Skip to main content

Nonthermal Plasma Technology

  • Chapter

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 5))

Abstract

All substances change from solid to liquid, and from liquid to gas when energy or heat is added. This change is called phase change and occurs at constant temperature. When energy is added to the gas, electrons emerge from the neutral particles and become ions. The state in which many ions and electrons are intermingled is called “plasma” (Fig. 1) (14). The change from gas to plasma is based on an ionization reaction. The energy needed for the reaction is in the range of 1–50 eV, which is generally much more than latent heat energy in the phase change (0.01 eV). Therefore, the change from gas to plasma is not strictly classified into the phase change. However, plasma is often called the fourth state, whereas solid, liquid, and gas are the other states of substance. Plasma is generally defined as an ionization gas, which is electrically neutral macro-scopically (the local number density of ion n i is equal to the number density of electrons nnie). Both ion and electron particles in plasma are moved by the heat. In particular, the speed of electrons is much more than other particles because of their small mass and mobility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Kanzawa, Plasma Dennetsu (English Translated Title: Heat Transfer in Plasma). Shinzan-sha Saitek Publ. Co., Tokyo, (in Japanese), 1992.

    Google Scholar 

  2. R. J. Roza, Magnetohydrodynamic Energy Conversion. McGraw-Hill Book Company, New York, NY, 1968.

    Google Scholar 

  3. M. Mitchner and C. H. Kruger, Partially Ionized Gas. John Wiley and Sons, New York,NY, 1973.

    Google Scholar 

  4. S. Teii, Plasma Kiso Kogaku (English Translated Title: Basic Plasma Engineering). Uchida Rokakuho Publishing Co. LTD., (in Japanese), 1997.

    Google Scholar 

  5. E. Hinnov and J. Hirschberg, Electron-ion recombination in dense plasmas. Phys. Rev. 125(3), 795–801 (1962).

    Article  CAS  Google Scholar 

  6. F. F. Chen, Introduction to Plasma Physics. Plenum Press, New York, NY, 1974.

    Google Scholar 

  7. E. M. Lifshits, Physical Kinetics (Course of Theoretical Physics). Butterworth-Heinemann Publication 1981.

    Google Scholar 

  8. N. G. Van Kampen and B. U. Felderhof, Theoretical Method in Plasma Physics. North-Holland Publ. Co., 1967.

    Google Scholar 

  9. D. R. Nicholson, Introduction to Plasma Theory. John Wiley & Sons, Inc. New York, NY, 1986.

    Google Scholar 

  10. A. B. Cambel, Plasma Physics and Magnetohydrodynamics. McGraw-Hill Inc. New York, NY, 1963.

    Google Scholar 

  11. J. S. Chang and T. Kaneda, Denri Kitai No Gensi Bunsi Katei (English Translated Title: Atoms and Molecular Processes of Ionized Gases). Tokyo Denki Daigaku Publ. Co., (in Japanese), 1982.

    Google Scholar 

  12. J. S. Chang, P. A. Lawless, and T. Yamamoto, Corona discharge processes. IEEE T. Plasma Sci. 19(6), 152–1166(1991).

    Google Scholar 

  13. D. K. Cheng, Field and Wave Electromagnetics (2nd ed.). Addison-Wesley Publishing Company, Reading, MA, 1992.

    Google Scholar 

  14. K. Kanaya and A. Iijima, Kodenatsu Kogaku Ensyu (English Translated Title: Problems on High Voltage Engineering). Maki Syoten Publishing Co. LTD., 7 and 37 (in Japanese), 1989.

    Google Scholar 

  15. A. Gal, M. Kurahashi, and M. Kuzumoto, An energy-consumption and byproduct-generation analysis of the discharge nonthermal plasma NO-reduction process. J. Phys. D. Appl. Phys. 32, 1–6 (1999).

    Article  Google Scholar 

  16. T. Yamamoto, K. Sonoyama, and S. Hosokawa, Gas-phase dioxins and NOχ control from incinerator plant using the pilot-scale PPCP. Proc. ofESCAMPIG16/icrp5, 2, 373–374 (2002).

    Google Scholar 

  17. T. Hirao, T. Yoshida, and S. Hayakawa, Hakumaku Gijyutsu no Shin Choryu (English Translated Title: New Trend in Thin film Manufacturing Technologies). Kogyo Chosakai Publishing Co. LTD., (in Japanese), 1997.

    Google Scholar 

  18. H. Yamasaki, K. Hayakawa, Y. Nagasaki, et al., Performances of closed cycle disk MHD generator with Ar/Cs. Proc. of 31st Intersociety Energy Conversion Eng. Conf. 2, Washington DC, pp. 854–859 (1996).

    Google Scholar 

  19. K. Wada, Performance and Transient Characteristics of Closed Cycle Disk MHD Generator. Master Course Thesis, Graduate School of Nagatsuta, Tokyo Institute of Technology, Yokohama, Japan, 1998.

    Google Scholar 

  20. M. Sadakata, Taiki Kuriin Kano Tameno Kagaku Kougaku (English Translated Title: Chemical Engineering for Atmospheric Clean-up). Baifukan Publishing Co., 75–78, (in Japanese), 1999.

    Google Scholar 

  21. Y. Nakano, Daigaku Katei Koudenatsu Kogaku (English Translated Title: Undergraduate Course, High Voltage Engineering) 2nd ed. Ohmsha Publishing Co., Vol. 132, 1991.

    Google Scholar 

  22. T. Murayama and H. Tsunemoto, Jidosya Engine Kogaku (English Translated Title: Automobile Engine Engineering). San-kai do Publ., 79–81 (in Japanese), 1997.

    Google Scholar 

  23. T. Oda, S. Kozuma, and T. Takahashi, Dilute trichloroethylene decomposition by using non-thermal discharge plasma cooperation with catalysis. Proc. of 1998 Annual Meeting of the Institute of Electrostatics Japan, 1–4, (in Japanese), 1998.

    Google Scholar 

  24. M. Okubo, T. Kuroki, Y. Miyairi, and T. Yamamoto, Low temperature soot incineration of DPF using non-thermal plasma induced radical injection. Proc. of ESA-IEEE Joint Meeting on Electrostatics, 416–430, 2003.

    Google Scholar 

  25. NOx analyzer, Horiba Corp. Portable Gas Analyzer PG-200 Series. Product manual, 58, 2003.

    Google Scholar 

  26. Horiba Corp., Analyzer of CO, CO 2 and N 2 O Gas Analyzer Unit for General Purpose VIA-510, Product manual, 2, 2003.

    Google Scholar 

  27. Shimazu, Co. Instruction Manual of GC-14 Gas Chromatograph. 12(1) (1997).

    Google Scholar 

  28. M. Takuma, (ed.) Fundamentals and Applications of FT-IR. 2nd ed., Tokyo Kagaku Dojin Publ. Co., 3–16 (in Japanese), 1994.

    Google Scholar 

  29. Biorad Laboratories, Inc. Spectrometer Manual of EXCALIBUR (1998).

    Google Scholar 

  30. C. D. Cooper and F. C. Alley, Air Pollution Control (A Design Approach). 2nd ed., Chapter 5, Waveland Press, Inc. 1994.

    Google Scholar 

  31. Japan Society of Electrostatics Electrostatics Handbook. Chapter 9, Ohm Sya Publ. (1981).

    Google Scholar 

  32. S. Oglesby and G. B. Nichols, A Manual of Electrostatic Precipitator Technology. National Technical Information Service, Springfield, VA, 1970.

    Google Scholar 

  33. H. J. White, Industrial Electrostatic Precipitation. Addison-Wesley, Reading, MA, 1963.

    Google Scholar 

  34. W. T. Davis (ed.), Air Pollution Engineering Manual. Air and Waste Management Association, Van Nostrand Reinhold, New York, NY.

    Google Scholar 

  35. A. D. Moore (ed.), Electrostatics and Its Applications. John Wiley, 1973.

    Google Scholar 

  36. G. W. Penny, A new electrostatic precipitator. Electr. Eng. 56, 159–163 (1937).

    Google Scholar 

  37. H. Lim, K. Yatsuzuka, and K. Asano, Fundamental characteristics of a two-stage electrostatic precipitator. J. Institute of Electrostat. Jpn. (in Japanese) 22(3), 145–152 (1998).

    Google Scholar 

  38. Y. Kawada, T. Kubo, Y. Ehara, et al., Development of high collection efficiency ESP by barrier discharge system. Proc. of IEEE/IAS Annual Meetings, 1130–1135 (1999).

    Google Scholar 

  39. S. Jayaram, G. S. P. Castle, J. S. Chang, et al., Semipilot plant pulse energized cold-precharger electrostatic precipitator tests for collection of moderately high resistivity flyash particles. IEEE T. Ind. Appl. 32(4), 851–857 (1996).

    Article  Google Scholar 

  40. A. Zukeran, P. C. Looy, A. Chakrabarti, et al., Collection efficiency of ultrafine particles by an electrostatic precipitator under DC and pulse operating modes. IEEE T. Ind. Appl. 35(5), 1184–1191 (1999).

    Article  Google Scholar 

  41. W. C. Hinds, Aerosol Technology. John Wiley & Sons, Inc, USA (Chapters 3 and 5), 1982.

    Google Scholar 

  42. T. Yamamoto and H. R. Velkoff, Electrohydrodynamics in an electrostatic precipitator. J. Fluid Mech. 108, 1–18 (1981).

    Article  Google Scholar 

  43. T. Yamamoto, M. Okuda, and M. Okubo, Three-dimensional ionic wind and electrohydro-dynamics of tuft/point corona electrostatic precipitator. IEEE T. Ind. Appl. November/ December (in printing) 2003.

    Google Scholar 

  44. A. Mizuno, K. Shimizu, K. Yanagihara, et al., Effect of additives and catalysts on removal of nitrogen oxides using pulsed discharge. Proc. of 1996 IEEE/IAS Annual Meeting 3, October 6–10, San Diego, CA, 1808–1812 (1996).

    CAS  Google Scholar 

  45. T. Oda, T. Kato, T. Takahashi, and K. Shimizu, Nitric oxide decomposition in air by using non-thermal plasma processing-with additives and catalyst. IEEE T. Ind. Appl. 34(2), 268–272 (1998).

    Article  CAS  Google Scholar 

  46. H. H. Kim, K. Tsunoda, S. Katsura, and A. Mizuno, A novel plasma reactor for NOx control using photocatalyst and hydrogen peroxide injection. Proc. of 1997 IEEE/IAS meeting, New Orleans, October 5–9, 1937–1941 (1997).

    Google Scholar 

  47. S. Masuda, Pulse corona induced plasma chemical process: a horizon of new plasma chemical technologies. Pure Appl. Chem. 60, 727–731 (1988).

    CAS  Google Scholar 

  48. S. Masuda, S. Hosokawa, X. Tu, and Z. Wang, Novel plasma chemical technologies—PPCP and SPCP for control of gaseous pollutants and air toxics. J. Electrostat. 34, 415–438 (1995).

    Article  CAS  Google Scholar 

  49. R. Hackam and H. Akiyama, Application of pulsed power for the removal of nitrogen oxides from pollution air. IEEE Electr. Insul. M. 17(5), 8–13 (2001).

    Article  Google Scholar 

  50. T. Yamamoto, M. Okubo, K. Hayakawa, and K. Kitaura, Towards ideal NOx control technology using a plasma-chemical hybrid process. IEEE T. Ind. Appl. 37(5), September/ October, 1492–1498 (2001).

    Article  CAS  Google Scholar 

  51. T. Yamamoto, M. Okubo, T. Nagaoka, and K. Hayakawa, Simultaneous removal of NOx, SOx, and CO2 at elevated temperature using a plasma-chemical hybrid process. IEEE T Ind. Appl. 38(5), 1168–1173 (2002).

    Article  CAS  Google Scholar 

  52. T. Kuroki, M. Takahashi, M. Okubo, and T. Yamamoto, Single-stage plasma-chemical process for particulates, NOx and SOx simultaneous removal. IEEE T. Ind. Appl. 38(5), 1204–1209 (2002).

    Article  CAS  Google Scholar 

  53. B. M. Penetrante, Non-thermal plasma reactors for treatment of NOx and other hazardous gas emissions. Task 1.1 Report for CRADA T No. 336-92-1-C, October 1993.

    Google Scholar 

  54. B. M. Penetrante, Plasma chemistry and power consumption in non-thermal plasma DeNOx. Non-thermal Plasma Techniques for Pollution Control, NATO ASI Series 34, Part A, B.M. Penetrante (ed.), 65–89 (1993).

    Google Scholar 

  55. T. Oda, T. Kato, T. Takahashi, and K. Shimizu, Nitric oxide decomposition in air by using non-thermal plasma processing. Proc. of IEJ-ESA 1996 Joint Symposium on Electrostatics, Univ. of Tokyo, Tokyo, Japan, October, 30–31 1996, 17–28.

    Google Scholar 

  56. G. E. Vogtlin and B. E. Penetrante, Pulsed corona discharge for removal of NOxfrom flue gas. Non-Thermal Plasma Techniques for Pollution Control, NATO ASI Series G34, PartB, B. M. Penetrante (ed.), 187–198 (1993).

    Google Scholar 

  57. K. Fujii, M. Higashi, and N. Suzuki, Simultaneous removal of NOx, COx, SOx, and soot in diesel engine exhaust. Non-Thermal Plasma Techniques for Pollution Control, NATO ASI Series G34, Part B, B. M. Penetrante (ed.), 257–279, 1993.

    Google Scholar 

  58. H. Shaw, Aqueous solution scrubbing for NOx control in munitions incineration. TheAmr. Soc. of Mechanical Engineers, August(1976).

    Google Scholar 

  59. T. Yamamoto, C. L. Yang, Z. Kravets, and M. Beltran, Plasma assisted chemical reactor for NOx decomposition. IEEE T. Ind. Appl. 36(3), 923–927, May/June (2000).

    Google Scholar 

  60. A. Ogata, N. Shintani, K. Mizuno, S. Kushiyama, and T. Yamamoto, Decomposition of benzene using non-thermal plasma reactor packed with ferroelectric pellet. Proc. of 1997 IEEE/IAS Annual Meeting, New Orleans, LA, October 6–9, 1975–1982, 1997.

    Google Scholar 

  61. T. Yamamoto, K. Ramanathan, P. A. Lawless, et al., Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE T. Ind. Appl. 28(3), 528–534 (1992).

    Article  CAS  Google Scholar 

  62. M. Sadakata, Taiki Kuriin Kano Tameno Kagaku Kougaku (English Translated Title: Chemical Engineering for Atmospheric Clean-up). Baifukan Publishing Co., Tokyo, Japan, (in Japanese), p. 140 (1999).

    Google Scholar 

  63. Z. Kiji and N. Kato, Kankyo Kaizen no Kagaku (English Translated Title: Chemical Engineering for Environmental Improvement). Dai Nippon Tosyo Publ. Co., Tokyo, Japan, (in Japanese), p. 9 (1986).

    Google Scholar 

  64. S. Masuda, S. Hosokawa, X. Tu, and Z. Wang, Novel cold plasma technologies for pollution control. Proc. of 2nd International Conf. on Applied Electrostatics, Beijing, China 1–24 (1993).

    Google Scholar 

  65. A. Tamaki and S. Hosokawa, Reduction of chemical pollutants in the exhaust gas of the municipal waste incinerator by PPCP. Proc. of 6th International Conf. on Electrostatic Precipitation, Budapest, Hungary 544–549 (1996).

    Google Scholar 

  66. H. H. Kim, I. Yamamoto, K. Takashima, S. Katsura, and A. Mizuno, Incinerator flue gas cleaning using wet-type electrostatic precipitator. J. Chem. Eng. Jpn., 33(4), 669–674 (2000).

    Article  CAS  Google Scholar 

  67. S. Hosokawa, A. Tamaki, and K. Sonoyama, Application of PPCP for reduction of gaseous pollutants exhausted from incineration plant. Proc. of NEDO Symposium on Non-Thermal Discharge Plasma Technology for Air Pollution Control, Beppu and Oita, Japan, 109–114 (1997).

    Google Scholar 

  68. S. Hosokawa, Application of PPCP as gas treatment system in incineration plants. Proc. of The Asia-Pacific Workshop on Water and Air Treatment by Advanced Oxidation Technologies: Innovation and Commercial Applications, Tukuba, Japan, 182–183, 1998.

    Google Scholar 

  69. S. Hosokawa, Application of PPCP for exhaust gases from incineration plants. Electrical Discharges for Environmental Purposes, E. M. VanVeldhuizen (ed.), NOVA Science Publishers, Inc. New York, NY, pp. 377–404 (1999).

    Google Scholar 

  70. S. Hosokawa, K. Sonoyama, and T. Yamamoto, PPCP pilot plant experiments for decomposition of dioxins. Proc. of Third International Symp. on Nonthermal Plasma Technology for Pollution Control, Cheju Island, Republic of Korea, April 23–27 (2001).

    Google Scholar 

  71. T. Yamamoto, K. Sonoyama, and S. Hosokawa, Emission control from incinerator plant using non-thermal plasma-chemical process. Proc. of Third International Symp. on Non-thermal Plasma Technology for Pollution Control, Cheju Island, Republic of Korea, April 23–27 (2001).

    Google Scholar 

  72. S. Masuda, Y. Wu, T. Urabe, and Y. Ono, (1987) Pulse corona induced plasma chemical process for DeNOx, DeSOx and mercury vapour control of combustion gas. Proc. of Third International Conf. on Electrostatic Precipitation, 667–676, Abono-Padova, Italy, October. It also appears in J. S. Chang and T. Oda (eds.), Applied Electrostatic Studies of Senichi Masuda (2002).

    Google Scholar 

  73. P. M. Castle, I. E. Kanter, P. K. Lee, and L. E. Kline, Corona Glow Detoxification Study. Westinghouse Corporation, final report, contract DAAA09-82-C-5396.

    Google Scholar 

  74. Y. Kondo and Y. Miyoshi, Pulseless corona in negative point to plane gap. Jpn. J. Appl. Phys. 17, 643–649 (1978).

    Article  CAS  Google Scholar 

  75. T. Yamamoto, P. A. Lawless, and L. E. Sparks, Narrow-gap point-to-plane corona with high velocity flows. IEEE T. Ind. Appl. September/October, 24(3), 934–939 (1988).

    Google Scholar 

  76. T. Yamamoto, P. A. Lawless, and L. E. Sparks, Triangle-shaped DC corona discharge device for molecular decomposition. IEEE Tran. Ind. Appl. July/August, 35(4), 743–749 (1989).

    Google Scholar 

  77. K. Hinokiyama, Jiturei ni Miru Datsusyu Gijyutu (English Translated Title: Odor Control Technologies with Industrial Applications). Kogyo Chosa Kai Pub. Co., Tokyo, Japan (in Japanese), 1999.

    Google Scholar 

  78. R. Zhang, T. Yamamoto, and D. S. Bundy, Control of ammonia and odors in animal houses by a ferroelectric plasma reactor. IEEE T. Ind. Appl. 32(1), 113–117 (1996).

    Article  Google Scholar 

  79. Ishiguro, S. and Sugawara, S. (1981) Tobacco smoke and tobacco smoke flavor. Koryo (in Japanese), 130, 31–39 (1996).

    Google Scholar 

  80. A. Mizuno, Y. Yamazaki, H. Ito, and H. Yoshida, AC energized ferroelectric pellet bed gas cleaner. IEEE T. Ind. Appl. 28(3), 535–540 (1992).

    Article  CAS  Google Scholar 

  81. S. Masuda, S. Hosokawa, X. L. Tu, et al., The performance of an integrated air purifier for control of aerosol, microbial, and odor. IEEE T. Ind. Appl. 29(4), 774–780 (1993).

    Article  CAS  Google Scholar 

  82. A. Mizuno, Y. Kisanuki, M. Noguchi, et al., Indoor air cleaning using a pulsed discharge plasma. IEEE T. Ind. Appl. 35(6), 1284–288 (1999).

    Article  CAS  Google Scholar 

  83. H. Yoshida, Z. Marui, M. Aoyama, J. Sugiura, and A. Mizuno, Removal of odor gas component utilizing plasma chemical reactions promoted by the partial discharge in a ferroelectric pellet layer. J. Institute of Electrostat. Jpn. (in Japanese), 13(5), 425–430 (1989).

    Google Scholar 

  84. Y. Kisanuki, M. Yoshida, K. Takashima, et al., Study on indoor air cleaning using plasma reactor combined with catalyst—experimental study on activation mechanism of TiO2J. Institute of Electrostat. Jpn. (in Japanese), 24(3), 153–158 (2000).

    Google Scholar 

  85. H. Suda, T. Ueno, T. Yamauchi, and Y. Sainomoto, Plasma discharge deodorizing system. Matsushita Electric Works, Ltd. Technical Report, December 2001, 58–63 (in Japanese), 2001.

    Google Scholar 

  86. M. Okubo, T. Yamamoto, T. Kuroki, and H. Fukumoto, Electric air cleaner composed of non-thermal plasma reactor and electrostatic precipitator. IEEE T. Ind. Appl. 37(5), 1505–1511 (2001).

    Article  CAS  Google Scholar 

  87. M. Okubo, T. Kuroki, H. Kametaka, and T. Yamamoto, Odor control using the ac barrier-type plasma reactors. IEEE T. Ind. Appl. 37(5), 1447–1455 (2001).

    Article  CAS  Google Scholar 

  88. S. K. Friedlander, Smoke, Dust, and Haze—Fundamental of Aerosol Dynamics —Oxford University Press, NY, 2000.

    Google Scholar 

  89. M. Horvath, Ozone. Amsterdam The Netherlands: Elsevier Science, 1980.

    Google Scholar 

  90. M. Kuzumoto, Extremely narrow discharge gap ozone generator. J. Plasma and Fusion Research (in Japanese), 74(10), 1144–1150 (1998).

    CAS  Google Scholar 

  91. Y. Kamase, T. Mizuno, and M. Sakurai, Development of ozone sterilization system for pharmacy plant. Ishikawajima-Harima Engineering Review (in Japanese), 40(1), 3–6 (2000).

    Google Scholar 

  92. Masuda Research Inc. Plasma Deodorization System—ADO Series—Products catalog, Tokyo, Japan, (in Japanese), 2002.

    Google Scholar 

  93. Masuda Research Inc., Ceramic Ozonizer and Small Ozonizers. Products Catalog, Tokyo, Japan, 2002.

    Google Scholar 

  94. N. Tabata, Ozone generation and generation efficiency. J. Plasma and Fusion Research (in Japanese), 74(10), 1119–1126 (1998).

    CAS  Google Scholar 

  95. NGK Insulators, LTD. NGK Deodorization Systems. Products Catalog, Environmental Systems & Equipment Division, Nagoya, Japan, 2002.

    Google Scholar 

  96. J. A. Libra and A. Saupe, Ozonation of Water and Wastewater: A Practical Guide to Understanding Ozone and Its Application. John Wiley & Sons Inc., 2000.

    Google Scholar 

  97. J. J. McKetta (ed.), Encyclopedia of Chemical Processing and Design: Wastewater Treatment with Ozone to Water and Wastewater Treatment. 66, Marcel Dekker Publisher, 1999.

    Google Scholar 

  98. A. Kanazawa, H. Sekiguchi, and T. Honda, Destruction technologies of substances that deplete the stratospheric ozone layer. Ed. Japanese Committee of Technologies for Destruction of Substances that Deplete the Stratospheric Ozone Layer, JICOP, November, 53, 1991.

    Google Scholar 

  99. D. J. Helfritch, Plasma technologies applied to air pollution control. IEEE T. Ind. Appl. 29(5), 882–886 (1993).

    Article  CAS  Google Scholar 

  100. E. Odic, M. Paradisi, M. Rea, L. Parissi, A. Goldman, and M. Goldman, Treatment of organic pollutants by corona discharge plasma. The Modern Problems of Electrostatics with Application in Environment Protection, NATO Science Series, 2. Environmental Security, I. I. Inculet, F. T. Tanasescu, and R. Cramariuc, (eds.), 63, 143–160 (1999).

    Google Scholar 

  101. E. N. Ruddy and L. A. Caroll, Select the best VOC control strategy. Chem. Eng. Progress 89(7), 28–35 (1993).

    Google Scholar 

  102. J. J. Sudnick and D. L. Corwin, VCR control techniques. Hazard. Waste Hazard. 11(1), 129–143(1994).

    CAS  Google Scholar 

  103. K. L. L. Vercamnen, A. A. Berezin, F. Lox, and J. S. Chang, Destruction of volatile organic compounds by non-thermal plasmas, a critical review. J. Adv. Oxid. Technol. 2(2), 312–329 (1997).

    Google Scholar 

  104. K. Mizuno, Stratospheric ozone depletion and its countermeasures. J. Institute of Electrostat. Jpn. 17(4), 251–258 (1993).

    Google Scholar 

  105. T. Yamamoto, Control of NOx and volatile organic compounds using catalyst/chemical combined packed-bed plasma reactor. OYO BUTURI 69(3), 284–289 (2000).

    CAS  Google Scholar 

  106. C. Lahousse, A. Bernier, P. Grange, et al., Evaluation of γ-MnO2 as a VOC removal catalyst: comparison with a nobel metal catalyst. J. Catal. 178, CA982148, 214–225 (1998).

    Article  CAS  Google Scholar 

  107. A. Czernichowski, Gliding arc. applications to engineering and environment control. Pure Appl. Chem. 66(6), 1301–1310 (1994).

    Article  CAS  Google Scholar 

  108. J. Teply, M. Dressler, J. Janca, and C. Tesar, Destruction of organic compounds in a high-frequency discharge plasma at reduced pressure. Plasma Chem. Plasma P. 15(3), 465–479 (1995).

    CAS  Google Scholar 

  109. J. Arno, J. W. Bevan, and M. Moisan, Acetone conversion in a low-pressure oxygen surface wave plasma. Environ. Sci. Technol. 29(8), 1961–1965 (1995).

    Article  CAS  Google Scholar 

  110. T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, The mechanism of the stabilization of glow plasma at atmospheric pressure. J. Phys. D. Appl. Phys. 23, 1125–1128 (1990).

    Article  CAS  Google Scholar 

  111. D. G. Storch and M. J. Kushner, Destruction mechanisms for formaldehyde in atmosphericpressure low temperature plasmas. J. Appl. Phys. 73(3), 51–55 (1993).

    Article  CAS  Google Scholar 

  112. J. S. Chang and F. Kaufman, Kinetics if the reactions of hydroxyl radicals with some halocarbons: CHFCl2, CHF2Cl, CH3CCl3, C2HCl3 and C2Cl4. J. Chem. Phys. 66(11), 4989–4994 (1997).

    Article  Google Scholar 

  113. J. S. Chang, Energetic electron induced plasma processes for reduction of acid and greenhouse gases in combustion flue gas. Non Thermal Plasma Techniques for Pollution Control, NATO ASI Series, Series G: Ecological Sciences G34, Part A, B. M. Penetrante, and S. E. Schulthis(ed.), Springer-Verlag, Berlin, 1–32 (1993).

    Google Scholar 

  114. A. W. Miziolek, J. T. Herron, W. G. Mallard, et al., Importance of chemistry in non-thermal plasma control of volatile organic compounds and air toxics. Proc. of ELMECO94, Lublin, 65–71 (1994).

    Google Scholar 

  115. B. M. Penetrante, M. C. Hsiao, J. N. Bardsley, et al., Electron bean and pulsed corona processing of carbon tertachloride in atmospheric pressure gas streams. Phys. Lett. (A) 209(1 and 2), 69–77 (1995).

    CAS  Google Scholar 

  116. H. Matzing, K. Woletz, and H. R. Paur, Abscheidung von fluchtigen organischen verbindungen (VOC) aus abluft durch elektronenstrahl. Statuskolloquium des PEF:9. Karlsruhe vom 9–11. Maerz, Vorhanden in Kernforschungzentrum Karlsruhe: KfK-PEF 104, 445–455 (1993).

    Google Scholar 

  117. H. Matzing, K. Hirota, W. Baumann, and H. R. Paur, Abscheidung von organischen verbindungen (VOC) aus abluft durch elektronenstraahl. Statuskolloquium des PEF:10. Karlsruhe vom 15–17. Maerz, Vorhanden in Kemforschungzenturm Karlsruher: KfK-PBF 118, (1994).

    Google Scholar 

  118. H. Matzing, W. Baunann, and H. R. Paur, Abscheidung von fluchtigen orsanischen verbindungen (VOC) aus abluft durch elektronenstrahl. Vorhanden in Kernforschungzenturn, Karlsruhe, PEF11 (1996).

    Google Scholar 

  119. H. R. Paur, H. Matzing, and K. Woletz, Removal of volatile organic compounds from industria1 off gas by irradiation induced aerosol formation. J. Aerosol Sci. 22, 509–512 (1991).

    Article  Google Scholar 

  120. L. Bromberg, D. R. Cohn, M. Koch, R. M. Patrick, and P. Thomas, Decomposition of dilute concentrations of carbon tetrachloride in air by an electron-bean generated plasma. Phys. Lett. (A), 173, 293–299 (1993).

    Article  CAS  Google Scholar 

  121. M. C. Hsiao, B. T. Merritt, B. M. Penetrante, G. E. Vogtlin, and P. H. Wallman, Plasma-assisted decomposition of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing. J. Appl. Phys. 78(5), 3451–3456 (1995).

    Article  CAS  Google Scholar 

  122. C. M. Nunez, G. H. Ramsey, W. H. Ponder, J. H. Abbott, L. E. Hamel, and R. H. Kariher, Corona destruction: an innovative control technology for VOCs and air toxics. Air & Waste 43, 242–247 (1993).

    CAS  Google Scholar 

  123. M. B. Chang and C. C. Chang, Destruction and removal of volatile organic compounds(VOCs) from gas streams with dielectric barrier discharge plasmas. In 88th Annual Meeting & Exhibition, Air and Waste Management, 95-WP77 B.05, 1995.

    Google Scholar 

  124. D. Evans, L. A. Rosocha, G. K Anderson, J. J. Coogan, and M. J. Kushner, Plasma remediation of trichloroethylene in silent discharge plasmas. J. Appl. Phys. 74(9), 5378–5386 (1993).

    Article  CAS  Google Scholar 

  125. M. B. Chang and C. C. Lee, Destruction of formaldehyde with dielectric barrier discharge plasmas. Environ. Sci. Technol. 29, 181–186 (1995).

    Article  CAS  Google Scholar 

  126. M. B. Chang and C. C. Chang, Destruction and removal of toluene and MEK from gas streams with silent discharge plasmas. AICHE J. 43(5), 1325–1330 (1997).

    Article  CAS  Google Scholar 

  127. Z. Falkenstein, Proceeding of C3H7OH, C2HCl3 and CCl4 in flue gases using silent discharge plasmas (SDPs), enhanced by (V)UV at 172 nm and 253.7 nm. J. Adv. Oxid. Technol. 2(1), 223–237 (1997).

    CAS  Google Scholar 

  128. A. Sjoberg, T. H. Teich, E. Heinzle, and K. Hungerbuhler, Oxidation products of toluene in a dielectric barrier plasma reactor. J. Adv. Oxid. Technol. 4(3), 319–327 (1999).

    CAS  Google Scholar 

  129. S. Yamaguma, A. Osawa, T. Kodama, and Y. Tabata, Detoxification of hazardous gaseous substances by discharge plasma-decomposition of aromatic organic solvents by surface discharge plasma. Res. Rep. of the Res. Inst. Industrial Safety in Japan, R1 1 S-RR-92, l57–166(1993).

    Google Scholar 

  130. T. Oda, R. Yamashita, I. Haga, T. Takahasi, and S. Masuda, Decomposition of gaseous organic contaminants by surface discharge induced plasma chemical processing-SPCP. IEEE T. Ind. Appl. 32(1), 118–124 (1996).

    Article  CAS  Google Scholar 

  131. T. Oda, R. Yamashita, K. Tanaka, T. Takahasi, and S. Masuda, Atmospheric pressure discharge plasma decomposition for gaseous air contaminants—trichlorotrifuluorethane and trichloroethylene. IEEE T. Ind. Appl. 32(2), 227–232 (1996).

    Article  CAS  Google Scholar 

  132. T. Oda, T. Takahashi, and K. Tada, Decomposition of dilute trichloroethylene by non-thermal plasma. IEEE T. Ind. Appl. 35(2), 373–379 (1999).

    Article  CAS  Google Scholar 

  133. T. Oda, T. Takahashi, H. Nakano, and S. Masuda, Decomposition of fluorocarbon gaseous contaminants by surface discharge induced plasma chemical processing. IEEE T. Ind. Appl. 29(1), 787–792 (1993).

    Article  CAS  Google Scholar 

  134. S. Masuda, S. Hosokawa, X. L. Tu, K. Sakakibara, S. Kitoh, and S. Sakai. Destruction of gaseous pollutants by surface-induced plasma chemical process (SPCA). IEEE T. Ind. Appl. 29(4), 781–786 (1993).

    Article  CAS  Google Scholar 

  135. A. Mizuno, Y. Yamazaki, S. Obama, E. Suzuki, and K. Okazaki, Effect of voltage waveform on partial discharge in ferroelectric pellet layer for gas clearing, IEEE T. Ind. Appl. 29(2), 262–267 (1993).

    Article  CAS  Google Scholar 

  136. R. A. Korzekwa and L. A. Rosocha, Treatment of a multicomponent VOC mixture in air using a dielectric barrier discharge. J. Adv. Oxid. Technol. 4(4), 390–399(1999).

    CAS  Google Scholar 

  137. S. Futamura and T. Yamamoto, Byproduct identification and mechanism determination in plasma chemical decomposition of trichloroethlene. IEEE T. Ind. Appl. 33(2), 447–453 (1997).

    Article  CAS  Google Scholar 

  138. S. Futamura, A. Zhang, G. Prieto, and T. Yamamoto, Factors and intermediates governing byproduct distribution for decomposition of butane in nonthermal plasma. IEEE T. Ind. Appl. 34(5), 967–974 (1998).

    Article  CAS  Google Scholar 

  139. T. Yamamoto, J. S. Chang, A. A. Berezin, H. Kohno, S. Honda, and A. Shibuya, Decomposition of toluene, o-xylene, trichloroethyelen and their mixture using a BaTiO3 packed-bed plasma reactor. J. Adv. Oxide. Technol. 1(1), 67–78 (1996).

    CAS  Google Scholar 

  140. T. Yamamoto, P. A. Lawless, M. K. Owen, D. S. Ensor, and C. Boss, Decomposition of volatile organic compounds by a packed-bed reactor and a pulsed-corona plasma reactor.In:Nonthermal Plasma Techniques for Pollution Control, NATO ASI Series, Series G:Ecological Sciences G34, Part B, B. M. Penetrante and S. E. Schultheis (eds.), Springer-Verlag, Berlin, 223–237, 1993.

    Google Scholar 

  141. J. D. Skalny, V. Sobek, and P. Lukac, Negative corona induced decomposition of CCl2F2. In:Now-ThermaI Plasma Techniques for Pollulion Control, NATO ASI Series, Series G: Ecological Sciences G34, Part A, B. M. Penetrante and S. E. Schultheis, (eds.), Springer-Verlag, Berlin, 151–165, 1993.

    Google Scholar 

  142. H. Kohno, M. Tamura, S. Honda, et al., Generation of aerosol particles during the destruction of xylene and trichloroethylene from air stream by a pulse corona discharge. J. Aerosol Sci. 26(Suppl.1), S585–S586 (1995).

    Article  Google Scholar 

  143. J. S. Chang, T. Yamamoto, H. Kohno, et al., Removal of xylene, trichloroethylene and their mixtures from air stream by a pulsed corona discharge induced plasma reactor. J. Adv. Oxi.Technol. 2(2), 346–352 (1997).

    CAS  Google Scholar 

  144. H. Kohno, A. A. Berezin, J. S. Chang, et al., Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. IEEE T. Ind. Appl. 34(5), 953–966 (1998).

    Article  CAS  Google Scholar 

  145. J. S. Chang, A. Chakrabarti, T. A. Myint, and A. W. Miziolek, The effect of corona wire geometries on the destruction of volatile organic compounds in air by a pulsed corona discharge plasma reactor—adsorbent hybrid system. J. Adv. Oxid. Technol. 4(3), 297–304 (1999).

    CAS  Google Scholar 

  146. J. S. Chang, K. Urashima, T. Ito, and T. Misaka, Removal of volatile organic compounds by an electrical discharge/activated carbon filter hybrid system. Electrostatic 95. IOP Press, Bristol, Inst. Phys, Conf. Ser. 143, 183–186 (1995).

    CAS  Google Scholar 

  147. T. Yamamoto, K. Mizuno, I. Tamori, et al., Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE T. Ind. Appl. 32(1), 100–105 (1996).

    Article  CAS  Google Scholar 

  148. K. Urashima, J. S. Chang, T. Ito, and T. Misaka, Destruction of volatile organic compounds in air by a superimposed barrier discharge plasma reactor and activated carbon filter hybrid system. Proc. of IEEE/LAS Annual Meeting, 1969–1974, 1997.

    Google Scholar 

  149. J. S. Chang, K. Urashima, and T. Ito, Mechanism of non-thermal plasma treatment of volatile organic compounds in dry air. Emerging Technologies in Hazardous Waste Management, D. W. Tedder (ed.), ACS Press, Atlanta, 203–206, 1994.

    Google Scholar 

  150. S. Futamura, A. Zhang, and T. Yamamoto, The dependence of nonthermal plasma behavior of VOCs on their chemical structures. J. Electrostat. 42, 51–62 (1997).

    Article  CAS  Google Scholar 

  151. A. Zhang, S. Futamura, and T. Yamamoto, Nonthermal plasma chemical processing of bro-momethane. J. Air & Waste Manage. Assoc., 49, 1442–1448 (1999).

    CAS  Google Scholar 

  152. S. Futamura, H. Einaga, and A. Zhang, Comparison of reactor performance in the non-thermal plasma chemical processing of hazardous air pollutants. IEEE T. Ind. Appl. 37(4), 978–985 (2001).

    Article  CAS  Google Scholar 

  153. H. Einaga, T. lbusuki, and S. Futamura, Perfomance evaluation of hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition. IEEE T. Ind. Appl. 37(5), 1476–1482 (2001).

    Article  CAS  Google Scholar 

  154. S. Futamura, H. Einaga, A. Zhang, and H. Kabashima, Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catal. Today 72, 259–265 (2002).

    Article  CAS  Google Scholar 

  155. M. B. Chang and S. J. Yu, An atmospheric-pressure plasma process for C2F6 removal. Environ. Sci Technol. 35, 1587–1592 (2001).

    Article  CAS  Google Scholar 

  156. S. J. Yu and Chang, M.B. Oxidative conversion of PFC via plasma processing with dielectric discharge. Plasma Chem. Plasma P. 21, 311–327 (2001).

    Article  CAS  Google Scholar 

  157. D. A. Li, D. Yakushiji, S. Kanazawa, T. Ohkubo, and Y. Nomoto, Decomposition of toluene by streamer corona discharge with catalyst. J. Electrostat. 55, 311–319 (2002).

    Article  CAS  Google Scholar 

  158. M. Kang, B. J. Kim, S. M. Cho, et al., Decomposition of toluene using an atmospheric pressure plasma/TiO2 catalytic system. J. Mol. Catal. A-Chem. 180, 125–132 (2002).

    Article  CAS  Google Scholar 

  159. T. Oda, T. Takahashi, and K. Yamaji, Nonthermal plasma processing for dilute VOCs. IEEE T. Ind. Appl. 38, 873–878 (2002).

    Article  CAS  Google Scholar 

  160. D. W. Park, S. H. Yoon, G. J. Kim, and H. Sekiguchi, The effect of catalyst on the decomposition of dilute benzene using dielectric barrier discharge. J. Ind. Eng. Chem. 8, 393–398 (2002).

    CAS  Google Scholar 

  161. U. Roland, F. Holzer, and F. D. Kopinke, Improved oxidation of air pollutants in a non-thermal plasma. Catal. Today 73, 315–323 (2002).

    Article  CAS  Google Scholar 

  162. X. Chen, J. Rozak, J. C. Lin, S. L. Suib, Y. Hayashi, and H. Matsumoto, Oxidative decomposition of chlorinated hydrocarbons by glow discharge in PACT reactors. Appl. Catal. A-Gen. 219, 25–31 (2001).

