Skip to main content

Image Enhancement Endoscopy

  • Chapter
Endoscopic Oncology

Abstract

Endoscopy altered the practice of gastroenterology by providing nonoperative access to the gastrointestinal (GI) tract and the pancreaticobiliary system. The detection of microscopic and biochemical changes within the mucosa and submucosa, however, has remained beyond the realm of routine endoscopy. Distinguishing hyperplastic from neoplastic polyps, differentiating malignant from benign ulcers, and detecting mucosal dysplasia in patients with inflammatory bowel disease or Barrett’s esophagus (BE) remains within the purview of the GI pathologist. In particular, endoscopic detection of dysplasia relies on the recognition of visible lesions (e.g., adenomatous polyps, dysplasia-associated lesion, or mass), or random sampling of tissue (biopsy). Endoscopy alone can neither reliably detect regions of invisible or flat dysplasia nor distinguish dysplasia from nondysplastic changes within visible lesions. Histological examination of the excised material is required to diagnose and locate dysplasia. Random biopsy techniques are subject to sampling errors and increased risk because of long procedure time and multiple biopsy sites. In patients with inflammatory bowel disease, it has been estimated that a total of 33 and 56 biopsy specimens are required for a 90 and 95% confidence to detect dysplasia or carcinoma (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachwich DR, Lichtenstein GR, Traber PG. Cancer in inflammatory bowel disease. Med Clin N Am 1994; 78:1399–1412.

    PubMed  CAS  Google Scholar 

  2. Riddell R, Goldman H, Ransohoff DF, et al. Dysplasia in inflammatory bowel disease: Standardization classification with provisional clinical implications. Hum Pathol 1983; 14:931–968.

    Article  PubMed  CAS  Google Scholar 

  3. Jass JR, Sobin LH. World Health Organization: Histological typing of intestinal tumours, 2nd ed., New York: Springer-Verlag;1989:29–41.

    Google Scholar 

  4. Reid B J, Haggitt RC, Rubin CE, et al. Observer variation in the diagnosis of dysplasia in Barrett’s esophagus. Hum Pathol 1988; 19:166–178.

    Article  PubMed  CAS  Google Scholar 

  5. Petras RE, Sivak MV, Rice TW. Barrett’s esophagus. A review of the pathologists role in the diagnosis and management. Pathol Annu 1991; 26:1–232.

    PubMed  Google Scholar 

  6. Haggit RC. Barrett’s esophagus, dysplasia, and adenocarcinoma. Hum Pathol 1994; 25:982–993.

    Article  Google Scholar 

  7. Georgakoudi I, Jacobson BC, Van Dam J, et al. Fluorescence,reflectance, and light-scattering spectroscopy for evaluation dysplasia in patients with Barrett’s esophagus. Gastroenterology 2001;120:1620–1629.

    Article  PubMed  CAS  Google Scholar 

  8. Zangaro R, Silveira L, Manoharan R. Rapid multiexcitation fluorescence spectroscopy for in vivo tissue diagnosis. Appl Optics 1996;35:5211–5219.

    CAS  Google Scholar 

  9. Ortner MA, Ebert B, Hein E, et al. Time gated fluorescence spectroscopy in Barrett’s esophagus. Gut 2003; 52:28–33.

    Article  PubMed  Google Scholar 

  10. Mycek MA, Schomacker KT, Nishioka NS. Colonic polyp differentiation using time-resolved autofluorescence spectroscopy. Gastrointest Endosc 1998; 48:390–394.

    Article  PubMed  CAS  Google Scholar 

  11. Perelman LT, Backman V, Wallace MB. Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution. Phys Rev Lett 1998; 80:627–630.

    Article  CAS  Google Scholar 

  12. Backman V, Wallace MB, Perelman LT,MG, et al. Detection of preinvasive cancer cells. Nature 2000; 406:35–36.

    Article  PubMed  CAS  Google Scholar 

  13. Wallace MB, Perelman LT, Backman V, et al. Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy. Gastroenterology 2000; 119:677–682.

