Advertisement

mRNA Translation in Diabetic Nephropathy

  • Balakuntalam S. Kasinath
  • Myung Ja Lee
  • Denis Feliers
  • Nahum Sonenberg
Part of the Contemporary Diabetes book series (CDI)

Abstract

With the decoding of the human genome, there is an urgent need for greater understanding of how proteins are synthesized and how they function. This notion is predicated on the importance of proteins as ultimate arbiters of cell function. Studies restricted to investigation of changes in mRNA levels do not address changes in proteins and their function. A strict linear correlation between mRNA levels and proteins does not always exist (1,2). Therefore, it is imperative that protein metabolism be studied directly.

Keywords

Vascular Endothelial Growth Factor Diabetic Nephropathy Internal Ribosomal Entry Site mRNA Translation Initiation Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999;19:1720–1730.PubMedGoogle Scholar
  2. 2.
    Tew KD, Monks A, Barone L, et al. Glutathione-associated enzymes in the human cell lines of the National Cancer Institute Drug Screening Program. Mol Pharmacol 1996;50:149–159.PubMedGoogle Scholar
  3. 3.
    Shi Y, Taylor SI, Tan SL, Sonenberg N. When translation meets metabolism: multiple links to diabetes. Endocr Rev 2003;24:91–101.PubMedCrossRefGoogle Scholar
  4. 4.
    Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115:577–590.PubMedCrossRefGoogle Scholar
  5. 5.
    Miron M, Sonenberg N. Regulation of translation via TOR signaling: insights from Drosophila melanogaster. J Nutr 2001;131:2988S-29893S.Google Scholar
  6. 6.
    Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 2005;433:477–480.PubMedCrossRefGoogle Scholar
  7. 7.
    Kahvejian A, Roy G, Sonenberg N. The mRNA closed-loop model: the function of PABP and PABPinteracting proteins in mRNA translation. Cold Spring Harb Symp Quant Biol 2001;66:293–300.PubMedCrossRefGoogle Scholar
  8. 8.
    von der Haar T, Gross JD, Wagner G, McCarthy JE. The mRNA cap-binding protein eIF4E in posttranscriptional gene expression. Nat Struct Mol Biol 2004;11:503–511.PubMedCrossRefGoogle Scholar
  9. 9.
    Komar A, Hatzoglou AM. Internal ribosome entry sites in cellular mRNAs: the mystery of their existence. J Biol Chem 2005;R400041200.Google Scholar
  10. 10.
    Bonnal S, Boutonnet C, Prado-Lourenco L, Vagner S. IRESdb: the Internal Ribosome Entry Site database. Nucleic Acids Res 2003;31:427, 428.Google Scholar
  11. 11.
    Johannes G, Carter MS, Eisen MB, Brown PO, Sarnow P. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc Natl Acad Sci USA 1999;96:13,118–13,123.PubMedCrossRefGoogle Scholar
  12. 12.
    Stoneley M, Willis AE. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 2004;23:3200–3207.PubMedCrossRefGoogle Scholar
  13. 13.
    Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988;334:320–325.PubMedCrossRefGoogle Scholar
  14. 14.
    Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999;68:913–963.PubMedCrossRefGoogle Scholar
  15. 15.
    Macejak D, Sarnow GP Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 1991;353:90–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Gerlitz G, Jagus R, Elroy-Stein O. Phosphorylation of initiation factor-2 alpha is required for activation of internal translation initiation during cell differentiation. Eur J Biochem 2002;269:2810–2819.PubMedCrossRefGoogle Scholar
  17. 17.
    Bonnal S, Schaeffer C, Creancier L, et al. A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 2003;278:39,330–39,336.PubMedCrossRefGoogle Scholar
  18. 18.
    Pyronnet S, Pradayrol L, Sonenberg N. A cell cycle-dependent internal ribosome entry site. Mol Cell 2000;5:607–616.PubMedCrossRefGoogle Scholar
  19. 19.
    Bernstein J, Sella O, Le SY, Elroy-Stein O. PDGF2/c-sis mRNA leader contains a differentiationlinked internal ribosomal entry site (D-IRES). J Biol Chem 1997;272:9356–9362.PubMedCrossRefGoogle Scholar
  20. 20.
    Cornelis S, Bruynooghe Y, Denecker G, Van Huffel S, Tinton S, Beyaert R. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 2000;5:597–605.PubMedCrossRefGoogle Scholar
  21. 21.
    Bonnal S, Pileur F, Orsini C, et al. Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 2005;280:4144–4153.PubMedCrossRefGoogle Scholar
  22. 22.
    Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 1995;15:4990–4997.PubMedGoogle Scholar
  23. 23.
    Thornton S, Anand N, Purcell D, Lee J. Not just for housekeeping: protein initiation and elongation factors in cell growth and tumorigenesis. J Mol Med 2003;81:536–548.PubMedCrossRefGoogle Scholar
  24. 24.
    Bhandari BK, Feliers D, Duraisamy S, et al. Insulin regulation of protein translation repressor 4E-BP1, an eIF4E-binding protein, in renal epithelial cells. Kidney Int 2001;59:866–875.PubMedCrossRefGoogle Scholar
  25. 25.
    Feliers D, Duraisamy S, Barnes JL, Ghosh-Choudhury G, Kasinath BS. Translational regulation of vascular endothelial growth factor expression in renal epithelial cells by angiotensin II. Am J Physiol Renal Physiol 2005;288:F521–F529.PubMedCrossRefGoogle Scholar
  26. 26.
    Senthil D, Ghosh-Choudhury G, Abboud HE, Sonenberg N, Kasinath BS. Regulation of protein synthesis by IGF-I in proximal tubular epithelial cells. Am J Physiol Renal Physiol 2002;283:F1226–F1236.PubMedGoogle Scholar
  27. 27.
    Senthil D, Ghosh-Choudhury G, McLaurin C, Kasinath BS. Vascular endothelial growth factor induces protein synthesis in renal epithelial cells: a potential role in diabetic nephropathy. Kidney Int 2003;64:468–479.PubMedCrossRefGoogle Scholar
  28. 28.
    Senthil D, Faulkner JL, Ghosh-Choudhury G, Abboud HE, Kasinath BS. Angiotensin II inhibits insulin-stimulated phosphorylation of eukaryotic initiation factor 4E-binding protein-1 in proximal tubular epithelial cells. Biochem J 2001;360:87–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Senthil D, Ghosh-Choudhury G, Bhandari BK, Kasinath BS. The type 2 vascular endothelial growth factor receptor recruits insulin receptor substrate-1 in its signalling pathway. Biochem J 2002;368:49–56.PubMedCrossRefGoogle Scholar
  30. 30.
    Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 1998;12:502–513.PubMedGoogle Scholar
  31. 31.
    Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997;7:261–269.PubMedCrossRefGoogle Scholar
  32. 32.
    Stephens L, Anderson K, Stokoe D, et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 1998;279:710–714.PubMedCrossRefGoogle Scholar
  33. 33.
    Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinasedependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrinlinked kinase. Proc Natl Acad Sci USA 1998;95:11,211–11,216.PubMedCrossRefGoogle Scholar
  34. 34.
    Viniegra JG, Martinez N, Modirassari P, et al. Full activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM. J Biol Chem 2005;280:4029–4036.PubMedCrossRefGoogle Scholar
  35. 35.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005;307:1098–1101.PubMedCrossRefGoogle Scholar
  36. 36.
    Cheadle JP, Reeve MP, Sampson JR, Kwiatkowski DJ. Molecular genetic advances in tuberous sclerosis. Hum Genet 2000;107:97–114.PubMedCrossRefGoogle Scholar
  37. 37.
    Gao X, Pan D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev 2001;15:1383–1392.PubMedCrossRefGoogle Scholar
  38. 38.
    Potter CJ, Huang H, Xu T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 2001;105:357–368.PubMedCrossRefGoogle Scholar
  39. 39.
    Goncharova EA, Goncharov DA, Eszterhas A, et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J Biol Chem 2002;277:30,958–30,967.PubMedCrossRefGoogle Scholar
  40. 40.
    Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4:648–657.PubMedCrossRefGoogle Scholar
  41. 41.
    Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 2002;10:151–162.PubMedCrossRefGoogle Scholar
  42. 42.
    Tee AR, Anjum R, Blenis J. Inactivation of the tuberous sclerosis complex-1 and-2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and-independent phosphorylation of tuberin. J Biol Chem 2003;278:37,288–37,296.PubMedCrossRefGoogle Scholar
  43. 43.