    Article  CAS  Google Scholar 

  163. T. Oda, T. Takahashi, and S. Kohzuma, Decomposition of dilute trichloroetylene by using nonthermal plasmas processing-frequency and catalyst effects. IEEE T. Ind. Appl. 37, 965–970 (2001).

    Article  CAS  Google Scholar 

  164. H. Holzer, U. Roland, and F. D. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds, Part1. Accessibility of intra-particle volume. Appl. Catal. B-Environ. 38, 163–181 (2002).

    Article  CAS  Google Scholar 

  165. A. Gervasini and V. Ragaini, Catalytic technology assisted with ionization/ozonization phase for the abatement of volatile organic compounds. Catal. Today 60, 129–138 (2000).

    Article  CAS  Google Scholar 

  166. Y. H. Song, S. J. Kim, K. I. Choi, and T. Yamamoto, Effect of adsorption and temperature on a nonthermal plasma process for removing VOCs. J. Electrostat. 55, 189–201 (2002).

    Article  CAS  Google Scholar 

  167. K. P. Francke, H. Miessner, and R. Rudolph, Cleaning of air stream from organic pollutants by plasma-catalytic oxidation. Plasma Chem. Plasma P. 20, 393–403 (2000).

    Article  CAS  Google Scholar 

  168. H. Sekiguchi, Catalysis assisted plasma decomposition of benzene using dielectric barrier discharge. Can. J. Chem. Eng. 79, 512–516 (2001).

    Article  CAS  Google Scholar 

  169. A. Gervasini, G. C. Vezzoli, and V. Ragaini, VOC removal by synergic effect of combustion catalyst and ozone. Catal. Today 29, 449–455 (1996).

    Article  CAS  Google Scholar 

  170. K. P. Francke, H. Miessner, and R. Rudolph, Plasmacatalytic processes for environmental problems. Catal. Today 59, 411–416 (2000).

    Article  CAS  Google Scholar 

  171. V. Demidiouk, S. I. Moon, and J. O. Chae, Toluene and butyl acetate removal from air by plasma-catalytic system. Catal. Commun. 4, 51–56 (2003).

    Article  CAS  Google Scholar 

  172. A. Ogata, D. Ito, K. Mizuno, S. Kushiyama, and T. Yamamoto, Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE T. Ind. Appl. 37, 959–964 (2001).

    Article  CAS  Google Scholar 

  173. A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma reactor. IEEE T. Ind. Appl. 35, 1289–1295 (1999).

    Article  CAS  Google Scholar 

  174. A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure. Plasma Chem. Plasma P. 19, 383–394 (1999).

    Article  CAS  Google Scholar 

  175. T. Ohkubo, D. Li, D. Yakushiji, S. Kanazawa, and Y. Nomoto, Decomposition of VOC in air using a streamer corona discharge reactor combinated with catalyst. J. Adv. Oxi. Technol. 6, 75–79 (2003).

    CAS  Google Scholar 

  176. B. Penetrante and S. E. Schultheis, Edited, Non-Thermal Plasma Techniques for Pollution Control, Springer-Verlag, NATO ASI Series 34, Part B, 223–237 (1993).

    Google Scholar 

  177. A. Ogata, D. Ito, K. Mizuno, S. Kushiyama, A. Gal, and T. Yamamoto, Effects of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Appl. Catal. A-Gen. 236, 9–15 (2002).

    Article  CAS  Google Scholar 

  178. G. Saithamoorthy, B. R. Locke, W. C. Finney, R. C. Clark, and T. Yamamoto, Halon destruction in a gas phase pulsed streamer corona reactor. J. Adv. Oxi. Technol. 4(4), 375–379 (1999).

    Google Scholar 

  179. S. Futamura, A. Zhang, and T. Yamamoto, Mechanisms for formation of inorganic byproducts in plasma chemical processing of hazardous air pollutants. IEEE T. Ind. Appl. 35(4), 760–766 (1999).

    Article  Google Scholar 

  180. T. Yamamoto and B. L. Jang, Aerosol generation and decomposition of CFC-113 by the ferroelectric plasma reactor. IEEE Tran. Ind. Appl. 35(4), 736–742 (1999).

    Article  CAS  Google Scholar 

  181. T. Yamamoto, Optimization of nonthermal plasma for the treatment of gas streams. J. Hazard. Mater. B67, 165–181 (1999).

    Article  Google Scholar 

  182. T. Yamamoto and S. Futamura, Nonthermal plasma processing for controlling volatile organic compounds. Combust. Sci. Tech. 133, 117–133 (1998).

    Article  CAS  Google Scholar 

  183. H. Kohno, M. Tamura, A. Shibuya, et al., Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. IEEE Tran. Ind. Appl. 34(5), 953–966 (1998).

    Article  CAS  Google Scholar 

  184. A. Ogata, K. Mizuno, S. Kushiyama, and T. Yamamoto, Methane decomposition in a barium titanate packed-bed nonthermal plasma reactor. Plasma Chem. Plasma P. 18(3), 363–373 (1998).

    Article  CAS  Google Scholar 

  185. G. Prieto, O. Prieto, C. R. Gay, K. Mizuno, I. Tamori, and T. Yamamoto, Decomposition of carbon tetrachloride by a packed-bed plasma reactor. J. Adv. Oxi. Technol. for Water and Air Remediation 2(2), 330–336 (1997).

    CAS  Google Scholar 

  186. T. Yamamoto, VOC decomposition by nonthermal plasma processing—a new approach. J. Electrostat. 42, 227–238 (1997).

    Article  CAS  Google Scholar 

  187. T. Yamamoto, VOC decomposition technology using electrical discharge. Proc. of Institute of Electrostat. Jpn. 19(4), 301–305 (1995).

    Google Scholar 

  188. K. Jorgan, A. Mizuno, T. Yamamoto, and J. S. Chang, The effect of residence time on the CO2 reduction from combustion flue gases by an ac ferroelectric packed bed reactor. IEEE T. Ind. Appl. 29(5), 876–882 (1993).

    Article  Google Scholar 

  189. H. Kohno, S. Honda, J. S. Chang, T. Yamamoto, and A. A. Berezin, Generation of aerosol particles by spark discharges in a capillary tube under air flow with trace organic compounds. J. Aerosol Sci. 25 (Suppl. 1), S41–S42 (1994).

    Article  Google Scholar 

  190. J. S. Chang, The role of H2O and NH3 on the formation of NH4NO3 aerosol particles and De-NOx under the corona discharge treatment of combustion flue gases. J. Aerosol Sci. 20, 1087–1097(1989).

    Article  CAS  Google Scholar 

  191. H. H. Kim, H. Kobara, A. Ogata, and S. Futamura, Nono-sized aerosol formation from benzene decomposition using non-thermal plasma. J. Institute of Electrostat. Jpn. 27(1), 45–46 (2003).

    Google Scholar 

  192. T. Murayama and H. Tsunemoto, Jidosya Engine Kogaku (English Translated Title: Automobile Engine Engineering). Sankai-do Publ. Corp., 142 (in Japanese), 1997.

    Google Scholar 

  193. B. J. Cooper, The catalytic control of motor vehicle emissions. Preprint of Commemorative Lecture at the Twenty-third Honda Prize Awarding Ceremony, 15th November, Tokyo 2002.

    Google Scholar 

  194. M. Okubo and T. Yamamoto, Recent studies on regeneration of DPF using nonthermal plasma. J. Institute of Electrostat. Jpn. (in Japanese), 26(6), 254–255 (2002).

    Google Scholar 

  195. N. Kajiwara, (ed.) Particle Removal Technologies of Diesel Car Exhaust Gas. CMC books Corp., 203 (in Japanese) 2001.

    Google Scholar 

  196. M. Okubo, T. Miyashita, K. Kitaura, and T. Yamamoto, NOx removal characteristics in diesel engine exhaust using plasma-chemical hybrid process, Proc. 4th ESA/IEJ Joint Symposium in Electrostatics, Kyoto, Japan, September 25–26, 341–354 (2000).

    Google Scholar 

  197. T. Yamamoto, M. Okubo, T. Miyashita, and K. Kitaura, NOx removal in diesel engine exhaust using nonequilibrium plasma and chemical process, Trans. of Jpn. Society of Mech. Eng. (in Japanese), 67B, 663, 2891–2897 (2000).

