Skip to main content

Electrochemical Wastewater Treatment Processes

  • Chapter
Book cover Advanced Physicochemical Treatment Technologies

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 5))

Abstract

Using electricity to treat water was first proposed in England in 1889 (1). The application of electrolysis in mineral beneficiation was patented by Elmore in 1904 (2). Electrocoagulation (EC) with aluminum and iron electrodes was patented in the United States in 1909. The EC of drinking water was first applied on a large scale in the United States in 1946 (3,4). Because of the relatively large capital investment and the expensive electricity supply, electrochemical water or wastewater technologies did not find wide application worldwide then. However, in the United States and the former USSR extensive research during the following half century has accumulated abundant amount of knowledge. With the ever increasing standard of drinking water supply and the stringent environmental regulations regarding the wastewater discharge, electrochemical technologies have regained their importance worldwide during the past two decades. There are companies supplying facilities for metal recoveries, for treating drinking water or process water, treating various wastewaters resulting from tannery, electroplating, diary, textile processing, oil and oil in water emulsion, and so on. Nowadays, electrochemical technologies have reached such a state that they are not only comparable with other technologies in terms of cost but also are more efficient and more compact. For some situations, electrochemical technologies may be the indispensable step in treating wastewaters containing refractory pollutants. In this chapter, the established technologies such as electrochemical reactors for metal recovery, EC, electroflotation (EF), and electro-oxidation (EO) will be examined. The emerging technologies such as electrophoto-oxidation, electro disinfection will not be discussed. Focus will be more on the technologies rather than analyzing the sciences or mechanisms behind them. For books dealing with environmentally related electrochemistry, the readers are referred to other publications (58). Before introducing the specific technologies, are reviewed few terminologies that are concerned by electrochemical process engineers. The most frequently referred terminology besides potential and current may be the current density (i) the current per area of electrode. It determines the rate of a process. The next parameter is current efficiency (CE) the ratio of current consumed in producing a target product to that of total consumption. Current efficiency indicates both the specificity of a process and also the performance of the electrocatalysis involving surface reaction as well as mass transfer. The space-time yield, Y ST, of a reactor is defined as the mass of product produced by the reactor volume in unit time with

$$ Y_{ST} = \frac{{iaM}} {{1000zF}}CE $$
(1)

The space—time yield gives an overall index of a reactor performance, especially the influence of the specific electrode area (a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. P. Strokach, Electrochem. Ind. Process. Bio. 55, 375 (1975).

    Google Scholar 

  2. F. E. Elmore, A process for separating certain constituents of subdivided ores and like substances, and apparatus therefore, British patent 13, 578 (1905).

    Google Scholar 

  3. F. E. Stuart, Electronic water purification; Progress report on the electronic coagulator—a new device which gives promise of unusually speedy and effective results, Water and Sewage, 84, 24–26 (1946).

    CAS  Google Scholar 

  4. C. F. Bonilla, Possibilities of the electronic coagulator for water treatment, Water andSewage, 85, 21–22, 44–45 (1947).

    CAS  Google Scholar 

  5. T. R. Yu and G. L. Ji, Electrochemical Methods in Soil and Water Research, Pergamon Press, Oxford, 1993.

    Google Scholar 

  6. F. Goodridge and K. Scott, Electrochemical Process Engineering, A guide to the design of electrolytic plant, Plenum Press, NY, 1995.

    Google Scholar 

  7. K. Scott, Electrochemical Processes for Clean Technology, The Royal Society of Chemistry, London, 1995.

    Google Scholar 

  8. K. Rajeshwar and J. Ibanez, Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement, Academic Press, San Diago, 1997.

    Google Scholar 

  9. G. Dubpernel, In Selected Topics in the History of Electrochemistry; The Electrochemical Society: Princeton, p. 1, 1978.

    Google Scholar 

  10. K. C. Bailey, The Elder Pliny′s Chapters on Chemical Subjects, Part II, Edward Arnold: London, p. 60, 1932.

    Google Scholar 

  11. B. Fleet, Evolution of Electrochemical Reactor Systems for Metal Recovery and Pollution Control, in Electrochemistry, Past and Present, J. T. Stock and M. V. Orna (eds.), Americal Chemical Society, Washington, DC, 1989.

    Google Scholar 

  12. J. J. Leddy, Industrial Electrochemistry, in Electrochemistry, Past and Present, J. T. Stock and M. V. Orna, (eds.), Americal Chemical Society, Washington, DC, p. 478, 1989.

    Google Scholar 

  13. S. Ehdaie, M. Fleischmann, R. E. W. Jansson, and A. E. Alghaoui, Application of the trickle tower to problems of pollution-control. I. the scavenging of metal-ions, J. Appl. Electrochem. 12, 59–67 (1982).

    Article  CAS  Google Scholar 

  14. D. R. Gabe and F. C. Walsh, The rotating cylinder electrode—a review of development, J. Appl. Electrochem. 13(1), 3–22 (1983).

    Article  CAS  Google Scholar 

  15. F.C. Walsh, D. R. Gabe, and N. A. Gardner, Development of the eco-cascade—cell reactor, J. Appl. Electrochem. 12(3), 299–309 (1982).

    Article  CAS  Google Scholar 

  16. R. E. W. Jasson and N. R. Tomov, Chem. Eng. 316, 867 (1977).

    Google Scholar 

  17. R. E. W. Jasson, R. J. Marshall, and J. E. Rizzo, The rotating electrolyser, I: The velocity field, J. Appl. Electrochem. 8, 281–285 (1978).

    Article  Google Scholar 

  18. R. E. W. Jasson, R. J. Marshall, and J. E. Rizzo, The rotating electrolyser, II: Transport properties and design equations, J. Appl. Electrochem. 8, 287–291 (1978).

    Article  Google Scholar 

  19. R. Kammel and E. Hasan Guenduez, Review and outlook on continuous metal electrowinning and recovery processes from aqueous solutions, Metallurgical Soc. of AIME, Warrendale, PA, USA. 647–657 (1982).

    Google Scholar 

  20. J. R. Backhurst, J. M. Coulson, F. Goodridge, R. E. Plimley, and M. Fleischmann, A preliminary investigation of fluidised bed electrodes, J. Electrochem. Soc. 116, 1600–1607 (1969).

    Article  Google Scholar 

  21. G. Van der Heiden, C. M. S. Raats, and H. F. Boon, Chem and Ind. (London), 13, 465 (1978).

    Google Scholar 

  22. G. Kreysa, Chem. Ing. Tech. 50, 332 (1978).

    Article  CAS  Google Scholar 

  23. G. Kreysa and C. Reynvaan, Optimal-design of packed-bed cells for high conversion, J. Appl. Electrochem. 12(2), 241–251 (1982).

    Article  CAS  Google Scholar 

  24. J. G. Sunderland and I. M. Dalrymple, Cell and method for the recovery of metal from dilute solutions, US Patent, 5, 690, 806 (1997).

    Google Scholar 

  25. H. B. Beer, Electrode and coating therefore, US patent 3, 632, 498 (1972).

    Google Scholar 

  26. F. Shen, P. Gao, X. Chen, and G. Chen, Electrochemical removal of fluoride ions from industrial wastewater, Chem. Eng. Sci. 58, 987–993 (2003).

    Article  CAS  Google Scholar 

  27. V. K. Kovatchva and M. D. Parlapanski, Sono-electrocoagulation of iron hydroxides, Col. Surf. 149, 603–608 (1999).

    Article  Google Scholar 

  28. L. A. Kul′skii, P. P. Strokach, V. A. Slipchenko, and E. I. Saigak, Water Purification by Electrocoagulation Kiev, Budivel′nik (1978).

    Google Scholar 

  29. X. Chen, G. H. Chen, and P. L. Yue, Separation of pollutants from restaurant wastewater by electrocoagulation. Separ. Pur. Technol. 19, 65–76 (2000).

    Article  CAS  Google Scholar 

  30. H. M. Wong, C. Shang, Y. K. Cheung, and G. Chen, Chloride Assisted Electrochemical Disinfection, The Eighth Mainland-Taiwan Environmental Protection Conference, Tsin Chu, Taiwan, 2002.

    Google Scholar 

  31. E. A. Vik, D. A. Carlson, A. S. Eikum, and E. T. Gjessing, Electrocoagulation of potable water. Water Res. 18, 1355–1360 (1984).

    Article  CAS  Google Scholar 

  32. F. Li, S. Li, C. Zhang, and H. Zhao, Application of corrosive cell process in treatment of printing and dyeing wastewater, Chem. Eng. Environ. Protec. 15, 157–161 (1995).

    Google Scholar 

  33. M. Qiu, Water Purification by Electrocoagulation, Chinese Translation from Russian of the book by L. A. Kul′skii, P. P. Strokach, V. A. Slipchenko, and E. I. Saigak, Kiev, Budivel′nik, 1978. Shanghai Jiaotong University Press, 1988.

    Google Scholar 

  34. T. Ya. Pazenko, T. I. Khalturina, A. F. Kolova, and I. S. Rubailo. Electrocoagulation treatment of oil-containing wastewaters. J. Appl. USSR, 58, 2383–2387 (1985).

    Google Scholar 

  35. X. Chen, G. Chen, and P. L. Yue, Modeling the Electrolysis Voltage of Electrocoagulation Process Using Aluminum Electrodes, Chem. Eng. Sci. 57(13), 2449–2455 (2002).

    Article  CAS  Google Scholar 

  36. P. E. Ryan, T. F. Stanczyk, and B. K. Parekh, Solid/liquid separation using alternating current electrocoagulation, 1989 International Symposium on Solid/Liquid Separation: Waste Management and Productivity Enhancement, pp. 469–478, 1989.

    Google Scholar 

  37. V. A. Matveevich, Electrochemical methods of natural and waste water purifying, Elektronnaya Obrabotka Materialov, 5, 1030114 (2000).

    Google Scholar 

  38. S. H. Lin and C. F. Peng, Treatment of textile waste-water by electrochemical method. Water Res. 28(2), 277–282 (1994).

    Article  CAS  Google Scholar 

  39. S. H. Lin and C. F. Peng, Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge. Water Res. 30, 587–592 (1996).

    Article  CAS  Google Scholar 

  40. S. H. Lin and M. L. Chen, Treatment of textile waste-water by chemical methods for reuse, Water Res. 31(4), 868–876 (1997).

    Article  CAS  Google Scholar 

  41. L. J. Gao and Y. F. Cheng, Treatment of printing and dyeing wastewater using pulsed high voltage electrocoagulation flocculation method, Environ. Pollut. Control 14(5), 10–13 (Chn) 1992.

    Google Scholar 

  42. G. Chen, X. Chen, and P. L. Yue, Electrocoagulation and Electroflotation of Restaurant Wastewater, J. Envir. Eng. 126(9), 858–863 (2000).

    Article  CAS  Google Scholar 

  43. R. R. Renk, Electrocoagulation of tar sand and oil shale wastewaters, Energy Prog. 8, 205–208 (1988).

    CAS  Google Scholar 

  44. T. R. Demmin and K. D. Uhrich, Improving carpet wastewater treatment, Am. Dyestuff Rep. 77, 13–18, 32 (1988).

    CAS  Google Scholar 

  45. M. F. Pouet and A Grasmick, Urban wastewater treatment by electrocoagulation and flotation, Water Sci. Technol. 31, 275–283 (1995).

    Article  CAS  Google Scholar 

  46. S. H. Lin and C. S. Lin, Reclamation of wastewater effluent from a chemical fiber plant, Desalination 120, 185–195 (1998).

    Article  CAS  Google Scholar 

  47. G. V. Sleptsov, A. I. Gladkii, E. Ya. Sokol, and S. P. Novikova, Electrocoagulation treatment of oil emulsion wastewaters of industrial enterprises, Elektronnaya Obrabotka Materialov 6, 69–72 (1987).

    Google Scholar 

  48. U. B. Ogutveren and S. Koparal Electrocoagulation for oil-water emulsion treatment J. Environ. Sci. Health A 329-10 2507–2520 1997

    Google Scholar 

  49. J. Szynkarczuk, J. Kan, T. A. T. Hassan, and J. C. Donini, Clays, Clay Miner. 42, 667 (1994).

    Article  CAS  Google Scholar 

  50. N. S. Abuzaid, Z. Al-Hamouz, A. A. Bukhari, and M. H. Essa, Electrochemical treatment of nitrite using stainless steel electrodes, Water Air and Soil Poll. 109, 429–442 (1999).

    Article  CAS  Google Scholar 

  51. U. B. Ogutveren and S. Koparal, Electrochemical treatment of water containing dye-stuffs: nodic oxidation of congo red and xiron blau 2RHD, Int. J. Environ. Studies, 42, 41–52 (1992).

    Article  CAS  Google Scholar 

  52. R. S. Yeh, Y. Y. Wang, and C. C. Wan, Removal of Cu-EDTA compounds via electrochemical process with coagulation, Water Res. 29(2), 597–599 (1994).

    Article  Google Scholar 

  53. G. B. Raju and Khangaonkar, Electroflotation-A critical review, Trans. Indian Inst. Metals 37(1), 59–66 (1984).

    CAS  Google Scholar 

  54. Y. Fukui and S. Yuu, Removal of colloidal particles in electroflotation, AIChE J. 31(2), 201–208 (1985).

    Article  CAS  Google Scholar 

  55. V. A. Glembotskii, A. A. Mamakov, A. M. Ramanov, and V. E. Nenno, 11th International Mineral Processing Congress, Caglairi, 562–581, 1975.

    Google Scholar 

  56. C. Llerena, J. C. K. Ho, D. L. Piron, Effect of pH on electroflotation of sphalerite, Chem. Eng. Commun. 155, 217–228 (1996).

    Article  CAS  Google Scholar 

  57. D. R. Ketkar, R. Mallikarjunan, and S. Venkatachalam, 1988, Size determination of elec-trogenerated gas bubbles, J. Electrochem. Soc. India 37(4), 313 (1996).

    Google Scholar 

  58. D. R. Ketkar, R. Mallikarjunan, and S. Venkatachalam, Electroflotation of quartz fines, Int. J. Miner. Proc. 31, 127–138 (1991).

    Article  CAS  Google Scholar 

  59. S. E. Burns, S. Yiacoumi, and C. Tsouris, Microbubble generation for environmental and industrial separations, Separ. Pur. Technol. 11, 221–232 (1997).

    Article  CAS  Google Scholar 

  60. C. P. C. Poon, Electroflotation for groundwater decontamination, J. Hazard. Mater. 55, 159–170 (1997).

    Article  CAS  Google Scholar 

  61. A. Y. Hosny, Separating oil from oil-water emulsions by electroflotation technique, Separ. Technol. 6, 9–17 (1996).

    Article  CAS  Google Scholar 

  62. X. Chen, G. Chen, and P. L. Yue, A Novel Electrode System for Electro-flotation of Wastewaters, Environ. Sci. Technol. 36(4), 778–783 (2002).

    Article  CAS  Google Scholar 

  63. D. G. Stevenson, Water Treatment Unit Processes, Imperial College Press: London, 1997.

    Google Scholar 

  64. C. Tsouris, D. W. Depaoli, J. Q. Feng, O. A. Basaran, and T. C. Scott, Electrostatic spraying of nonconductive fluids into conductive fluids, AIChE J. 40(11), 1920–1923 (1994).

    Article  CAS  Google Scholar 

  65. V. I. Il′in and O. N. Sedashova, An electroflotation method and plant for removing oil products from effluents, Chem. Petrol. Eng. 35(7-8), 480–481 (1999).

    Article  CAS  Google Scholar 

  66. M. Y. Ibrahim, S. R. Mostafa, M. F. M. Fahmy, and A. I. Hafez, Utilization of electroflotation in remediation of oily wastewater, Separ. Sci. Technol. 36(16), 3749–3762 (2001).

    Article  CAS  Google Scholar 

  67. L. Alexandrova, T. Nedialkova, I. Nishkov, Electroflotation of metal ions in waste water, Int. J. Miner. Process. 41, 285–294 (1994).

    Article  CAS  Google Scholar 

  68. C. C. Ho and C. Y. Chan, The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent, Water Res. 20, 1523–1527 (1986).

    Article  CAS  Google Scholar 

  69. F. Hine M. Yasuda T. da T. Yoshida and J. Okuda Electrochemical behavior of the oxide-coated metal ades J. Electrochem. Soc. 126 1439–1445 1979

    Article  CAS  Google Scholar 

  70. V. A. Alves, L. A. D. Silva, E. D. Oliveira, and J. F. C. Boodts, Investigation under conditions of accelerated anodic corrosion of the effect of TiO2 substitution by CeO2 on the stability of Ir-based ceramic coatings, Mater. Sci. Forum 289–292, 655–666 (1998).

    Google Scholar 

  71. J. Rolewicz, Ch. Comninellis, E. Plattner, and J. Hinden, Characterisation des electrodes de type DSA pour le degagement de O2-I. l′electrode Ti/IrO2-Ta2O5, Electrochim. Acta 33, 573–580 (1988).

    Article  CAS  Google Scholar 

  72. Ch. Comninellis and G. P. Vercesi, Problems in DSA® coating deposition by thermal decomposition, J. Appl. Electrochem. 21, 136–142 (1991).

    Article  CAS  Google Scholar 

  73. Ch. Comninellis and G. P. Vercesi, Characterization of DSA-type oxygen evolving electrodes: choice of a coating, J. Appl. Electrochem. 21, 335–345 (1991).

    Article  CAS  Google Scholar 

  74. G. P. Vercesi, F. Rolewicz, and Ch. Comninellis, Characterization of DSA-type oxygen evolving electrodes: choice of base metal, Thermochim. Acta 176, 31–47 (1991).

    Article  CAS  Google Scholar 

  75. V. A. Alves, L. A. D. Silva, J. F. C. Boodts, and S. Trasatti, Kinetics and mechanism of oxygen evolution on IrO2-based electrodes containing Ti and CE acidic solutions, Electrochim. Acta 39, 1585–1589 (1994).

    Article  CAS  Google Scholar 

  76. R. Mraz and J. Krysa, Long service life IrO2/Ta2O5 electrodes for electroflotation, J. Appl. Electrochem. 24, 1262–1266 (1994).

    Article  CAS  Google Scholar 

  77. X. Chen, G. H. Chen, and P. L. Yue, Stable Ti/IrOχ-Sb2O5-SnO2 anode for O2 evolution with low Ir content, J. Phys. Chem. B 105, 4623–4628 (2001).

    Article  CAS  Google Scholar 

  78. G. Chen, X. Chen, and P. L. Yue, Electrochemical behavior of stable Ti/IrOχ-Sb2O5-SnO2 anodes for oxygen evolution, J. Phys. Chem. B 106(17), 4364–4369 (2002).

    Article  CAS  Google Scholar 

  79. V. K. Makarenko and A. Yu. Klimov, An electroflotation device for extracting suspended particles from liquids, Elektronnaya Obrabotka Materialov 4(106), 89–90 (1982).

    Google Scholar 

  80. V. I. Il′in, V. A. Kolesnikov, and Yu. I. Parshina, Purification of highly concentrated industrial sewage from the porcelain and faience industry by the electric flotation method, Glass and Ceramics 59(7-8), 242–244 (2002).

    Article  CAS  Google Scholar 

  81. V. D. Gvozdez and B. S. Ksenofontov, Waste water treatment in an electroflotation apparatus with a fluidized media, Khimiya I Tekhnologiya Vody 8(4), 70–72 (1986).

    Google Scholar 

  82. I. A. Zolotukhin, Effect of built-in partitions and electrode systems on the operating efficiency of an electroflotation unit, Khimiya i Tekhnologiya Vody 10(4), 342–344 (1988).

    CAS  Google Scholar 

  83. C. Camilleri, Electroflottation et flotation al′air disous, Indus. Miner. Les Techniques 67(1), 25–30 (1985).

    Google Scholar 

  84. V. A. Kolesnikov, V. I. Il′in, S. O. Varaksin, and V. T. Shaturov, Electroflotation method and equipment for removing metals and organic contaminants from waste waters, Russian J. Heavy Machinery 1, 37–38 (1996).

    Google Scholar 

  85. N. V. Tyabin, G. L. Dakhina, A. G. Golovanchikov, and A. A. Mamakov, Design of ideal displacement reactos for the separation of fine suspensions by electrolytic gases, Theoretical Foundations of Chem. Eng. 13(6), 757–761.

    Google Scholar 

  86. V. E. Nenno, V. I. Zelentsov, E. V. Mel′nichuk, A. M. Romanov, T. Ya. Datsko, and T. M. Radzilevich, Experience in operating a device for concentration of mineral raw material combining electroflotation and separation in a froth layer, Electronnaya Obrabotka Materialov 6, 77–79 (1988).

    Google Scholar 

  87. W. Chen and N. J. Horan, The treatment of a high strength pulp and paper mill effluent for wastewater re-use—III) Tertiary treatment options for pulp and paper mill wastewater to achieve effluent recycle, Environ. Technol. 19, 173–182 (1998).

    CAS  Google Scholar 

  88. C. J. Huang and J. C. Liu, Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer, Wat. Res. 33, 3403–3412 (1999).

    Article  CAS  Google Scholar 

  89. P. Lafrance and D. Grasso, Trajectory modelling of non-Brownian particle flotation using an extended Derjaguin-Landau-Verwey-Overbeek approach, Environ. Sci. Technol. 29, 1346–1352 (1995).

    Article  CAS  Google Scholar 

  90. N. T. Manjunath, I. Mehrotra, and R. P. Mathur, Treatment of wastewater from slaughterhouse by DAF-UASB system, Water Res. 34, 1930–1936 (2000).

    Article  CAS  Google Scholar 

  91. R. L. Vaughan, B. E. Reed, G. W. Roark, and D. A. Masciola, Pilot-scale investigation of chemical addition-dissolved air flotation for the treatment of an oily wastewater, Environ. Eng. Sci. 17, 267–277 (2000).

    CAS  Google Scholar 

  92. L. M. Balmer and A. W. Foulds, Separation oil from oil-in-water emulsions by elec-troflocculation/electroflotation. Fil. Separ. 23(11/12), 366–369 (1986).

    CAS  Google Scholar 

  93. V. I. Il′in, Unit for sewage cleaning from petroleum products, Khimicheskoe i Neftyanoe Mashinostroenie 5, 41–42 (2002).

    Google Scholar 

  94. M. F. Prokop′eva, V. N. Tkacheva, and E. Yu. Kirshina, A gas chromographic investigation of the composition of spent cooloing lubricants and the products formed during their electroflotation-coagulation treatment, Khimiya i Tekhnologia Vody 10(4), 335–337 (1988).

    CAS  Google Scholar 

  95. I. V. Aleksandrov, O. I. Rodyushkin, and K. S. Ibraev, Electroflotation treatment of waste-waters from by-product coke production to remove tars and oils, Koks I Khimiya 7, 41–44 (1992).

    Google Scholar 

  96. B. J. Hernlem and L. S. Tsai, Chlorine generation and disinfection by electroflotatioin, J. FoodSci. 65, 834–837 (2000).

    CAS  Google Scholar 

  97. O. R. Shendrik, E. E. Andreeva, M. I. Ponomareva, and I. B. Ivanenko, Electroflotation treatment of fat containing solutions, Khimiya i Tekhnologiya Vody 15(1), 54–56 (1993).

    CAS  Google Scholar 

  98. T. D. Kubritskaya, I. V. Drako, V. N. Sorokina, and R. V. Drondina, Use of electrochemical methods to purify the waste water from the production of concentrates in the food industry, Surface Engineering and Applied Electrochemistry 6, 62–68 (2000).

    Google Scholar 

  99. M. N. Rabilizirov and A. M. Gol′man, Treatment of diary waste waters by foam elec-troflotation-separation, Khimiya i Tekhnologiya Vody 8(4), 87–88 (1986).

    CAS  Google Scholar 

  100. M. Krofta and L. K. Wang, Development of innovative flotation-flitration systems for water treatment, part c: an electroflotation plant fro single families and institutions, Proceedings of the American Water Works Association Water Reuse Symposium III Vol. 3, 1251–1264(1984).

    Google Scholar 

  101. M. Krofta and L. K. Wang, Investigation of water treatment alternative fro single families and small communities in rural areas, US Dept. of Commerce, National Information Service, Springfield, VA. Technical Report Nos. PB86-175312/AS, p. 38 and PB85-207595/AS, p. 52, 1984.

    Google Scholar 

  102. L. K. Wang, Treatment of septic tank effluent by electroflotation and filtration, Lenox Institute of Water Technology, Lenox, MA. Technical Reports Nos. LIR/03-88-290S, p. 21 and LIR/03-88290L, p. 92, 1988.

    Google Scholar 

  103. I.A. Zolotukhin, V. A. Vasev, and A. L. Lukin, Electroflotation purification of the pit waters of the Kuzbass, Khimiya i Tekhnologiya Vody 5(3), 252–255 (1983).

    CAS  Google Scholar 

  104. V. Srinivasan and M. Subbaiyan, Electroflotation studies on Cu, Ni, Zn, and Cd with ammonium dodecyl dithiocarbamate, Separ. Sci. Technol. 24(1-2), 145–150 (1989)

    Article  CAS  Google Scholar 

  105. G. Ramadorai and J. P. Hanten, Removal of molybdenum and heavy metals from effluents by flotation, Miner. Metall. Processing, 149–154 (1986).

    Google Scholar 

  106. V. I Zelentsov and K. A. Kiselev, An investigation of separation of valuable components from solutions with electrical flotation, Elektronnaya Obrabotka Materialov 4, 50–54 (1986).

    Google Scholar 

  107. V. E. Nenno, V. I. Zelentsov, T. Ya, Datsko, E. E. Dvornikova, and T. M. Radzilevich, Gold and silver sorption from cyanide solutions by activated coal and metal isolation by electroflotation, Electronnaya Obrabotka Materialov 3, 42–44 (1994).

    Google Scholar 

  108. A. T. Kuhn, Electrolytic decomposition of cyanides, phenols and thiocyanates in effluents streams—a literature review, J. Appl. Chem. Biotechnol. 21, 29–34 (1971).

    Article  CAS  Google Scholar 

  109. M. O. Azzam, Y. Tahboub, and M. Al-Tarazi, Effect of counter electrode material on the anodic destruction of 4-Cl phenol solution, Trans. IChemE 77, Part B, 219–226 (1999).

    CAS  Google Scholar 

  110. L. Szpyrkowicz, J. Naumczyk, and F. Zilio-Grandi, Application of electrochemical processes for tannery wastewater treatment, Toxicol. Environ. Chem. 44, 189–202 (1994).

    CAS  Google Scholar 

  111. S. J. Allen, K. Y. H. Khader, and M. Bino, Electrooxidation of dyestuffs in waste waters, J. Chem. Tech. Biotechnol 62, 111–117 (1995).

    Article  CAS  Google Scholar 

  112. J. Naumczyk, L. Szpyrkowicz, and F. Z. Grandi, Electrochemical treatment of textile wastewater, Water Sci. Tech. 34(11), 17–24 (1996).