    Castro AF, Rebhun JF, Clark GJ, Quilliam LA. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin-and farnesylation-dependent manner. J Biol Chem 2003;278:32,493–32,496.PubMedCrossRefGoogle Scholar
  44. 44.
    Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003;17:1829–1834.PubMedCrossRefGoogle Scholar
  45. 45.
    Garami A, Zwartkruis FJ, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/ 4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003;11:1457–1466.PubMedCrossRefGoogle Scholar
  46. 46.
    Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003;13:1259–1268.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 2003;5:578–581.PubMedCrossRefGoogle Scholar
  48. 48.
    Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18:1926–1945.PubMedCrossRefGoogle Scholar
  49. 49.
    Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 1999;344(Part 2):427–431.PubMedCrossRefGoogle Scholar
  50. 50.
    Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 2000;275:7416–7423.PubMedCrossRefGoogle Scholar
  51. 50a.
    Mariappan MM, Ghosh Choudhury G, Kasinath BS. Rapid stimulation of laminin beta1 synthesis by high glucose, high insulin and their combination is regulated by mRNA translation in proximal tubular epithelial cells. J Am Soc Nephrol 2005;16:401A.Google Scholar
  52. 51.
    Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002;110:163–175.PubMedCrossRefGoogle Scholar
  53. 52.
    Kim DH, Sarbassov DD, Ali SM, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003;11:895–904.PubMedCrossRefGoogle Scholar
  54. 53.
    Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002;110:177–189.PubMedCrossRefGoogle Scholar
  55. 54.
    Nojima H, Tokunaga C, Eguchi S, et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 2003;278:15,461–15,464.PubMedCrossRefGoogle Scholar
  56. 55.
    Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004;14:1296–1302.PubMedCrossRefGoogle Scholar
  57. 56.
    Brunn GJ, Hudson CC, Sekulic A, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997;277:99–101.PubMedCrossRefGoogle Scholar
  58. 57.
    Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 1998;95:1432–1437.PubMedCrossRefGoogle Scholar
  59. 58.
    Gingras AC, Gygi SP, Raught B, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 1999;13:1422–1437.PubMedGoogle Scholar
  60. 59.
    Gross JD, Moerke NJ, von der Haar T, et al. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 2003;115:739–750.PubMedCrossRefGoogle Scholar
  61. 60.
    Heesom KJ, Gampel A, Mellor H, Denton RM. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr Biol 2001;11:1374–1379.PubMedCrossRefGoogle Scholar
  62. 61.
    Yang DQ, Kastan MB. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol 2000;2:893–398.PubMedCrossRefGoogle Scholar
  63. 62.
    Flynn A, Proud CG. Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. J Biol Chem 1995;270:21,684–21,688.PubMedCrossRefGoogle Scholar
  64. 63.
    Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J 1999;18:270–279.PubMedCrossRefGoogle Scholar
  65. 64.
    Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 1997;16:1909–1920.PubMedCrossRefGoogle Scholar
  66. 65.
    Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 1999;19:1871–1880.PubMedGoogle Scholar
  67. 66.
    Parra-Palau JL, Scheper GC, Wilson ML, Proud CG. Features in the N and C termini of the MAPKinteracting kinase Mnk1 mediate its nucleocytoplasmic shuttling. J Biol Chem 2003;278:44,197–44,204.PubMedCrossRefGoogle Scholar
  68. 67.
    Lachance PE, Miron M, Raught B, Sonenberg N, Lasko P. Phosphorylation of eukaryotic translation initiation factor 4E is critical for growth. Mol Cell Biol 2002;22:1656–1663.PubMedCrossRefGoogle Scholar
  69. 68.
    Minich WB, Balasta ML, Goss DJ, Rhoads RE. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc Natl Acad Sci USA 1994;91:7668–7672.PubMedCrossRefGoogle Scholar
  70. 69.
    Scheper GC, Proud CG. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem 2002;269:5350–5359.PubMedCrossRefGoogle Scholar
  71. 70.
    Zuberek J, Wyslouch-Cieszynska A, Niedzwiecka A, et al. Phosphorylation of eIF4E attenuates its interaction with mRNA 5′ cap analogs by electrostatic repulsion: intein-mediated protein ligation strategy to obtain phosphorylated protein. Rna 2003;9:52–61.PubMedCrossRefGoogle Scholar
  72. 71.
    Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem 2002;269:5360–5368.PubMedCrossRefGoogle Scholar
  73. 72.
    Frank J. Toward an understanding of the structural basis of translation. Genome Biol 2003;4:237.PubMedCrossRefGoogle Scholar
  74. 73.
    Hirokawa G, Kiel MC, Muto A, et al. Binding of ribosome recycling factor to ribosomes, comparison with tRNA. J Biol Chem 2002;277:35,847–35,852.PubMedCrossRefGoogle Scholar
  75. 74.
    Selmer M, Al-Karadaghi S, Hirokawa G, Kaji A, Liljas A. Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science 1999;286:2349–2352.PubMedCrossRefGoogle Scholar
  76. 75.
    Hamsten A. The hemostatic system and coronary heart disease. Thromb Res 1993;70:1–38.PubMedCrossRefGoogle Scholar
  77. 76.
    Nordt TK, Sawa H, Fujii S, Sobel BE. Induction of plasminogen activator inhibitor type-1 (PAI-1) by proinsulin and insulin in vivo. Circulation 1995;91:764–770.PubMedGoogle Scholar
  78. 77.
    Hostetter TH. Progression of renal disease and renal hypertrophy. Annu Rev Physiol 1995;57:263–278.PubMedCrossRefGoogle Scholar
  79. 78.
    Preisig PA, Franch HA. Renal epithelial cell hyperplasia and hypertrophy. Semin Nephrol 1995;15:327–340.PubMedGoogle Scholar
  80. 79.
    Dalla Vestra M, Masiero A, Roiter AM, Saller A, Crepaldi G, Fioretto P. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes 2003;52:1031–1035.PubMedCrossRefGoogle Scholar
  81. 80.
    Meyer TW, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia 1999;42:1341–1344.PubMedCrossRefGoogle Scholar
  82. 81.
    Pagtalunan ME, Miller PL, Jumping-Eagle S, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997;99:342–348.PubMedGoogle Scholar
  83. 82.
    Dorn GW 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 2005;115:527–537.PubMedCrossRefGoogle Scholar
  84. 83.
    Shankland SJ, Wolf G. Cell cycle regulatory proteins in renal disease: role in hypertrophy, proliferation, and apoptosis. Am J Physiol Renal Physiol 2000;278:F515–F529.PubMedGoogle Scholar
  85. 84.
    Hardie DG. The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 2004;117:5479–5487.PubMedCrossRefGoogle Scholar
  86. 85.
    Viollet B, Andreelli F, Jorgensen SB, et al. Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem Soc Trans 2003;31:216–219.PubMedCrossRefGoogle Scholar
  87. 85a.
    Lee MJ, Feliers D, Mariappan MM, et al. AMP Kinase—a new regulator of renal hypertrophy in diabetes. J Am Soc Nephrol 2005;16:196A.Google Scholar
  88. 86.
    Miner JH, Patton BL, Lentz SI, et al. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha 3 isoform. J Cell Biol 1997;137:685–701.PubMedCrossRefGoogle Scholar
  89. 87.
    Miner JH, Yurchenco PD. Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 2004;20:255–284.PubMedCrossRefGoogle Scholar
  90. 88.
    Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet 1995;10:400–406.PubMedCrossRefGoogle Scholar
  91. 89.
    Zenker M, Aigner T, Wendler O, et al. Human laminin beta 2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 2004;13:2625–2632.PubMedCrossRefGoogle Scholar
  92. 90.
    Fukui M, Nakamura T, Ebihara I, Shirato I, Tomino Y, Koide H. ECM gene expression and its modulation by insulin in diabetic rats. Diabetes 1992;41:1520–1527.PubMedCrossRefGoogle Scholar
  93. 91.
    Vleming LJ, Baelde JJ, Westendorp RG, Daha MR, van Es LA, Bruijn JA. Progression of chronic renal disease in humans is associated with the deposition of basement membrane components and decorin in the interstitial extracellular matrix. Clin Nephrol 1995;44:211–219.PubMedGoogle Scholar
  94. 92.
    Yang CW, Hattori M, Vlassara H, et al. Overexpression of transforming growth factor-beta 1 mRNA is associated with up-regulation of glomerular tenascin and laminin gene expression in nonobese diabetic mice. J Am Soc Nephrol 1995;5:1610–16,107.PubMedGoogle Scholar
  95. 93.
    Ziyadeh FN. Significance of tubulointerstitial changes in diabetic renal disease. Kidney Int Suppl 1996;54:S10–S13.PubMedGoogle Scholar
  96. 94.
    Ha TS, Barnes JL, Stewart JL, et al. Regulation of renal laminin in mice with type II diabetes. J Am Soc Nephrol 1999;10:1931–1939.PubMedGoogle Scholar
  97. 95.
    Coleman DL, Hummel KP. Hyperinsulinemia in pre-weaning diabetes (db) mice. Diabetologia 1974;10(Suppl):607–610.PubMedCrossRefGoogle Scholar
  98. 96.
    Kozak M. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc Natl Acad Sci USA 1986;83:2850–2854.PubMedCrossRefGoogle Scholar
  99. 97.
    Polhill TS, Saad S, Poronnik P, Fulcher GR, Pollock CA. Short-term peaks in glucose promote renal fibrogenesis independently of total glucose exposure. Am J Physiol Renal Physiol 2004;287:F268–F273.PubMedCrossRefGoogle Scholar
  100. 98.
    Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 2005;54:1–7.PubMedCrossRefGoogle Scholar
  101. 99.
    Feliers D, Duraisamy S, Faulkner JL, et al. Activation of renal signaling pathways in db/db mice with type-2 diabetes. Kidney Int 2001;60:495–504.PubMedCrossRefGoogle Scholar
  102. 100.
    Abrass CK, Peterson CV, Raugi GJ. Phenotypic expression of collagen types in mesangial matrix of diabetic and nondiabetic rats. Diabetes 1988;37:1695–1702.PubMedCrossRefGoogle Scholar
  103. 101.
    Abrass CK, Spicer D, Raugi GJ. Insulin induces a change in extracellular matrix glycoproteins synthesized by rat mesangial cells in culture. Kidney Int 1994;46:613–620.PubMedCrossRefGoogle Scholar
  104. 102.
    Morrisey K, Evans RA, Wakefield L, Phillips AO. Translational regulation of renal proximal tubular epithelial cell transforming growth factor-beta1 generation by insulin. Am J Pathol 2001;159:1905–1915.PubMedGoogle Scholar
  105. 103.
    Wang CC, Goalstone ML, Draznin B. Molecular mechanisms of insulin resistance that impact cardiovascular biology. Diabetes 2004;53:2735–2740.PubMedCrossRefGoogle Scholar
  106. 104.
    Virkamaki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 1999;103:931–943.PubMedGoogle Scholar
  107. 105.
    Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331:1480–1487.PubMedCrossRefGoogle Scholar
  108. 106.
    Simon M, Grone HJ, Johren O, et al. Expression of vascular endothelial growth factor and its receptors in human renal ontogenesis and in adult kidney. Am J Physiol 1995;268:F240–F250.PubMedGoogle Scholar
  109. 107.
    de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 2001;12:993–1000.PubMedGoogle Scholar
  110. 108.
    Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, Schrijvers BF, Tilton RG, Rasch R. Amelioration of long-term renal changes in obese type-2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 2002;51:3090–3099.PubMedCrossRefGoogle Scholar
  111. 109.
    Rincon-Choles H, Kasinath BS, Gorin Y, Abboud HE. Angiotensin II and growth factors in the pathogenesis of diabetic nephropathy. Kidney Int Suppl 2002;8–11.Google Scholar
  112. 110.
    Rizkalla B, Forbes JM, Cooper ME, Cao Z. Increased renal vascular endothelial growth factor and angiopoietins by angiotensin II infusion is mediated by both AT1 and AT2 receptors. J Am Soc Nephrol 2003;14:3061–3071.PubMedCrossRefGoogle Scholar
  113. 111.
    Gorin Y, Kim NH, Feliers D, Bhandari B, Ghosh-Choudhury G, Abboud HE. Angiotensin II activates Akt/protein kinase B by an arachidonic acid/redox-dependent pathway and independent of phosphoinositide 3-kinase. FASEB J 2001;15:1909–1920.PubMedCrossRefGoogle Scholar
  114. 112.
    Gorin Y, Ricono JM, Kim NH, Bhandari B, Ghosh-Choudhury G, Abboud HE. Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am J Physiol Renal Physiol 2003;285:F219–F229.PubMedGoogle Scholar
  115. 112a.