    Article  PubMed  CAS  Google Scholar 

  14. Mayinger B, Horner P, Jordan M, et al. Endoscopic fluorescence spectroscopy in the upper GI tract for the detection of GI cancer:initial experience. Am J Gastroenterol 2001; 96:2616–2621.

    Article  PubMed  CAS  Google Scholar 

  15. Bourg-Heckly G, Blais J, Padilla JJ, et al. Endoscopic ultravioletinduced autofluorescence spectroscopy of the esophagus: tissue characterization and potential for early cancer diagnosis. Endoscopy 2000;32:756–765.

    Article  PubMed  CAS  Google Scholar 

  16. Panjehpour M, Overholt BF, Schmidhammer JL, Farris C, Buckley PF, Vo-Dinh T. Spectroscopic diagnosis of esophageal cancer: new classification model, improved measurement system. Gastrointest Endosc 1995; 41:577–581.

    Article  PubMed  CAS  Google Scholar 

  17. Panjehpour M, Overholt BF, Vo-Dinh T, Haggitt RC, Edwards DH, Buckley FP. 3rd. Endoscopic fluorescence detection of high-gradedysplasia in Barrett’s esophagus. Gastroenterology 1996; 111:93–101.

    Article  PubMed  CAS  Google Scholar 

  18. Vo-Dinh T, Panjehpour M, Overholt BF, Farris C, Buckley FP. 3rd, Sneed R. In vivo cancer diagnosis of the esophagus using differentialnormalized fluorescence (DNF) indices. Lasers Surg Med 1995;16:41–47.

    Article  PubMed  CAS  Google Scholar 

  19. Vo-Dinh T, Panjehpour M, Overholt BF. Laser-induced fluorescence for esophageal cancer and dysplasia diagnosis. Ann NY Acad Sci 1998; 838:116–122.

    Article  PubMed  CAS  Google Scholar 

  20. von Holstein CS, Nilsson AM, Andersson-Engels S, Willen R, Walther B, Svanberg K. Detection of adenocarcinoma in Barrett’s oesophagus by means of laser induced fluorescence. Gut 1996; 39:711–716.

    Article  Google Scholar 

  21. Brand S, Wang TD, Schomacker KT, et al. Detection of high-grade dysplasia in Barrett’s esophagus by spectroscopy measurement of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. Gastrointest Endosc 2002; 56:479–487.

    Article  PubMed  Google Scholar 

  22. Kapadia CR, Cutruzzola FW, O’Brien KM, Stetz ML, Enriquez R, Deckelbaum LI. Laser-induced fluorescence spectroscopy of humancolonic mucosa. Detection of adenomatous transformation. Gastroenterology 1990; 99:150–157.

    PubMed  CAS  Google Scholar 

  23. Cothren RM, Richards-Kortum R, Sivak MV Jr, et al. Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy. Gastrointest Endosc 1990; 36:105–111.

    PubMed  CAS  Google Scholar 

  24. Schomacker KT, Frisoli JK, Compton CC, et al. Ultraviolet laserinduced fluorescence of colonic polyps. Gastroenterology 1992;102:1155–1160.

    PubMed  CAS  Google Scholar 

  25. Marchesini R, Brambilla M, Pignoli E, et al. Light-induced fluorescence spectroscopy of adenomas, adenocarcinomas and non-neoplasticmucosa in human colon. J Photochem Photobiol B 1992; 14:219–230.

    Article  CAS  Google Scholar 

  26. Cothren RM, Sivak MV Jr, Van Dam J, et al. Detection of dysplasia at colonoscopy using laser-induced fluorescence: a blinded study. Gastrointest Endosc 1996; 44:168–176.

    Article  PubMed  CAS  Google Scholar 

  27. Eker C, Montan S, Jaramillo E, et al. Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and deltaaminolevulinic acid sensitisation. Gut 1999; 44:511–518.

    Article  PubMed  CAS  Google Scholar 

  28. Woolf GM, Riddell RH, Irvine EJ, Hunt RH. A study to examine agreement between endoscopy and histology for the diagnosis of columnarlined (Barrett’s) esophagus. Gastrointest Endosc 1989; 35:541–544.

    PubMed  CAS  Google Scholar 

  29. Fleischer DE, Wang GQ, Dawsey S, et al. Tissue band ligation followed by snare resection (band and snare): a new technique for tissue acquisition in the esophagus. Gastrointest Endosc 1996; 44:68–72.

    Article  PubMed  CAS  Google Scholar 

  30. Overholt BF, Panjehpour M, Haydek JM. Photo-dynamic therapy for Barrett’s esophagus: follow-up in 100 patients. Gastrointest Endosc 1999; 49:1–7.

    Article  PubMed  CAS  Google Scholar 

  31. Endo M, Sakakibara N, Suzuki H. Observation of esophageal lesions with the use of endoscopic dyes. Prog Dig Endosc 1972; 1:34.

    Google Scholar 

  32. Ina H, Shibuya H, Ohashi I, Kitagawa M. The frequency of a concomitant early esophageal cancer in male patients with oral and oropharyngeal cancer. Screening results using Lugol dye endoscopy. Cancer 1994; 73:2038–2041.

    Article  PubMed  CAS  Google Scholar 

  33. Yokoyama A, Ohmori T, Makuuchi H, et al. Successful screening for early esophageal cancer in alcoholics using endoscopy andmucosa iodine staining. Cancer 1995; 76:928–934.

    Article  PubMed  CAS  Google Scholar 

  34. Inoue H, Rey JF, Lightdale C. Lugol chromoendoscopy for esophageal squamous cell cancer. Endoscopy 2001; 33:75–79.

    PubMed  CAS  Google Scholar 

  35. .Tam W, Edebo A, Bruno M. Endoscopy negative reflux disease (ENRD): High-resolution endoscopic and histological signs. Gastroenterology 2002; 122:A74.

    Google Scholar 

  36. Axelrad AM, Fleischer DE, Geller AJ, et al. High-resolution chromoendoscopy for the diagnosis of diminutive colon polyps:implications for colon cancer screening. Gastroenterology 1996;110:1253–1258.

    Article  PubMed  CAS  Google Scholar 

  37. Kudo S, Kashida H, Nakajima T, Tamura S, Nakajo K. Endoscopic diagnosis and treatment of early colorectal cancer. World J Surg 1997; 21:694–701.

    Article  PubMed  CAS  Google Scholar 

  38. Canto MI, Setrakian S, Petras RE, Blades E, Chak A, Sivak MV Jr. Methylene blue selectively stains intestinal metaplasia in Barrett’s esophagus. Gastrointest Endosc 1996; 44:1–7.

    Article  PubMed  CAS  Google Scholar 

  39. Canto MI, Setrakian S, Willis J, et al. Methylene blue-directed biopsies improve detection of intestinal metaplasia and dysplasia in Barrett’s esophagus. Gastrointest Endosc 2000; 51:560–568.

    Article  PubMed  CAS  Google Scholar 

  40. Kiesslich R, Hahn M, Herrmann G, Jung M. Screening for specialized columnar epithelium with methylene blue: chromoendoscopy in patients with Barrett’s esophagus and a normal control group. Gastrointest Endosc 2001; 53:47–52.

    Article  PubMed  CAS  Google Scholar 

  41. Sharma P, Topalovski M, Mayo MS, Weston AP. Methylene blue chromoendoscopy for detection of short-segment Barrett’s esophagus. Gastrointest Endosc 2001; 54:289–293.

    Article  PubMed  CAS  Google Scholar 

  42. Tatsuta M, Okuda S, Taniguchi H. Diagnosis of early gastric cancer by the endoscopic Congo red-methylene blue test. Endoscopy 1983;15:252–256.