    Google Scholar 

  198. M. Okubo, M. Takahashi, K. Kuroki, and T. Yamamoto, Simultaneous removal of NOx, SOx and soot particles in diesel engine exhaust gas using corona plasma-chemical hybrid process, Proc. of ESCAMPIG16/icrp5 2, Grenoble, France, 363–364, 2002.

    Google Scholar 

  199. T. Murayama, and H. Tsunemoto, Jidosya Engine Kogaku (English Translated Title: Automobile Engine Engineering). Sankai do Publ. (in Japanese) 1997.

    Google Scholar 

  200. N. Miyoshi, T. Tanaka, and S. Matsumoto, Development of NOx storage-reduction catalysts. TOYOTA Technical Rev. (in Japanese) 50(2), 28–33 (2000).

    CAS  Google Scholar 

  201. T. Hirayama and T. Uekusa, Aftertreatment technologies for diesel engines. Engine Technol (in Japanese) 2(2), 13–17 (2000).

    Google Scholar 

  202. S. E. Thomas, A. R. Martin, D. Raybone, J. T. Shawcross, K. L. Ng, and P. Beech, Non thermal plasma aftertreatment of particulates—theoretical limits and impact on reactor design. Presented at International Spring Fuels & Lubricants Meeting & Exposition, Paris,France, June 19–22, 1–13 (2000).

    Google Scholar 

  203. K. Fujii, Plasma treatment of the exhaust gas from vehicles. J. Plasma and Fusion Research (in Japanese) 74(2), 151–154 (1998).

    CAS  Google Scholar 

  204. B. R. Locke, A. Ichihashi, H. H. Kim, and A. Mizuno, Diesel engine exhaust cleanup with a pulsed streamer corona reactor equipped with reticulated vitreous carbon electrodes. IEEE T. Ind. Appl., 1111–1116 (1999).

    Google Scholar 

  205. A. Mohammadi, Y. Kaneda, T. Sogo, Y. Kidoguchi, and K. Miwa, Study of NO into NO2 conversion by high-frequency dielectric barrier discharge plasma for diesel exhaust aftertreatment. Preprints of 17th JSAE Internal Combustion Engine Symposium, (in Japanese) pp. 257–262, 2002.

    Google Scholar 

  206. S. Yamada, Honeycomb Ceramics for Air Pollution Control. Nihon Ceramics Kyo-kai, 27th Kosyukai shiryo (in Japanese), 1995.

    Google Scholar 

  207. H. Ogawa, and T. Ogasawara, Honeycomb Ceramics,Past, Present and Future. Ceramics data book 99, Kogyo to Seihin, (in Japanese) 27-81, 219–224(1999).

    Google Scholar 

  208. P. Kojetin, F. Janezich, L. Roth, and D. Tuma, Production experience of a ceramic wall flow electric regeneration diesel particulate trap. SAE paper, 930129, Febraury 1993.

    Google Scholar 

  209. Y. Ichikawa, S. Yamada, and T. Yamada, Development of wall-flow type diesel particulate filter system with efficient reverse pulse air regeneration. SAE paper, 950735, Febraury 1995.

    Google Scholar 

  210. J. Kupe, D. Goulette, M. Hemingway, et al., Non-thermal plasma approach to simultaneous removal of NOx & particulate matter. Presented at Diesel Engine Emission Reduction 2000 Workshop, SanDiego, CA., August 20–24, 2000.

    Google Scholar 

  211. J. Kupe, J. Bonadies, D. Goulette, et al., Delphi enhanced NTP emission solution tested on light-duty vehicle. Presented at Diesel Engine Emission Reduction 2001 Workshop, Portsmouth, Virginia, August 5–9, 2001.

    Google Scholar 

  212. S. Müller, J. Conrads, and W. Best, Reactor for decomposing soot and other harmful substances contained in flue gas. Proc. of Int. Symp. High Pressure Low Temperature Plasma Chemistry (Hakone VII) 2, 340–344 (2000).

    Google Scholar 

  213. M. Okubo, T. Miyashita, T. Kuroki, S. Miwa, and T. Yamamoto, Regeneration of diesel particulate filter using nonthermal plasma without catalyst. Proc. of 2002 IEEE/IAS Annual Meeting, CD-ROM, 2002.

    Google Scholar 

  214. T. Yamamoto, M. Okubo, T. Kuroki, and Y. Miyairi, Nonthermal plasma regeneration of diesel particulate filter. SAE paper, 2003-01-1182, presented at 2003 SAE World Congress, Detroit, Michigan, March 3–6, 2003.

    Google Scholar 

  215. M. Okubo, T. Kuroki, T. Yamamoto, and S. Miwa, SAE paper, 2003-01-1886, JSAE 20030309 presented at JSAE/SAE International Spring Fuels & Lubricants Meeting, Yokohama, Japan, May 19–22, 2003.

    Google Scholar 

  216. M. Okubo, T. Yamamoto, and S. Miwa, Exhaust gas cleaning system. Japanese patent pending, No. 2002-227920, August 5, 2002, PCT international patent pending, July 29, 2002.

    Google Scholar 

  217. P. C. Wankat, Cyclic separation processes (review). Separation Sci. 9, (2), 85–116 (1974).

    Article  CAS  Google Scholar 

  218. D. Diagne, M. Goto, and T. Hirose, New PSA process with intermediate feed inlet position operated with dual refluxes: application to carbon dioxide removal and enrichment. J. Chem. Eng. Jpn. 27, 85–89 (1994).

    Article  CAS  Google Scholar 

  219. H. Tominaga, Zeolite no Kagaku to Ouyo (English Translated Title: Science and Applications of Zeolite), Kodansha LTD., 1 (in Japanese), 1987.

    Google Scholar 

  220. M. Suzuki, Adsorption Engineering, Kodansha LTD. and Elsevier Science Publishers, p. 245, 1990.

    Google Scholar 

  221. T. Yamamoto and C. L. Yang, Plasma desorption and decomposition. Proc. of IEEE/IAS Annual Meeting, St. Louis, MO, 12–16, pp. 1877–1883, (1998).

    Google Scholar 

  222. T. Yamamoto, M. Okubo, and T. Kuroki, Nonthermal plasma desorption for NOx control. Trans. of the Institute of Fluid-Flow Machinery 107, 111–120 (2000).

    Google Scholar 

  223. T. Yamamoto, M. Okubo, and M. Fujimoto, Desorption and regeneration of NO using non-equilibrium plasma. J. Institute of Electrostat. Jpn. 24(3), 161–162 (2000).

    Google Scholar 

  224. K. L. Mittal, and W. J. Ooji (van(eds.), Special Issue on Plasma Surface Modification. J. Adhesion Sci. and Technol. 7(10), 1 (1993).

    Google Scholar 

  225. W. W. Balwanz, Plasma Cleaning of Surfaces. Surface Contamination: Genesis. Detection and Control 1, 255–269 (1979).

    CAS  Google Scholar 

  226. Y. Matsushita, Activities of PFCs emission reduction by EIAJ CVD & dry etching working group. OYO BUTURI (in Japanese), 69(3) 305–309 (2000).

    Google Scholar 

  227. M. Yamamoto, Q. Li, M. Nishioka, and M. Sadakata, Decomposition of CF4 and C2H6 by gas-phase ion-molecule reaction. Proc. of 6th World Congress of Chemical Engineering, (September 23–27, Melbourne, Australia), 2001.

    Google Scholar 

  228. J. S. Chang, K. G. Kostov, K. Urashima, et al., Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and absorbent hybrid system. IEEE T. Ind. Appl. 36(5), 1251–1259 (2000).

    Article  CAS  Google Scholar 

  229. T. Yamamoto, J. S. Chang, K. Yoshimura, S. Okayasu, T. Iwaizumi, and T. Kato, NF3 treatment by ferroelectric packed bed plasma reactor. J. Adv. Oxid. Technol. 4, 454–457 (1999).

    CAS  Google Scholar 

  230. T. Oda and M. Itoh, Dilute PFC decomposition by the non-thermal plasma. Proc. of 2001 Annual Meeting of the Institute of Electrostatics Japan, (Tokyo, Japan, September 11–12), 25–26 (in Japanese), (2001).

    Google Scholar 

  231. R. Itatani, M. Deguchi, T. Toda, and H. Ban, Abatement of CF4 using atmospheric pressure discharge plasma. Proc. of Second Asia-Pacific International Symposium on the Basis and Application of Plasma Technology, (Kaohsiung, Taiwan, April 30–31), 37–38 (2001).

    Google Scholar 

  232. M. Kogoma, PFC abatement System with using the atmospheric pressure glow plasma. Proc. of Second Polish-Japanese Hakone Group Symposium on Nonthermal Plasma Processing of Water and Air, 49–54 (2001).

    Google Scholar 

  233. H. H. Sawin, Abatement of PFC′s in a plasma reactor using O2 as an additive gas. B. Am. Phys. Soc. 43, 475 (1998).

    Google Scholar 

  234. J. D. Crip, Microwave PFC treatments. presented at the NIST Work-shop on Pollution Control Technol., Washington, DC, 1995.

    Google Scholar 

  235. E. J. Tonnis, V. Vartanian, L. Beu, T. Lii, R. Jewett, and D. Graves, Evaluation of a litmas “Blue” point-of-use (POU) plasma abatement device for perfluorocompound (PFC) destruction. Technology Transfer No. 98123605A-ENG, International SEMATECH, 1998.

    Google Scholar 

  236. V. Vartanian, L. Beu, T. Stephens, et al., Long-term evaluation of the litmas “Blue” plasma device for point-of-use (POU) perfluorocompound and hydrofluorocarbon abatement. Technology Transfer No. 99123865B-ENG, International SEMATECH, 2000.

    Google Scholar 

  237. K. Urashima, K. G. Kostov, J. S. Chang et al., Removal of C2F6 from a semiconductor process flue gas by a ferroelectric packed-bed barrier discharge reactor with an adsorber. IEEE T. Ind. Appl. 37(5), 1456–1463 (2001).

    Article  CAS  Google Scholar 

  238. Y. Inanaga, K. Ohta, N. Wada, M. Doi, K. Yoshida, and M. Kuzumoto, Destruction of perflu-oro compounds by atmospheric pressure plasma. Proc. of 2002 Annual Meeting of The institute of Electrostatics Japan, (Toyohashi, Japan, August 29–30), (in Japanese), 79–82 (2002).

    Google Scholar 

  239. N. Hayashi, K. Yamamoto, S. Ihara, S. Satoh, and C. Yamabe, Treatment of fluorocarbon using non-thermal plasma produced by atmospheric discharge. Proc. of 8th International Symposium on High Pressure Low Temperature Plasma Chemistry, (Pühajärve, Estonia, July 21–25), 361–362 (2002).

    Google Scholar 

  240. H. Nishiyama and M. Shigeta, Numerical simulation of an RF inductively coupled plasma for functional enhancement by seeding vaporized alkali metal. Eur. Phys. J. Appl. Phys., 125–133 (2002).

    Google Scholar 

  241. T. Yamamoto, J. R. Newsome, and D. S. Ensor, Modification of surface energy, dry etching, and organic film removal using atmospheric-pressure pulsed corona plasma. IEEE T. Ind. Appl. 31(3), 494–499 (1995).

    Article  CAS  Google Scholar 

  242. T. Yamamoto, M. Okubo, N. Imai, and Y. Mori, Improvement on hydrophilic and hydrophobic properties of glass surface treated by nonthermal plasma induced by silent corona discharge. Plasma Chem. Plasma P. 24, (1) (in printing), (2003).

    Google Scholar 

  243. H. Yasuda, Glow discharge polymerization. J. Polymer Sci.: Macromolecular Reviews 16, 199–293 (1981).

    Article  CAS  Google Scholar 

  244. M. Yekta-Fard and A. B. Ponter, Surface treatment and its influence on contact angles of water drops residing on polymers and metals. Phys. Chem. Liq. 15, 19–30 (1985).

    Article  CAS  Google Scholar 

  245. Y. Qiu, S. Deflon, and P. Schwartz, Plasma surface treatment of poly (p-phenylenebenzo-bisthiozol) fibers. J. Adhesion Sci. and Tech. (K. L. Mittal, and W. J. Ooji, eds., Special Issue on Plasma Surface Modification) 7(10), 1041–1049 (1993).

    Google Scholar 

  246. N. Inagaki, S. Takasa, and H. Kawai, Surface modification of Kevlar© fiber by a combination of plasma treatment and coupling agent treatment for silicone rubber composite. J. Adhesion Sci. and Tech. K. L. Mittal and W. J. Ooji, (eds.), Special Issue on Plasma Surface Modification 7(10), 279–291 (1993).

    Google Scholar 

  247. T. Minami and S. Tadanaga, Preparation of functional thin films by sol-gel method. Surf. Technol. 48(3), 298–303 (1997).

    CAS  Google Scholar 

  248. New energy and industrial technology development organization (NEDO) report, Development of comfortable cloth with moisture breath prepared by plasma process. Nedo report (Heisei 10 Nendo Chi-iki Konsosiam Kenkyu Kaihatu Jigyou), (Researchers:Kataoka, S. and Saeki, N. et al.), 1 (in Japanese), 1999.

    Google Scholar 

  249. M. Okubo, J. Mine, T. Kuroki, T. Yamamoto, N. Saeki, and S. Kataoka, Preparation of functional cloth with moisture breath and odor control properties using atmospheric-pressure plasma-graft polymerization. Proc. of 2nd Asia Aerosol Conf., Pusan, Korea, July 1–4, 361–362 (2001).

    Google Scholar 

  250. M. Okubo, T. Yamamoto, T. Kuroki, J. Mine, N. Saeki, and S. Kataoka, Odor control and moisture breath of functional cloth prepared by plasma-graft polymerization. J. Institute of Electrostat. Jpn. 25(6), 328–329 (2001).

    Google Scholar 

  251. S. Sakuhana, Fundamentals and Applications for Glass Surface. Uchida Rokaku-Ho Publ., Tokyo, (in Japanese), 103–107 (1985).

    Google Scholar 

  252. T. Yamamoto, A. Yoshizaki, T. Kuroki, and M. Okubo, Aluminum surface treatment using plasma-assisted dry chemical process. Proc. of ESA-IEEE Joint Meeting on Electrostatics, 846–857 (2003).

    Google Scholar 

  253. T. Kuroki, T. Yamamoto, and M. Okubo, Surface treated metal, its manufacturing method and equipment. Japanese patent pending, no. 2003-173519, June 18, 2003.

    Google Scholar 

  254. T. Karube and R. Haku, Cr+6 free surface treatment technology. Surf. Technol. (in Japanese), 53(6), 368–371 (2002).

    CAS  Google Scholar 

  255. S. Wolf and R. N. Tauber eds., Silicon processing for the VLSI. Era. Vol. 1 Process Technology. Sunset Beach, CA: Lattice, 1986.

    Google Scholar 

  256. I. Jacob and N. Israelachvili, Intermolecular and Surface Forces, Academic Press Ltd (1992).

    Google Scholar 

  257. T. Okamoto and K. Inoue, Corrosion and Protection. Dainippon Tosho Publ., (in Japanese), 150 (1987).

    Google Scholar 

  258. J. M. Kogoma, The characteristics of atmospheric pressure non-equilibrium plasma processing. Surf. Technol. 51(2), 21(2000).

    Google Scholar 

  259. H. F. Webster and J. P. Wrightman, Effects of oxygen and ammonia plasma treatment on polyphenylene sulfide thin films and their interaction with epoxy adhesive. J. Adhesion Sci. Technol. 5(1), 93–106 (1991).

    Article  CAS  Google Scholar 

  260. H. P. Godard, Oxide film growth over five years on some aluminum sheet alloys in air of varying humidity at room temperature. J. Electrochem. Soc. 114(4), 354–356 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 The Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yamamoto, T., Okubo, M. (2007). Nonthermal Plasma Technology. In: Wang, L.K., Hung, YT., Shammas, N.K. (eds) Advanced Physicochemical Treatment Technologies. Handbook of Environmental Engineering, vol 5. Humana Press. https://doi.org/10.1007/978-1-59745-173-4_4

Download citation

Publish with us

Policies and ethics