    Feliers D, Gorin Y, Ghosh Choudhury G, Abboud H, Kasinath BS. Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. Am J Physiology Renal, in press.Google Scholar
  116. 113.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813–820.PubMedCrossRefGoogle Scholar
  117. 114.
    Schrijvers BF, De Vriese AS, Flyvbjerg A. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr Rev 2004;25:971–1010.PubMedCrossRefGoogle Scholar
  118. 115.
    Canalis E. Effect of insulinlike growth factor I on DNA and protein synthesis in cultured rat calvaria. J Clin Invest 1980;66:709–719.PubMedCrossRefGoogle Scholar
  119. 116.
    Quaife CJ, Mathews LS, Pinkert CA, Hammer RE, Brinster RL, Palmiter RD. Histopathology associated with elevated levels of growth hormone and insulin-like growth factor I in transgenic mice. Endocrinology 1989;124:40–48.PubMedCrossRefGoogle Scholar
  120. 117.
    Abboud HE. Growth factors and diabetic nephrology: an overview. Kidney Int Suppl 1997;60:S3–S6.PubMedGoogle Scholar
  121. 118.
    Flyvbjerg A. Putative pathophysiological role of growth factors and cytokines in experimental diabetic kidney disease. Diabetologia 2000;43:1205–1223.PubMedCrossRefGoogle Scholar
  122. 119.
    Flyvbjerg A, Bennett WF, Rasch R, Kopchick JJ, Scarlett JA. Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice. Diabetes 1999;48:377–382.PubMedCrossRefGoogle Scholar
  123. 120.
    Bach L, Jerums AG. Effect of puberty on initial kidney growth and rise in kidney IGF-I in diabetic rats. Diabetes 1990;39:557–562.PubMedCrossRefGoogle Scholar
  124. 121.
    Flyvbjerg A, Bornfeldt KE, Marshall SM, Arnqvist HJ, Orskov H. Kidney IGF-I mRNA in initial renal hypertrophy in experimental diabetes in rats. Diabetologia 1990;33:334–338.PubMedCrossRefGoogle Scholar
  125. 122.
    Pillion DJ, Haskell JF, Meezan E. Distinct receptors for insulin-like growth factor I in rat renal glomeruli and tubules. Am J Physiol 1988;255:E504–E512.PubMedGoogle Scholar
  126. 123.
    Mendez R, Kollmorgen G, White MF, Rhoads RE. Requirement of protein kinase C zeta for stimulation of protein synthesis by insulin. Mol Cell Biol 1997;17:5184–5192.PubMedGoogle Scholar
  127. 124.
    Rao GN, Madamanchi NR, Lele M, et al. A potential role for extracellular signal-regulated kinases in prostaglandin F2alpha-induced protein synthesis in smooth muscle cells. J Biol Chem 1999;274:12,925–12,932.PubMedCrossRefGoogle Scholar
  128. 125.
    Naegele S, Morley SJ. Molecular cross-talk between MEK1/2 and mTOR signaling during recovery of 293 cells from hypertonic stress. J Biol Chem 2004;279:46,023–46,034.PubMedCrossRefGoogle Scholar
  129. 126.
    von Manteuffel SR, Gingras AC, Ming XF, Sonenberg N, Thomas G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc Natl Acad Sci USA 1996;93:4076–4080.CrossRefGoogle Scholar
  130. 127.
    Ziyadeh FN. Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator. J Am Soc Nephrol 2004;15 Suppl 1:S55–S57.PubMedCrossRefGoogle Scholar
  131. 128.
    Fraser D, Brunskill N, Ito T, Phillips A. Long-term exposure of proximal tubular epithelial cells to glucose induces transforming growth factor-beta 1 synthesis via an autocrine PDGF loop. Am J Pathol 2003;163:2565–2574.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Balakuntalam S. Kasinath
    • 1
  • Myung Ja Lee
    • 2
  • Denis Feliers
    • 2
  • Nahum Sonenberg
    • 3
  1. 1.Department of MedicineUniversity of Texas Health Science Center, South Texas Veterans Health Care SystemSan Antonio
  2. 2.Department of MedicineUniversity of Texas Health Science CenterSan Antonio
  3. 3.Department of BiochemistryMcGill UniversityMontrealCanada

Personalised recommendations