    Article  PubMed  CAS  Google Scholar 

  43. Fennerty MB, Sampliner RE, McGee DL, Hixson LJ, Garewal HS. Intestinal metaplasia of the stomach: identification by a selectivemucosal staining technique. Gastrointest Endosc 1992; 38:696–698.

    PubMed  CAS  Google Scholar 

  44. Dave U, Shousha S, Westaby D. Methylene blue staining: is it really useful in Barrett’s esophagus? Gastrointest Endosc 2001; 53: 333–355.

    PubMed  CAS  Google Scholar 

  45. Wo JM, Ray MB, Mayfield-Stokes S, et al. Comparison of methylene blue-directed biopsies and conventional biopsies in the detection of intestinal metaplasia and dysplasia in Barrett’s esophagus: a preliminary study. Gastrointest Endocs 2001; 54:294–301.

    Article  CAS  Google Scholar 

  46. Stevens PD, Lightdale CJ, Green PH, Siegel LM, Garcia-Carrasquillo RJ, Rotterdam H. Combined magnification endoscopy with chromoendoscopy for the evaluation of Barrett’s esophagus. Gastrointest Endosc 1994; 40:747–749.

    Article  PubMed  CAS  Google Scholar 

  47. Sharma P, Weston AP, Topalovski M, Cherian R, Bhattacharyya A, Sampliner RE. Magnification chromoendoscopy for the detection of intestinal metaplasia and dysplasia in Barrett’s oesophagus. Gut 2003; 52:24–27.

    Article  PubMed  CAS  Google Scholar 

  48. Kudo S, Tamura S, Nakajima T, Yamano H, Kusaka H, Watanabe H. Diagnosis of colorectal tumorous lesions by magnifying endoscopy. Gastrointest Endosc 1996; 44:8–14.

    Article  PubMed  CAS  Google Scholar 

  49. Saitoh Y, Waxman I, West AB, Popnikolov NK, Gatalica Z, Watari J. Prevalence and distinctive biologic features of flat colorectal adenomas in a North American population. Gastroenterology 2001; 120:1657–1665.

    Article  PubMed  CAS  Google Scholar 

  50. Guelrud M, Herrera I, Essenfeld H, Castro J. Enhanced magnification endoscopy: a new technique to identify specialized intestinal metaplasia in Barrett’s esophagus. Gastrointest Endosc 2001; 53:559–565.

    Article  PubMed  CAS  Google Scholar 

  51. Endo T, Awakawa T, Takahashi H, et al. Classification of Barrett’s epithelium by magnifying endoscopy. Gastrointest Endosc 2002; 55:641–647.

    Article  PubMed  Google Scholar 

  52. Tajiri H, Doi T, Endo H, et al. Routine endoscopy using a magnifying endoscope for gastric cancer diagnosis. Endoscopy 2002; 34: 772–777.

    Article  PubMed  CAS  Google Scholar 

  53. Dinis-Ribeiro M, da Costa-Pereira A, Lopes C, et al. Magnification chromoendoscopy for the diagnosis of gastric intestinal metaplasia and dysplasia. Gastrointest Endosc 2003; 57:498–504.

    Article  PubMed  Google Scholar 

  54. Togashi K, Konishi F, Ishizuka T, Sato T, Senba S, Kanazawa K. Efficacy of magnifying endoscopy in the differential diagnosis of neoplastic and non-neoplastic polyps of the large bowel. Dis Colon Rectum 1999; 42:1602–1608.

    Article  PubMed  CAS  Google Scholar 

  55. Kato S, Fujii T, Koba I, et al. Assessment of colorectal lesions using magnifying colonoscopy and mucosal dye spraying: can significant lesions be distinguished? Endoscopy 2001; 33:306–310.

    Article  PubMed  CAS  Google Scholar 

  56. el-Sharabasy MM, el-Waseef AM, Hafez MM, Salim SA. Porphyrin metabolism in some malignant diseases. Br J Cancer 1992; 65:409–412.

