen Excess Disorders in Women. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-179-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-179-6_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-663-4

  • Online ISBN: 978-1-59745-179-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics