Skip to main content

Emerging Biosorption, Adsorption, Ion Exchange, and Membrane Technologies

  • Chapter
Advanced Physicochemical Treatment Technologies

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 5))

Abstract

In the last 20 yr, the water industry has been faced with a series of great challenges. Industries have discharged wastewater that contains various new compounds. In addition, the demand for high-quality water has been significantly increasing. As a result, new water treatment technologies have been developed. In this chapter, three novel technologies are introduced. The emerging technologies for the removal of heavy metals, disinfection byproducts, total organic carbons (TOC), and arsenic are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Volesky, Biosorption of Heavy Metals. CRC Press, Inc., 1990.

    Google Scholar 

  2. P. X. Sheng, L. H. Tan, J. P. Chen, and Y. P. Ting, Biosorption performance of two brown marine algae for removal of chromium. J. Dispersion Set Technol. 25(5), 681–688 (2004).

    Google Scholar 

  3. P. X. Sheng, Y. P. Ting, J. P. Chen, and L. Hong, Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interf. Sci. 275(1), 131–141 (2004).

    Article  CAS  Google Scholar 

  4. J. P. Chen and S. N. Wu, Copper adsorption behaviors of acid/base treated activated carbons. Langmuir 20(6), 2233–2242 (2004).

    Article  CAS  Google Scholar 

  5. J. P. Chen and L. Wang, Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors. Chemosphere 54(3), 397–404 (2004).

    Article  CAS  Google Scholar 

  6. S. B. Deng, R. B. Bai, and J. P. Chen, Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir 19(12), 5058–5064 (2003).

    Article  CAS  Google Scholar 

  7. J. P. Chen, L. Hong, S. N. Wu, and L. Wang, Elucidation of interactions between metal ions and ca-alginate based ion exchange resin by spectroscopic analysis and modeling simulation. Langmuir 18(24), 9413–9421 (2002).

    Article  CAS  Google Scholar 

  8. J. P. Chen and L. L. Lim, Key factors in chemical reduction by hydrazine for recovery of precious metals. Chemosphere 49(4), 363–370 (2002).

    Article  CAS  Google Scholar 

  9. J. P. Chen, D. Lie, L. Wang, S. N. Wu, and B. P. Zhang, Dried waste activated sludge as biosorbents for metal removal: adsorptive characterization and prevention of organic leaching. J. Chem. Technol. Biotechnol. 77(6), 657–662 (2002).

    Article  CAS  Google Scholar 

  10. J. P. Chen and M. S. Lin, Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. Water Res. 35(10), 2385–2394 (2001).

    Article  CAS  Google Scholar 

  11. J. P. Chen and L. Wang, Characterization of a ca-alginate based ion exchange resin and its applications in lead, copper and zinc removal. Sep. Sci. Technol. 36(16), 3617–3637 (2001).

    Article  CAS  Google Scholar 

  12. J. P. Chen and J. Peng, Uptake of toxic metal ions by novel calcium alginate beads. Adv. Environ. Res. 3(4), 439–449 (1999).

    Google Scholar 

  13. J. P. Chen, F. Tendeyong, and S. Yiacoumi, Equilibrium and kinetic studies of copper ion uptake by calcium alginate. Environ. Sci. Technol. 31(5), 1433–1439 (1997).

    Article  CAS  Google Scholar 

  14. J. R Chen and S. Yiacoumi, Biosorption of metal ions from aqueous solutions. Sep. Sci. Technol. 32(1-4), 51–69 (1997).

    Article  CAS  Google Scholar 

  15. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40(3-4), 997–1026 (2005).

    Article  CAS  Google Scholar 

  16. W. Zhao, Y. P. Ting, J. P. Chen, C. H. Xing and S. Q. Shi, Advanced primary treatment of wastewater using a bio-flocculation-adsorption sedimentation process. Acta Biotechnol. 20(1), 53–64 (2000).

    Article  CAS  Google Scholar 

  17. C. Tien, Adsorption Calculations and Modeling. Butterworth-Heinemann, Boston,MA, 1994.

    Google Scholar 

  18. W. D. Schecher and D. C. McAvoy, MINEQL+ chemical equilibrium modeling system, version 4.5 for windows. Environ. Res. Software Hallowell, ME, 2001.

    Google Scholar 

  19. A. Herbelin and J. Westall, FITEQL: A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data. Ver. 4.0. Technical Report. Department of Chemistry, Oregon State University, Corvallis,Oregon, 1999

    Google Scholar 

  20. R. Hausmann, C. Hoffmann, M. Franzreb, and W. H. Holl, Mass transfer rates in liquid magnetically stabilized fluidized bed of magnetic ion-exchange particles. Chem. Eng. Sci. 55, 1477–1482 (2000).

    Article  CAS  Google Scholar 

  21. H. Humbert, H. Gallard, H. Suty, and J. Croué, Performance of selected anion exchange resins for the treatment of a high DOC content surface water. Water Res. 39(9), 1699–1708 (2005).

    Article  CAS  Google Scholar 

  22. C. J. Johnson and P. C. Singer, Impact of a magnetic ion exchange resin on ozone demand and bromate formation during drinking water treatment. Water Res. 38(17), 3738–3750 (2004).

    Article  CAS  Google Scholar 

  23. D. A. Fearing, Combination of ferric and Miex® for the treatment of a humic rich water. Water Res. 38(10), 2551–2558 (2004).

    Article  CAS  Google Scholar 

  24. .P.C. Singer and K. Bilyk, Enhanced coagulation using a magnetic ion exchange resin. Water Res. 36(16), 4009–4022 (2002).

    Article  CAS  Google Scholar 

  25. T. H. Boyer and P. C. Singer bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors. Water Res. 39, 1265–1275 (2005).

    Article  CAS  Google Scholar 

  26. Y. Lee, J. Rho, and B. Jung, Preparation of magnetic ion exchange resins by the suspension polymerization of styrene with magnetite. J. Appl. Polymer Sci. 89, 2058–2067 (2003).

    Article  CAS  Google Scholar 

  27. R. S. Summers, Assessing DBP yield: uniform formation conditions. J. Am. Water Works Assoc. 88(6), 80–93 (1996).

    CAS  Google Scholar 

  28. R. Molinari, P. Argurio, and F. Pirillo, Comparison between stagnant sandwich and supported liquid membranes in copper(II) removal from aqueous solutions: flux, stability and model elaboration. J. Membr. Sci. 256(1-2), 158–168 (2005).

    Article  CAS  Google Scholar 

  29. W. Furst and R. Marr, Separation of metal species by emulsion liquid membranes. J. Membr. Sci. 38, 281–293 (1988).

    Article  Google Scholar 

  30. W. S. Winston Ho and K. K. Sirkar, Membrane Handbook. Van Nostrand Reinhold, New York, 1992.

    Google Scholar 

  31. M. Ma, Study on the transport selectivity and kinetics of amino acids through Di(2-ethylhexyl) phosphoric acid-kerosene bulk liquid membrane. J. Membr. Sci. 234, 101–109 (2004).

    Article  CAS  Google Scholar 

  32. S. Datta, P. K. Bhattacharya, N. Verma, Removal of aniline from aqueous solution in a mixed flow reactor using emulsion liquid membrane. J. Membr. Sci. 226, 185–201 (2003).

    Article  CAS  Google Scholar 

  33. J. Luan and A. Plaisier, Study on treatment of wastewater containing nitrophenol compounds by liquid membrane process. J. Membr. Sci. 229, 235–239 (2004).

    Article  CAS  Google Scholar 

  34. US EPA, Arsenic Rule Benefits Analysis: An SAB Review. EPA-SAB-EC-01-008. US Environmental Protection Agency, Washington,DC, August 2001.

    Google Scholar 

  35. P. R. Kumar, S. Chaudhari, K. C. Khilarand, and S. P. Mahajan, Removal of arsenic from water by electrocoagulation. Chemosphere 55(9), 1245–1252 (2004).

    Article  Google Scholar 

  36. M. A. Edwards, Chemistry of arsenic removal during coagulation and Fe-Mn oxidation. J. Am. Water Works Assoc. 64–77 (1994).

    Google Scholar 

  37. T. J. Sorg and G. S. Logsdon, Treatment technology to meet the interim primary drinking water regulations for inorganics. Part 2 J. Am. Water Works Assoc. 70, 379–393 (1978).

    CAS  Google Scholar 

  38. J. G. Hering, P. Chen, J. A. Wilkie, M. Elimelech, and S. Liang, Arsenic removal by ferric chloride. J. Am. Water Works Assoc. 88(4), 155–167 (1996).

    CAS  Google Scholar 

  39. G. S. Logsdon, T. J. Sorg, and J. M. Symons, Removal of heavy metals by conventional treatment, Proc. 16th Water Quality Conference-Trace Metals In Water Occurrence, Significance, and Control. University Bulletin. U. of Illinois. No. 71 (1974).

    Google Scholar 

  40. J. Gregor, Arsenic removal during conventional aluminium-based drinking-water treatment. Water Res. 35(7), 1659–1664 (2001).

    Article  CAS  Google Scholar 

  41. J. P. Chen, S. Y. Chang and Y. T. Hung, Electrolysis. In: Physicochemical Treatment Processes, L. K. Wang, Y. T. Hung, and N. K. Shammas,(eds.), Humana Press, Totowa, NJ, 359–378, 2005.

    Google Scholar 

  42. L. Lorenzen, J. S. J. Deventer and W. M. Landi, Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner. Eng. 8(4-5), 557–569 (1995).

    Article  CAS  Google Scholar 

  43. G. S. Gupta, G. Prasad and V. N. Singh, Removal of chrome dye from aqueous solutions by mixed adsorbents: fly ash and coal. Water Res. 24, 45–50 (1990).

    Article  CAS  Google Scholar 

  44. R. L. Vaughan, Jr. and B. E. Reed, Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Res. 39(6), 1005–1014 (2005).

    Article  Google Scholar 

  45. B. Daus, R. Wennrich, and H. Weiss, Sorption materials for arsenic removal from water: a comparative study. Water Res. 38(12), 2948–2954 (2004).

    Article  CAS  Google Scholar 

  46. D. Clifford, Ion exchange and inorganic adsorption. In: Water Quality and Treatment, American Water Works Association, McGraw Hill,New York. 1999.

    Google Scholar 

  47. US EPA, Case Study—Arsenic Treatment Technologies, Tucson, AZ, EPA 816-F-03-015, US Environmental Protection Agency, Washington DC, 2003.

    Google Scholar 

  48. US EPA, Arsenic Removal from Drinking Water by Ion Exchange and Activated Alumina Plants, EPA 600-R-00-088, US Environmental Protection Agency, Washington DC, 2000.

    Google Scholar 

  49. L. Zeng, A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal. Water Res. 37(18), 4351–4358 (2003).

    Article  CAS  Google Scholar 

  50. M. L. Pierce and C. B. Moore, Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 16(7), 1247–1253 (1982).

    Article  CAS  Google Scholar 

  51. A. Sperlich, A. Werner, A. Genz, G. Amy, E. Worch and M. Jekel, Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches. Water Res. 39(6), 1190–1198 (2005).

    Article  CAS  Google Scholar 

  52. M. Badruzzaman, P. Westerhoff and D. R. U. Knappe, Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water Res. 38(18), 4002–4012 (2004).

    Article  CAS  Google Scholar 

  53. J. A. Wilkie and J. G. Hering, Adsorption of arsenic onto hydrous ferric oxide effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf. A Physicochem. Eng. Aspects. 107, 97–110 (1996).

    Article  CAS  Google Scholar 

  54. Y. Zhang, M. Yang and X. Huang, Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent. Chemosphere 51(9), 945–952 (2003).

    Article  CAS  Google Scholar 

  55. V. Lenoble, C. Chabroullet, R. al Shukry, B. Serpaud, V. Deluchat and J. Bollinger, Dynamic arsenic removal on a MnO2-loaded resin. J. Colloid Interf. Sci.3 280(1), 62–67 (2004).

    Article  CAS  Google Scholar 

  56. K. N. Ghimire, K. Inoue, H. Yamaguchi, K. Makino and T. Miyajima, Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res. 37(20), 4945–4953 (2003).

    Article  CAS  Google Scholar 

  57. L. Dambies, T. Vincent and E. Guibal, Treatment of arsenic-containing solutions using chi-tosan derivatives: uptake mechanism and sorption performances. Water Res. 36(15), 3699–3710 (2002).

    Article  CAS  Google Scholar 

  58. Editor, Filtration media shown to effectively remove arsenic, Filtration & Separation, 42(3), 14 (2005).

    Google Scholar 

  59. Editor, Dow licenses arsenic removal technology, Filtration & Separation, 41(3), 8 (2004).

    Google Scholar 

  60. Filtration & Separation, First commercial-scale arsenic removal system In USA. Filtration & Separation, 40(6), 13 (2003).

    Google Scholar 

  61. M. X. Loukidou, K. A. Matis, A. I. Zouboulis and M. Liakopoulou-Kyriakidou, Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res. 37(18), 4544–4552 (2003).

    Article  CAS  Google Scholar 

  62. S. N. Kartal and Y. Imamura, Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan. Bioresou. Technol. 96(3), 389–392 (2005).

    Article  CAS  Google Scholar 

  63. N. K. Lazaridis, A. Hourzemanoglou and K. A. Matis, Flotation of metal-loaded clay anion exchangers. Part II: The Case of Arsenates. Chemosphere 47(3), 319–324 (2002).

    Article  CAS  Google Scholar 

  64. S. Shevade and R. G. Ford, Use of synthetic zeolites for arsenate removal from pollutant water. Water Res. 38(14-15), 3197–3204 (2004).

    Article  CAS  Google Scholar 

  65. M. H. Polyák and J. Hlavay, Removal of pollutants from drinking water by combined ion exchange and adsorption methods. Environ. Int. 21(3), 325–331 (1995).

    Article  Google Scholar 

  66. L. S. McNeill and M. Edwards, Arsenic removal during precipitative softening. J. Environ. Eng. 125(5), 453 (1997).

    Article  Google Scholar 

  67. T. Urase, J. Oh, and K. Yamamoto, Effect of pH on rejection of different species of arsenic by nanofiltration. Desalination 117(1-3), 11–18 (1998).

    Article  CAS  Google Scholar 

  68. Y. Sato, M. Kang, T. Kamei and Y. Magara, Performance of nanofiltration for arsenic removal. Water Res. 36(13), 3371–3377 (2002).

    Article  CAS  Google Scholar 

  69. R. Y. Ning, Arsenic removal by reverse osmosis. Desalination 143(3), 237–241 (2002).

    Article  CAS  Google Scholar 

  70. F. W. Pontius, N. Renouf, and R. McCutchen. Magnetic ion exchange solves problems. Opflow 32(8), 28–30 (2006).

    Google Scholar 

  71. L. K. Wang. Innovative Ultraviolet, Ion Exchange, Membrance and Flotation Technologies for Water and Waste Treatment. National Engineers Week Seminar, Traning Manual. Practicing Institute of Engineers, Albany, NY. February 12–14, 2006.

    Google Scholar 

  72. L. K. Wang, L. Kurylko, and M. H. S. Wang. Sequencing Batch Liquid Treatment. US Patent No. 5354458, US Patent and Trademark Office, Washington,DC, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 The Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chen, J.P., Wang, L.K., Yang, L., Lim, SF. (2007). Emerging Biosorption, Adsorption, Ion Exchange, and Membrane Technologies. In: Wang, L.K., Hung, YT., Shammas, N.K. (eds) Advanced Physicochemical Treatment Technologies. Handbook of Environmental Engineering, vol 5. Humana Press. https://doi.org/10.1007/978-1-59745-173-4_7

Download citation

Publish with us

Policies and ethics