    PubMed  CAS  Google Scholar 

  57. Regula J, MacRobert AJ, Gorchein A, et al. Photosensitisation and photo-dynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX— a pilot study. Gut 1995; 36:67–75.

    Article  PubMed  CAS  Google Scholar 

  58. Endlicher E, Knuechel R, Hauser T, Szeimies RM, Scholmerich J, Messmann H. Endoscopic fluorescence detection of low and high grade dysplasia in Barrett’s oesophagus using systemic or local 5-aminolaevulinic acid sensitisation. Gut 2001; 48:314–319.

    Article  PubMed  CAS  Google Scholar 

  59. Messmann H, Knuechel R, Baeumler W, Holstege A, Schoelmerich J. Endoscopic fluorescence detection of dysplasia in patients with Barrett’s esophagus, ulcerative colitis, or adenomatous polyps after 5-aminolevulinic acid-induced protoporphyrin IX sensitization. Gastrointest Endosc 1999; 49:97–101.

    Article  PubMed  CAS  Google Scholar 

  60. Haringsma J, Tytgat GNJ, Yano H, et al. Autofluorescence endoscopy: feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology. Gastrointest Endosc 2001; 53:642–650.

    Article  PubMed  CAS  Google Scholar 

  61. Stepinac T, Felley C, Jornod P, et al. Endoscopic fluorescence detection of intraepithelial neoplasia in Barrett’s esophagus after oral administration of aminolevulinic acid. Endoscopy 2003; 35:663–668.

    Article  PubMed  CAS  Google Scholar 

  62. Niepsuj K, Niepsuj G, Cebula W, et al. autofluorescence endoscopy for detection of high-grade dysplasia in short-segment Barrett’s esophagus. Gastrointest Endsoc 2004; 58:715–719.

    Article  Google Scholar 

  63. Izuishi K, Tajiri H, Fujii T, et al. The histological basis of detection of adenoma and cancer in the colon by autofluorescence endoscopic imaging. Endoscopy 1999; 31:511–516.

    Article  PubMed  CAS  Google Scholar 

  64. Messmann H, Endlicher E, Freunek G, Ruemmele P, Schoelmerich J, Knuechel R. Fluorescence endoscopy for the detection of low and high grade dysplasia in ulcerative colitis using systemic or local 5-aminolevulinic acid sensitization. Gut 2003; 52:1003–1007.

    Article  PubMed  CAS  Google Scholar 

  65. Abe S, Izuishi K, Tajiri H, Kinoshita T, Matsuoka T. Correlation of in vitro autofluorescence endoscopy images with histopathologic findings in stomach cancer. Endoscopy 2000; 32:281–286.

    Article  PubMed  CAS  Google Scholar 

  66. Kobayashi M, Tajiri H, Seike E, Shitaya M, Tounou S, Mine M, et al. detection of early gastric cancer by a real-time autofluorescence imaging system. Cancer Lett 2001; 165:155–159.

    Article  PubMed  CAS  Google Scholar 

  67. Yoshida T, Inoue H, Usui S, Satodate H, Fukami N, Kudo S. Narrowband imaging system with magnifying endoscopy for superficial esophageal lesions. Gastrointest Endosc 2004; 59:288–295.

    Article  PubMed  Google Scholar 

  68. Hamamoto Y, Endo T, Nosho K, Arimura Y, Sato M, Imai K. Usefulness of narrow-band imaging endoscopy for diagnosis of Barrett’s esophagus. J Gastroenterol 2004; 39:14–20.

    Article  PubMed  Google Scholar 

  69. Brezinski ME, Tearney GJ, Bouma BE, et al. Imaging of coronary artery microstructure (in vitro) with optical coherence tomography. Am J Cardiol 1996; 77:92–93.

    Article  PubMed  CAS  Google Scholar 

  70. Poneros JM, Brand S, Bouma BE, Tearney GJ, Compton CC, Nishioka NS. Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterology 2001; 120:7–12.