    Article  CAS  Google Scholar 

  113. J. Naumczyk, L. Szpyrkowicz, M. D. D. Faveri, and F. Zilio-Grandi, Electrochemical treatment of tannery wastewater containing high strength pollutants, Trans IChemE, B 74, 59–68 (1996).

    CAS  Google Scholar 

  114. A. G. Vlyssides and C. J. Israilides, Detoxification of tannery waste liquors with an electrolysis system, Environ. Pollut. 97(1-2), 147–152 (1997).

    Article  CAS  Google Scholar 

  115. A. G. Vlyssides, C. J. Israilides, M. Loizidou, G. Karvouni, and V. Mourafeti, Electrochemical treatment of vinasse from beet molasses, Water Sci. Tech. 36(2-3), 271–278 (1997).

    Article  CAS  Google Scholar 

  116. S. H. Lin and C. L. Wu, Electrochemical nitrite and ammonia oxidation in sea water, J. Environ. Sci. Health A, 32, 2125–2138 (1997).

    Google Scholar 

  117. L. C. Chiang, J. E. Chang, and T. C. Wen, “Electrochemical oxidation process for the treatment of coke-plant wastewater,” J. Environ. Sci. Health A, 30, 753–771 (1995).

    Google Scholar 

  118. L. C. Chiang, J. E. Chang, and T. C. Wen, Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate, Water Res., 29, 671–678 (1995).

    Article  CAS  Google Scholar 

  119. A. G. Vlyssides and C. J. Israilides, Electrochemical oxidation of a textile dye and finishing wastewater using a Pt/Ti electrode, J. Environ. Sci. Health A, 33, 847–862 (1998).

    Google Scholar 

  120. T. Matsue, M. Fujihira, and T. Osa, Oxidation of alkylbenzenes by electrogenerated hydroxyl radical, J. Electrochem. Soc. 128, 2565–2569 (1981).

    Article  CAS  Google Scholar 

  121. E. Brillas, R. M. Bastida, and E. Llosa, Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode, J. Electrochem. Soc. 142, 1733–1741 (1995).

    Article  CAS  Google Scholar 

  122. E. Brillias, E. Mur, and J. Casado, Iron(II) catallysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode, J. Electrochem. Soc. 143, L49–53 (1996).

    Article  Google Scholar 

  123. E. Brillas, R. Sauleda, and J. Casado, Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode, J. Electrochem. Soc. 144, 2374–2379 (1997).

    Article  CAS  Google Scholar 

  124. E. Brillas, R. Sauleda, and J. Casado, Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes, J. Electrochem. Soc. 145, 759–765 (1998).

    Article  CAS  Google Scholar 

  125. E. Brillas, E. Mur, R. Sauleda, L. Sanchez, F. Peral, X. Domenech, and J. Casado, Aniline mineralization by AOP′s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes, Appl. Catal. B: Environ. 16, 31–42 (1998).

    Article  CAS  Google Scholar 

  126. S. Stucki, H. Baumann, H. J. Christen, and R. Kotz, Performance of a pressurized electrochemical ozone generator, J. Appl. Electrochem. 17(4), 773–778 (1987).

    Article  CAS  Google Scholar 

  127. W. El-Shal, H. Khordagui, O. El-Sebaie, F. El-Sharkawi, and G. H. Sedahmed, Electrochemcial generation of ozone for water treatment using a cell operating under natural convection, Desalination 99, 149–157 (1991).

    Article  Google Scholar 

  128. J. C. Farmer, F. T. Wang, R. A. Hawley-Fedder, P. R. Lewis, L. J. Summers, and L. Foiles, Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol and benzene by silver (II), J. Electrochem. Soc. 139, 654–662 (1992).

    Article  CAS  Google Scholar 

  129. J. C. Farmer and F. T. Wang, Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol by cobalt (III) and iron (III), IChemE Symp. Series, 127, 203–214 (1992).

    CAS  Google Scholar 

  130. R. G. Hickman, J. C. Farmer, and F. T. Wang, Mediated electrochemical process for hazardous waste destruction, ACS symposium Series 518, Emerging Technologies in Hazardous Waste Management III, Am. Chem. Soc. 430–438 (1993).

    Google Scholar 

  131. F. Bringmann, K. Ebert, U. Galla, and H. Schmieder, Electrochemical mediators for total xidation of chlorinated hydrocarbons: formation kinetics of Ag(II), Co(III), and Ce(IV), J. Appl. Electrochem. 25, 846–851 (1995).

    Article  CAS  Google Scholar 

  132. V. Cocheci, C. Radovan, G. A. Ciorba, and I. Vlaiciu, Mediate electrochemical wastewater treatment, Revue Roumaine de Chimie 40, 615–619 (1995)

    CAS  Google Scholar 

  133. A. Paire, D. Espinoux, M. Masson, and M. Lecomte, Silver (II) mediated electrochemical treatment of selected organics: hydrocarbon destruction mechanism, Radiochim. Acta 78, 137–143 (1997).

    CAS  Google Scholar 

  134. Ch. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment, Electrochim. Acta 39, 1857–1862 (1994).

    Article  CAS  Google Scholar 

  135. M. Gattrell and D. W. Kirk, The electrochemical oxidation of aqueous phenol at a glassy carbon electrode, Can. J. Chem. Eng. 68, 997–1003 (1990).

    CAS  Google Scholar 

  136. O. J. Murphy, G. D. Hitchens, L. Kaba, and C. E. Verostko, Direct electrochemical oxidation of organics for wastewater treatment, Wat. Res. 26, 443–451 (1992).

    Article  CAS  Google Scholar 

  137. G. Rajalo and T. Petrovskaya, Selective electrochemical oxidation of sulphides in tannery wastewater, Environ. Technol. 17, 605–612 (1996).

    Article  CAS  Google Scholar 

  138. N. N. Rao, K. M. Somasekhar, S. N. Kaul, and L. Szpyrkowicz, Electrochemical oxidation of tannery, J. Chem. Tech. Biotechnol. 76, 1124–1131 (2001).

    Article  CAS  Google Scholar 

  139. J. L. Boudenne, O. Cerclier, J. Galea, and E. V. Vlist, Electrochemical oxidation of aqueous phenol at a carbon black slurry electrode, Appl. Catal. A: General, 143, 185–202 (1996).

    Article  CAS  Google Scholar 

  140. J. L. Boudenne and O. Cerclier, Performance of carbon black-slurry electrodes for 4-chlorophenol oxidation, Water Res. 33, 494–504 (1999).

    Article  CAS  Google Scholar 

  141. A. M. Polcaro and S. Palmas, Electrochemical oxidation of chlorophenols, Ind. Eng. Chem. Res. 36, 1791–1798 (1997).

    Article  CAS  Google Scholar 

  142. J. Manriquez, J. L. Bravo, S. Gutierrez-Granados, et al., Electrocatalysis of the oxidation of alcohol and phenol derivative pollutants at vitreous carbon electrode coated by nickel macrocyclic complex-based films, Anal. Chim. Acta 378, 159–168 (1999).

    Article  CAS  Google Scholar 

  143. C. S. Hofseth and T. W. Chapman, Electrochemical destruction of dilute cyanide by copper-catalyzed oxidation in a flow-through porous electrode, J. Electrochem. Soc. 146, 199–207 (1999).

    Article  CAS  Google Scholar 

  144. X. Chen, G. Chen, and P. L. Yue, Anodic oxidation of dyes at novel Ti/B-Diamond electrode, Chem. Eng. Sci. 58, 995–1001 (2003).

    Article  CAS  Google Scholar 

  145. I. Troster, L. Schafer, and M. Fryda, Recent developments in production and application of DiaChem-electrodes for wastewater treatment, New Diam. Front. C. Tec. 12(2), 89–97 (2002).

    CAS  Google Scholar 

  146. Ch. Comninellis and E. Plattner, Electrochemical wastewater treatment, Chimia 42(7/8), 250–252 (1988).

    CAS  Google Scholar 

  147. Y. M. Awad and N. S. Abuzaid, Electrochemical treatment of phenolic wastewater: efficiency, design considerations and economic evaluation, J. Environ. Sci. Health, A 32, 1393–1414 (1997).

    Google Scholar 

  148. N. Kannan, S. N. Sivadurai, L. J. Berchmans, and R. Vijayavalli, Removal of phenolic compounds by electrooxidation method, J. Environ. Sci. Health. A 30, 2185–2203 (1995).

    Google Scholar 

  149. L. Marincic and F. B. Leitz (1978), Electro-oxidation of ammonia in wastewater, J. Appl. Electrochem. 8, 333–345.

    Article  CAS  Google Scholar 

  150. C. C. Ho, C. Y. Chan, and K. H. Khoo, Electrochemical treatment of effluents: a preliminary study of anodic oxidation of simple sugars using lead dioxide-coated titanium anodes, J. Chem. Tech. Biotechnol. 36, 7–14 (1986).

    CAS  Google Scholar 

  151. S. Stucki, R. Kotz, B. Carcer, and W. Suter, Electrochemical wastewater treatment using high overvoltage anodes part II: Anode performance and applications, J. Appl. Electrochem. 21, 99–104 (1991).

    Article  CAS  Google Scholar 

  152. Ch. Comninellis, Electrochemical treatment of wastewater containing phenol, Trans Ichem E. B 70, 219–224 (1992).

    CAS  Google Scholar 

  153. J. D. Rodgers, W. Jedral, and N. J. Bunce, Electrochemical oxidation of chlorinated phenols, Environ. Sci. Technol. 33, 1453–1457 (1999).

    Article  CAS  Google Scholar 

  154. C. Pulgarin, N. Adler, P. Peringer, and Ch. Comninellis, Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment, Water Res. 28, 887–893 (1994).

    Article  CAS  Google Scholar 

  155. Ch. Comninellis and E. Plattner, The preparation and behaviour of Ti/Au/PbO2 anodes, J. Appl. Electrochem. 10, 399–404 (1982).

    Article  Google Scholar 

  156. D. W. Kirk, H. Sharifian, and F. R. Foulkes, Anodic oxidation of aniline for waste water treatment, J. Appl. Electrochem. 15, 285–292 (1985).

    Article  CAS  Google Scholar 

  157. I. H. Yeo and D. C. Johnson, Electrocatalysis of anodic oxygen-transfer reactions: effect of groups IIIA and VA metal oxides in electrodeposited ß-lead dioxide electrodes in acidic media, J. Electrochem. Soc. 134, 1973–1977 (1987).

    Article  CAS  Google Scholar 

  158. J. Feng and D. C. Johnson, Electrocatalysis of anodic oxygen-transfer reaction: Titanium substrates for pure and doped lead dioxide films, J. Electrochem. Soc. 138, 3329–3337 (1991).

    Article  Google Scholar 

  159. J. Feng, L. L. Houk, and D. C. Johnson, Electroatalysis of anodic oxygen-transfer reactions: the electrochemical incineration of benzoquinone, J. Electrochem. Soc. 142, 3626–3631 (1995).

    Article  CAS  Google Scholar 

  160. A. M. Polcaro, S. Palmas, F. Renoldi, and M. Mascia, On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment, J. Appl. Electrochem. 29, 147–151 (1999).

    Article  CAS  Google Scholar 

  161. A. Nanthakumar and N. R. Armstrong, in Studies in physical and theoretical chemistry 55, Semiconductor Electrodes, H. O. Finklea, (Ed.), New York, Elsevier Science Publishing Company Inc., p. 203, 1988.

    Google Scholar 

  162. C. A. Vincent and D. G. C. Weston, Preparation and properties of semiconducting poly-crystalline tin oxide, J. Electrochem. Soc. 119, 518–521 (1972).

    Article  CAS  Google Scholar 

  163. J. A. Aboaf and V. C. Marcotte, Chemical composition and electrical properties of tin oxide films prepared by vapor deposition, J. Electrochem. Soc. 120, 701–702 (1973).

    Google Scholar 

  164. Z. M. Jarzebski and J. P. Marton, Physical properties of SnO2 materials I. Preparation and defect structure, J. Electrochem. Soc. 123, 199C–205C (1976).

    Article  CAS  Google Scholar 

  165. Y. S. Hsu and S. K. Ghandhi, The preparation and properties of arsenic-doped tin oxide films, J. Electrochem. Soc. 126, 1434–1435 (1979).

    Article  CAS  Google Scholar 

  166. Y. S. Hsu and S. K. Ghandhi, The effect of phosphorus doping on tin oxide films made by the oxidation of phosphine and tetramethyltin I: Growth and etching properties, J. Electrochem. Soc. 127, 1592–1595 (1980).

    Article  CAS  Google Scholar 

  167. Y. S. Hsu and S. K. Ghandhi, The effect of phosphorus doping on tin oxide films made by the oxidation of phosphine and tetramethyltin II: Electrical properties, J. Electrochem. Soc. 127, 1595–1599 (1980).

    Article  CAS  Google Scholar 

  168. R. Kotz, S. Stucki, and B. Carcer, Electrochemical wastewater treatment using high over-voltage anodes part I: physical and electrochemical properties of SnO2 anodes, J. Appl. Electrochem. 21, 14–20 (1991).

    Article  Google Scholar 

  169. E. Giani and R. Kelly, A study of SnO2 thin films formed by sputtering and by anodising, J. Electrochem. Soc. 121, 394–399 (1974).

    CAS  Google Scholar 

  170. B. Correa-Lozano, Ch. Comninellis, and A. D. Battisti, Preparation of SnO2-Sb2O5 films by the spray pyrolysis technique, J. Appl. Electrochem. 26, 83–89 (1996).

    Article  CAS  Google Scholar 

  171. J. P. Chatelon, C. Terrir, E. Bernstein, R. Berjoan, and J. A. Roger, Morphology of SnO2 thin films obtained by the sol-gel technique, Thin Solid Films 47, 162–168 (1994).

    Article  Google Scholar 

  172. L. Lipp and D. Pletcher, The preparation and characterization of tin dioxide coated titanium electrodes, Electrochim. Acta 42, 1091–1099 (1997).

    Article  CAS  Google Scholar 

  173. B. Correa-Lozano, Ch. Comninellis, and A. D. Battisti, Physicochemical properties of SnO2-Sb2O5 films prepared by the spray pyrolysis technique. Electrochem. Soc. 143, 203–209 (1996).

    Article  CAS  Google Scholar 

  174. F. Grimm, D. Bessarabov, W. Maier, S. Storck, and R. D. Sanderson, Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water, Desalination 115, 295–302 (1998).

    Article  CAS  Google Scholar 

  175. R. Cossu, A. M. Polcaro, M. C. Lavagnolo, M. Mascia, S. Palmas, and F. Renoldi, Electrochemical treatment of landfill leachate: oxidation at Ti/PbO2 and Ti/SnO2 anodes, Environ. Sci. Technol. 32, 3570–3573 (1998).

    Article  CAS  Google Scholar 

  176. B. Correa-Lozano, Ch. Comninellis, and A. Debattisti, Service life of Ti/SnO2-Sb2O5 anodes, J. Appl. Electrochem. 28(8), 970–974 (1997).

    Article  Google Scholar 

  177. X. Chen and G. Chen, Comparison of BDD and with SnO2 electrodes, J. Environ. Sci. Technol. submitted (2003).

    Google Scholar 

  178. R. Hutchings, K. Muller, F. Kotz, and S. Stucki, A structural investigation of stabilized oxygen evolution catalysts, J. Mater. Sci. 19, 3987–3994 (1984).

    Article  CAS  Google Scholar 

  179. O. Weres and M. R. Hoffmann, Electrode, electrode manufacturing process and electrochemical cell, US patent 5,419,824 (1995).

    Google Scholar 

  180. J. M. Kesselman, O. Weres, N. S. Lewis, and M. R. Hoffmann, Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways, J. Phys. Chem. B 101, 2637–2643 (1997).

    Article  CAS  Google Scholar 

  181. J. R. Smith and F. C. Walsh, Electrodes based on magneli phase titanium oxides: the properties and applications of Ebonex® materials, J. Appl. Electrochem. 28, 1021–1033 (1998).

    Article  CAS  Google Scholar 

  182. G. Chen, E. A. Betterton, and R. G. Arnold, Electrolytic oxidation of trichloroethylene using a ceramic anode, J. Appl. Electrochem. 29, 961–970 (1999).

    Article  CAS  Google Scholar 

  183. M. A. Prelas, G. Popovici, and L. K. Bigelow, Handbook of industrial diamonds and diamond films, New York, Marcel Dekker, Inc., 1023–1147, 1998.

    Google Scholar 

  184. G. M. Swain, The use of CVD diamond thin films in electrochemical systems, Adv. Mater. 6, 388–392 (1994).

    Article  CAS  Google Scholar 

  185. G. M. Swain, The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes, Anal. Chem. 65, 345–351 (1993).

    Article  CAS  Google Scholar 

  186. J. Isberg, J. Hammersberg, E. Johansson, et al., High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond, Science 297, 1670–1672 (2002).

    Article  CAS  Google Scholar 

  187. J. Asmussen and D. K. Reinhard, Diamond Film Handbook, Michigan State University East Lansing, Michigan (2002).

    Google Scholar 

  188. W. G. Eversole, Synthesis of Diamond, US patents 3,030,187, and 3,030,188 (1962).

    Google Scholar 

  189. J. C. Angus, H. A. Will, and W. S. Stanko, Growth of diamond seed crystals by vapor deposition, J. Appl. Phys. 39, 2915–2922 (1968).

    Article  CAS  Google Scholar 

  190. B. V. Derjaguin, D. V. Fedoseev, B. V. Spitzyn, D. V. Lukyanovich, B. V. Ryabov, and A. V. Lavrntev, Filamentary diamond crystals, J. Cryst. Growth, 2, 380–384 (1968).

    Article  Google Scholar 

  191. B. V. Derjaguin and D. V. Fedoseev, Vapor growth of diamond on diamond and other surfaces, Scientific Am. 233(5), 102–109 (1975).

    Article  Google Scholar 

  192. S. Matsumoto, Y. Sato, M. Kakmo, and N. Setaka, Growth of diamond particles from methanae-hydrogen gas, J. Mater. Sci 17, 3106–3112 (1982).

    Article  CAS  Google Scholar 

  193. S. Matsumoto, Y. Sato, M. Kakmo, and N. Setaka, Vapor deposition of diamond particles from methane, Jpn. J. Appl. Phys. 2, L183–L185 (1982).

    Article  Google Scholar 

  194. M. Kamo, S. Sato, S. Matsumoto, and N. Setake, Diamond synthesis from gas phase microwave plasma, J. Cryst. Growth. 62, 642–644 (1983).

    Article  CAS  Google Scholar 

  195. K. Suzuki, A. Sawabe, H. Yasuda, and T. Inuzuka, Growth of diamond thin films by DC plasma chemical vapor deposition, Appl. Phys. Lett. 50, 728–729 (1987).

    Article  CAS  Google Scholar 

  196. P. K. Bachmann, Microwave plasma CVD, and related techniques for low pressure diamond synthesis, in Thin Film Diamond, A. Lettington and J. W. Steeds (ed.), London, Chapman and Hall, 31–53, 1

    Google Scholar 

  197. J. Mort, D. Kuhman, M. Machonkin, et al., Boron doping of diamond thin-films, Appl. Phys. Let. 55(11), 1121–1123 (1989).

    Article  CAS  Google Scholar 

  198. N. Fujimori, H. Nakahata, and T. Imai, Properties of boron-doped epitaxial diamond films, Jpn. J. Appl. Phys. 29, 824–827 (1990).

    Article  CAS  Google Scholar 

  199. J. G. Ran, C. Q. Zheng, J. Ren, and S. M. Hong, Properties and texture of B-doped diamond films as thermal sensor, Diam. Relat. Mater. 2, 793–796 (1993).

    Article  CAS  Google Scholar 

  200. M. Fryda, D. Herrmann, L. Schafer, et al., Properties of diamond electrodes for wastewa-ter treatment, New Diam. Front. C. Technol. 9, 229–240 (1999).

    CAS  Google Scholar 

  201. S. A. Grot, G. S. Gildenblat, C. W. Hatfield, C. R. Wronski, A. R. Badzian, T. Badzian, and R. Messier, The effect of surface treatment on the electrical properties of metal contacts to boron-doped homoepitaxial diamond film, IEEE Electron Device Lett. 11, 100–102 (1990).

    Article  CAS  Google Scholar 

  202. J. J. Carey, J. C. S. Christ, and S. N. Lowery, Method of electrolysis employing a doped diamond anode to oxidize solutes in wastewater, US patent 5,399,247 (1995).

    Google Scholar 

  203. H. B. Martin, A. Argoitia, U. Landau, A. B. Anderson, and J. C. Angus, Hydrogen and oxygen evolution on boron-doped diamond electrodes, J. Electrochem. Soc. 143, L133–L136 (1996).

    Article  CAS  Google Scholar 

  204. R. Tenne, K. Patel, K. Hashimoto, and A. Fujishima, Efficient electrochemical reduction of nitrate to ammonia using conductive diamond film electrodes, J. Electroanal. Chem. 347, 409–415 (1993).

    Article  CAS  Google Scholar 

  205. J. Iniesta, P. A. Michaud, M. Panizza, and Ch. Comninellis, Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode: application to electroorganic synthesis and wastewater treatment, Electrochem. Commun. 3, 346–351 (2001).

    Article  CAS  Google Scholar 

  206. X. Chen, G. Chen, and P. L. Yue, High performance Ti/BDD electrodes for pollutant oxidation, J. Environ. Sci. Technol. 37, 5021–5026 (2003).

    Article  CAS  Google Scholar 

  207. I. Troster, M. Fryda, D. Herrmann, et al., Electrochemical advanced oxidation process for water treatment using DiaChem (R) electrodes, Diam. Rela. Mater. 11(3-6), 640–645.

    Google Scholar 

  208. L. Schafer, M. Fryda, T. Matthee, et al., Investigation of DiaChem electrodes for industrial applications, in Proc. 6th Applied Diamond Conference/2nd Frontier Carbon Technology Joint Conference (ADC/FCT 2001), Y. Tzeng et al., (ed.), (NASA Center for Aerospace Information, Hanover, 2001, NASA/CP-2001-210948) p. 158, 2001.

    Google Scholar 

  209. A. Perret, W. Haenni, N. Skinner, et al., Electrochemical behavior of synthetic diamond thin film electrodes, Diam. Relat. Mater. 8, 820–823 (1999).

    Article  CAS  Google Scholar 

  210. D. Gandini, E. Mahe, P. A. Michaud, W. Haenni, A. Perret, and Ch. Comninellis, Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment, J. Appl. Electrochem. 30, 1345–1350 (2000).

    Article  CAS  Google Scholar 

  211. F. Beck, B. Kaiser, and H. Krohn, Boron doped diamond (BDD)-layers on titanium substrates as electrodes in applied electrochemistry, Electrochim. Acta 45, 4691–4695 (2000).

    Article  CAS  Google Scholar 

  212. W. Hanni, A. Perret, and Ch. Comninellis, Electrolytic cell with bipolar electrode including diamond, US Patent No. 6,306,270 (2001).

    Google Scholar 

  213. S. Wodiunig, F. Bokeloh, and Ch. Comninellis, Electrochemical promotion of bipolar electrodes: an estimation of the current bypass, Electrochimica Acta 46, 357–363 (2000).

    Article  CAS  Google Scholar 

  214. H. Sharifian and D. W. Kirk, Electrochemical oxidation of phenol, J. Electrochmem. Soc. 133, 921–924 (1986).

    Article  CAS  Google Scholar 

  215. C. L. K. Tennakoon, R. C. Bhardwaj, J. O′. M. Bockris, Electrochemical treatment of human wastes in a packed bed reactor, J. Appl. Electrochem. 26, 18–29 (1996).

    Article  CAS  Google Scholar 

  216. E. A. El-Ghaoui, R. E. W. Jansson, and C. Moreland, Application of the trickle tower to problems of pollution control. II. The direct and indirect oxidation of cyanide, J. Appl. Electrochem. 12, 69–73 (1982).

    Article  CAS  Google Scholar 

  217. U. B. Ogutveren, N. Gonen, and S. Koparal, Removal of dye stuffs from wastewater: elec-trocoagulation of acilan blau using soluble anode, J. Environ. Sci. Health, A 27(5), 1237–1247 (1992).

    Article  Google Scholar 

  218. A. Lopez-lopez, E. Exposito, J. Anton, F. Rodriguez-Valera, and A. Aldaz, Use of Thiobacillus ferrooxidans in a coupled microbiological-electrochemical system for wastewater detoxification, Biotechnol. Bioeng. 63, 79–86 (1999).

    Article  CAS  Google Scholar 

  219. K. B. Holt, J. D. Campo, J. S. Foord, R. G. Compton, F. Marken, Sonoelectrochemistry at platinum and boron-doped diamond electrodes: achieving fast mass transport for slow diffusers, J. Electroanal. Chem. 513, 94–99 (2001).

    Article  CAS  Google Scholar 

  220. R. H. De Lima Leite, P. Cognet, A.-M. Wilhelm, H. Delmas, Anodic oxidation of 2,4-dihy-droxybenzoic acid for wastewater treatment: study of ultrasound activation, Chem Eng. Sci. 57, 767–778 (2002).

    Article  Google Scholar 

  221. M. Kuroda, T. Watanabe, and Y. Umedu, Simultaneous oxidation and reduction treatments of polluted water by a bio-electro reactor, Water Sci Tech. 34(9), 101–108 (1996).

    Article  CAS  Google Scholar 

  222. G. M. Swain, B. A. B. Anderson, and J. C. Angus, Applications of diamond thin films in electrochemistry, MRS Bulletin 23(9), 56–60 (1998).

    CAS  Google Scholar 

  223. M. Panizza, I. Duo, P. A. Michaud, G. Cerisola, and Ch. Comninellis, Electrochemical generation of Silver (II) at boron-doped diamond electrodes, Electrochem. Solid-state Lett. 3(12), 550–551 (2000).

    Article  CAS  Google Scholar 

  224. F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi, and A. Debattisti, Electrochemical incineration of glucose as a model organic substrate I—Role of the electrode material, J. Electrochem. Soc. 146(6), 2175–2179 (1999).

    Article  CAS  Google Scholar 

  225. J. P. Chen, S. Y. Chang, and Y. T. Hung. Electrolysis. In:Physicochemical Treatment Processes. L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.). Humana Press, Totowa, NJ, pp. 359–378.

    Google Scholar 

  226. L. K. Wang, Y. T. Hung, H. H. Lo, and C. Yapijakis (eds.). Waste Treatment in the Food Processing Industry. CRC Press, NY, 2006, pp. 119–192.

    Google Scholar 

  227. TWRI. Field Demonstration of Performance of an Electrocoagulation System to Reduce Phosphorus from Dairy Lagoon Effluent. Eng. Report, Texas Water Resources Institute, College Station, TX, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 The Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chen, G., Hung, YT. (2007). Electrochemical Wastewater Treatment Processes. In: Wang, L.K., Hung, YT., Shammas, N.K. (eds) Advanced Physicochemical Treatment Technologies. Handbook of Environmental Engineering, vol 5. Humana Press. https://doi.org/10.1007/978-1-59745-173-4_2

Download citation

Publish with us

Policies and ethics