Skip to main content

The Chromatoid Body and microRNA Pathways in Male Germ Cells

  • Chapter
The Genetics of Male Infertility

Abstract

The chromatoid body (CB) is a finely filamentous, lobulated perinuclear granule located in the cytoplasm of male germ cells. The role of the CB in the mouse has remained elusive, although it was proposed to be involved in RNA storing and metabolism. We have found that the CB is related to the RNA processing body of somatic cells and that it seems to operate as an intracellular nerve center of the microRNA (miRNA) pathway. Our findings underscore the importance of posttranscriptional gene regulation and of the miRNA pathway in the control of postmeiotic male germ cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sassone-Corsi P. Transcriptional checkpoints determining the fate of the male germcells. Cell 1997;88:163–166.

    Article  PubMed  CAS  Google Scholar 

  2. Sassone-Corsi P. Unique chromatin remodelling and transcriptional regulation in spermatogenesis. Science 2002;296:2176–2178.

    Article  PubMed  CAS  Google Scholar 

  3. Foulkes NS, Schlotter F, Pevet P, Sassone-Corsi P. Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature 1993;362:264–267.

    Article  PubMed  CAS  Google Scholar 

  4. Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature 2005;434:583–589.

    Article  PubMed  CAS  Google Scholar 

  5. Penttila TL, Yuan L, Mali P, Hoog C, Parvinen M. Haploid gene expression: temporal onset and storage patterns of 13 novel transcripts during rat and mouse spermiogenesis. BiolReprod 1995;53:499–510.

    Article  CAS  Google Scholar 

  6. Schmidt EE, Schibler U. High accumulation of componenets of RNA polymerase II transcription machinery in rodent spermatid. Development 1995;121:2373–2383.

    PubMed  CAS  Google Scholar 

  7. Fimia GM, De Cesare D, Sassone-Corsi P. CBP independent activation of CREM and CREB by the LIM only protein ACT. Nature1999;398:165–169.

    Article  PubMed  CAS  Google Scholar 

  8. Nantel F, Monaco L, Foulkes NS, et al. Spermiogenesis deficiency and germ cell apoptosis in CREM mutant mice. Nature 1996;380:159–162.

    Article  PubMed  CAS  Google Scholar 

  9. Kotaja N, De Cesare D, Macho B, et al. Abnormal sperm in mice with targeted deletion of the act (activator of cAMP-responsive element modulator in testis) gene. Proc Natl Acad Sci USA 2004;101:10,620–10,625.

    Article  PubMed  CAS  Google Scholar 

  10. Macho B, Brancorsini S, Fimia GM, Setou M, Hirokawa N, Sassone-Corsi P. CREM-dependent transcription in male germ cells controlled by a kinesin. Science2002;298:2388–2390.

    Article  PubMed  CAS  Google Scholar 

  11. Deng W, Lin H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell2002;2:819–830.

    Article  PubMed  CAS  Google Scholar 

  12. Sasaki T, Shiohama A, Minoshima S, Shimizu N. Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics 2003;82:323–330.

    Article  PubMed  CAS  Google Scholar 

  13. Carmell MA, Xuan Z, Zhang MQ, Hannon GJ. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumori-genesis. Genes Dev 2002;16:2733–2742.

    Article  PubMed  CAS  Google Scholar 

  14. Benda C. Neue Mitteilungen über die Entvickelung der Genitaldrüsen und die Metamorphose der Samenzellen (Histogenese der Spermatozoen). Verhandlungen der Berliner Physiologischen Gesellschaft. Arch Anat Physiol 1891;549–552.

    Google Scholar 

  15. Sud BN. The chromatoid body in spermatogenesis. QJ Micros Sci 1961;102:273–292.

    Google Scholar 

  16. Comings DE, Okada TA. The chromatoid body in mouse spermatogenesis: evidence that it may be formed by the extrusion of nucleolar components. J Ultrastruct Res 1972;39:15–23.

    Article  PubMed  CAS  Google Scholar 

  17. Fawcett DW, Eddy EM, Phillips DM. Observations on the fine structure and relationships of the chromatoid body in mammalian spermatogenesis. Biol Reprod 1970;2:129–153.

    Article  PubMed  CAS  Google Scholar 

  18. Söderström KO. Formation of chromatoid body during rat spermatogenesis. Z Mikrosk Anat Forsch 1978;92:417–430.

    PubMed  Google Scholar 

  19. Ikenishi K. Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev Growth Differ 1998;40:1–10.

    Article  PubMed  CAS  Google Scholar 

  20. Parvinen M. The chromatoid body in spermatogenesis Int J Androl 2005;28:189–201.

    Article  PubMed  Google Scholar 

  21. Setchell BP. The Mammalian Testis. Paul Elek, London;1978, pp. 193–199.

    Google Scholar 

  22. Sud BN. Morphological and histochemical studies of the chromatoid body and related elements in the spermatogenesis of the rat. QJ Micros Sci 1961;102:495–505.

    Google Scholar 

  23. Paniagua R, Nistal M, Amat P, Rodriguez MC. Presence of ribonucleoproteins and basic proteins in the nuage and intermitochondrial bars of human spermatogonia. JAnat 1985;143:201–206.

    CAS  Google Scholar 

  24. Paniagua R, Nistal M, Amat P, Rodriguez MC. Ultrastructural observations on nucleoli and related structures during human spermatogenesis. Anat Embryol (Berl) 1986;174:301–306.

    Article  CAS  Google Scholar 

  25. Biggiogera M, Fakan S, Leser G, Martin TE, Gordon J. Immunoelectron microscopical visualization of ribonucleoproteins in the chromatoid body of mouse spermatids. Mol Reprod Dev 1990;26:150–158.

    Article  PubMed  CAS  Google Scholar 

  26. Moussa F, Oko R, Hermo L. The immunolocalization of small nuclear ribonucleoprotein particles in testicular cells during the cycle of the seminiferous epithelium of the adult rat. Cell Tissue Res 1994;278:363–378.

    Article  PubMed  CAS  Google Scholar 

  27. Saunders PT, Millar MR, Maguire SM, Sharpe RM. Stage-specific expression of rat transition protein 2 mRNA and possible localization to the chromatoid body of step 7 spermatids by in situ hybridization using a nonradioactive riboprobe. Mol Reprod Dev 1992;33:385–391.

    Article  PubMed  CAS  Google Scholar 

  28. Oko R, Korley R, Murray MT, Hecht NB, Hermo L. Germ cell-specific DNA and RNA binding proteins p48/52 are expressed at specific stages of male germ cell development and are present in the chromatoid body. Mol Reprod Dev 1996;44:1–13.

    Article  PubMed  CAS  Google Scholar 

  29. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Ebryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 2003;100:11,457–11,462.

    Article  PubMed  CAS  Google Scholar 

  30. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS. Post-transcriptional gene silencing by si RNAs and miRNAs. Curr Opin Struct Biol 2005;15:331–341.

    Article  PubMed  CAS  Google Scholar 

  31. Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science 2005;309:1519–1524.

    Article  PubMed  CAS  Google Scholar 

  32. Bernstein E, Allis CD. RNA meets chromatin. Genes Dev 2005;19:1635–1655.

    Article  PubMed  CAS  Google Scholar 

  33. Shoji M, Chuma S, Yoshida K, Morita T, Natatsuji N. RNA interference during spermatogenesis in mice. Dev Biol 2005;282:524–534.

    Article  PubMed  CAS  Google Scholar 

  34. Sontheimer EJ. Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 2005;6:127–138.

    Article  PubMed  CAS  Google Scholar 

  35. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs Mol Cell 2004;15:185–197.

    Article  PubMed  CAS  Google Scholar 

  36. Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004;305:1437–1441.

    Article  PubMed  CAS  Google Scholar 

  37. Kuramochi-Miyagawa S, Kimura T, Ijiri TW, et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 2004;131:839–849.

    Article  PubMed  CAS  Google Scholar 

  38. Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev 2000;93:139–149.

    Article  PubMed  CAS  Google Scholar 

  39. Kotaja N, Bhattacharyya SN, Jaskiewicz L, et al. The chromatoid body of male germ cells: similarity with P-bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA 2006;103:2647–2652.

    Article  PubMed  CAS  Google Scholar 

  40. Liu L, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 2005;7:719–723.

    Article  PubMed  CAS  Google Scholar 

  41. Pillai RS, Bhattacharyya SN, Artus CG, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 2005;309:1573–1576.

    Article  PubMed  CAS  Google Scholar 

  42. Cougot N, Babajko S, Séraphin B. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 2004;165:31–40.

    Article  PubMed  CAS  Google Scholar 

  43. Barad O, Meiri E, Avniel A, et al. MicroRNA expression detected by oligonu-cleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 2004;14:2486–2494.

    Article  PubMed  CAS  Google Scholar 

  44. Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the post-transcriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 2005;73:427–433.

    Article  PubMed  CAS  Google Scholar 

  45. Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell 2004;16:861–865.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Parvinen, M., Kotaja, N., Mishra, D.P., Sassone-Corsi, P. (2007). The Chromatoid Body and microRNA Pathways in Male Germ Cells. In: Carrell, D.T. (eds) The Genetics of Male Infertility. Humana Press. https://doi.org/10.1007/978-1-59745-176-5_12

Download citation

Publish with us

Policies and ethics