    Article  PubMed  CAS  Google Scholar 

  71. Isenberg G, Sivak MV. Gastrointestinal optical coherence tomography. Tech Gastrointest Endosc 2003; 5:94–101.

    Article  Google Scholar 

  72. Poneros JM, Hishioka NS. Diagnosis of Barrett’s esophagus using optical coherence tomography. Gastrointest Endosc Clin N Am 2003; 13:309–323.

    Article  PubMed  Google Scholar 

  73. Seitz U, Freund J, Jaeckle S, et al. First in vivo optical coherence tomography on the human bile duct. Endoscopy 2001; 33:1018–1021.

    Article  PubMed  CAS  Google Scholar 

  74. Poneros JM, Tearney GJ, Shiskov M, et al. Optical coherence tomography of the biliary tree during ERCP. Gastrointest Endosc 2002; 55:84–88.

    Article  PubMed  Google Scholar 

  75. Sivak MV Jr, Kobayashi K, Izatt JA, et al. High-resolution endoscopic imaging of the GI tract using optical coherence tomography. Gastrointest Endosc 2000; 51:474–479.

    Article  PubMed  Google Scholar 

  76. Jaeckle S, Gladkova N, Feldchtein,et al. In vivo endoscopic optical coherence tomography of the human gastrointestinal tract—toward optical biopsy. Endoscopy 2000; 32:743–749.

    Article  Google Scholar 

  77. Pfau PR, Sivak MV, Chak A, et al. Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography. Gastrointest Endosc 2003; 58:196–202.

    Article  PubMed  Google Scholar 

  78. Inoue H, Igari T, Nishikage T, Ami K, Yoshida T, Iwai. A novel method of virtual histopathology using laser-scanning cofocal microscopy in-vitro with untreated fresh specimens from the gastrointestinalmucosa. Endoscopy 2000; 32:439–443.

    Article  PubMed  CAS  Google Scholar 

  79. Sakashita M, Inoue H, Kashida H, et al. Vitual histology of colorectal lesions using laser-scanning confocal microscopy. Endoscopy 2003; 35:1033–1038.

    Article  PubMed  CAS  Google Scholar 

  80. Shim MG, Song LM, Marcon NE, Wilson BC. In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochem Photobiol 2000; 72:146–150.

    Article  PubMed  CAS  Google Scholar 

  81. Wong Kee Song LM, Marcon NE. Fluorescence and Raman spectroscopy. Gastrointest Endosc Clin N Am 2003; 13:279–296.

    Article  PubMed  Google Scholar 

  82. Pelegrin A, Folli S, Buchegger F, Mach JP, Wagnieres G, van den Bergh H. Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer 1991; 67:2529–2537.

    Article  PubMed  CAS  Google Scholar 

  83. Folli S, Westermann P, Braichotte D, Pelegrin A, Wagnieres G, van den Bergh H, et al. Antibody-indocyanin conjugates for immuno-photodetection of human squamous cell carcinoma in nude mice. Cancer Res 1994; 54:2643–2649.

    PubMed  CAS  Google Scholar 

  84. Maunoury V, Mordon S, Geboes K, et al. Early vascular changes in Crohn’s disease: an endoscopic fluorescence study. Endoscopy 2000; 32:700–705.

    Article  PubMed  CAS  Google Scholar 

  85. Folli S, Wagnieres G, Pelegrin A, et al. Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimericantibodies against carcinoembryonic antigen. Proc Natl Acad Sci USA 1992; 89:7973–7977.

    Article  PubMed  CAS  Google Scholar 

  86. Marten K, Bremer C, Khazaie K, et al. Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology 2002; 122:406–414.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Wildi, S.M., Wallace, M.B. (2006). Image Enhancement Endoscopy. In: Faigel, D.O., Kochman, M.L. (eds) Endoscopic Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-172-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-172-7_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-532-3

  • Online ISBN: 978-1-59745-172-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics