Altered Renal Microvascular Function in Early Diabetes

  • Pamela K. Carmines
  • Joseph P. Bast
  • Naohito Ishii
Part of the Contemporary Diabetes book series (CDI)


The early stage of type 1 diabetes (T1D) is characterized by glomerular hyperfiltration that arises as the result of preglomerular (primarily afferent arteriolar) vasodilation. Although hyperglycemia is the trigger for this process, the mechanism linking hyperglycemia to reduced afferent arteriolar tone remains an area of active debate. It is well established that diabetic hyperglycemia provokes a condition of oxidative stress in many organs including the kidney. In this chapter, we consider the possible role of oxidative stress in producing a defect in afferent arteriolar electromechanical coupling that involves K+ channel activation, membrane hyperpolarization, and a consequent decrease in Ca2+ influx through voltage-gated channels. As voltage-dependent Ca2+ influx is a primary determinant of afferent (but not efferent) arteriolar tone and vasoconstrictor responsiveness, this scenario offers a potential mechanism whereby hyperglycemia results in the preglomerular vasodilation that underlies diabetic hyperfiltration.


Physiol Heart Circ Afferent Arteriolar Tubuloglomerular Feedback Early Diabetes Arteriolar Tone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Churchill P, Churchill M, Bidani A, Dunbar J Jr. Streptozotocin-induced renal hemodynamic changes in isogenic Lewis rats: a transplant study. Am J Physiol Renal Fluid Electrolyte Physiol 1993;264:F100–F105.Google Scholar
  2. 2.
    Hirose K, Østerby R, Nozawa M, Gundersen HJ. Development of glomerular lesions in experimental long-term diabetes in the rat. Kidney Int 1982;21:889–895.zCrossRefGoogle Scholar
  3. 3.
    Ohishi K, Okwueze MI, Vari RC, Carmines PK. Juxtamedullary microvascular dysfunction during the hyperfiltration stage of diabetes mellitus. Am J Physiol Renal Fluid Electrolyte Physiol 1994;267:F99–F105.Google Scholar
  4. 4.
    Scholey JW, Meyer TW. Control of glomerular hypertension by insulin administration in diabetic rats. J Clin Invest 1989;83:1384–1389.PubMedGoogle Scholar
  5. 5.
    Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 1981;19:410–415.PubMedCrossRefGoogle Scholar
  6. 6.
    Mogensen CE. Kidney function and glomerular permeability to macromolecules in early juvenile diabetes. Scand J Clin Lab Invest 1971;28:91–100.PubMedGoogle Scholar
  7. 7.
    Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 2000;342:381–389.CrossRefGoogle Scholar
  8. 8.
    Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–986.CrossRefGoogle Scholar
  9. 9.
    Wolin MS, Gupte SA, Oeckler RA. Superoxide in the vascular system. J Vasc Res 2002;39:191–207.PubMedCrossRefGoogle Scholar
  10. 10.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature (London) 2001;414:813–820.CrossRefGoogle Scholar
  11. 11.
    Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature (London) 2000;404:787–790.CrossRefGoogle Scholar
  12. 12.
    Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 2001;88:e14–e22.PubMedGoogle Scholar
  13. 13.
    Sonta T, Inoguchi T, Tsubouchi H, et al. Evidence for contribution of vascular Nad(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity. Free Radic Biol Med 2004;37:115–123.PubMedCrossRefGoogle Scholar
  14. 14.
    Ishii N, Patel KP, Lane PH, et al. Nitric oxide synthesis and oxidative stress in the renal cortex of rats with diabetes mellitus. J Am Soc Nephrol 2001;12:1630–1639.PubMedGoogle Scholar
  15. 15.
    Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Antioxidant defense system in diabetic kidney: A time course study. Life Sci 1997;60:667–679.PubMedCrossRefGoogle Scholar
  16. 16.
    Kakkar R, Kalra J, Mantha SV, Prasad K. Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol Cell Biochem 1995;151:113–119.PubMedCrossRefGoogle Scholar
  17. 17.
    Sechi LA, Ceriello A, Griffin CA, et al. Renal antioxidant enzyme mRNA levels are increased in rats with experimental diabetes mellitus. Diabetologia 1997;40:23–29.PubMedCrossRefGoogle Scholar
  18. 18.
    Griendling KK, Sorescu D, Lasségue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000;20:2175–2183.PubMedGoogle Scholar
  19. 19.
    Baud L, Ardaillou R. Reactive oxygen species: production and role in the kidney. Am J Physiol Renal Fluid Electrolyte Physiol 1986;251:F765–F776.Google Scholar
  20. 20.
    Winiarska K, Drozak J, Wegrzynowicz M, Fraczyk T, Bryla J. Diabetes-induced changes in glucose synthesis, intracellular glutathione status and hydroxyl free radical generation in rabbit kidney-cortex tubules. Mol Cell Biochem 2004;261:91–98.PubMedCrossRefGoogle Scholar
  21. 21.
    Sugimoto H, Shikata K, Hirata K, et al. Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation. Diabetes 1997;46:2075–2081.PubMedCrossRefGoogle Scholar
  22. 22.
    Tesfamariam B. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med 1994;16:383–391.PubMedCrossRefGoogle Scholar
  23. 23.
    Hattori Y, Kawasaki H, Abe K, Kanno M. Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol Heart Circ Physiol 1991;261:H1086–H1094.Google Scholar
  24. 24.
    Mayhan WG. Superoxide dismutase partially restores impaired dilatation of the basilar artery during diabetes mellitus. Brain Res 1997;760:204–209.PubMedCrossRefGoogle Scholar
  25. 25.
    Dai F-X, Diederich A, Skopec J, Diederich D. Diabetes-induced endothelial dysfunction in streptozo-tocin-treated rats: Role of prostaglandin endoperoxides and free radicals. J Am Soc Nephrol 1993;4:1327–1336.PubMedGoogle Scholar
  26. 26.
    Schnackenberg CG, Wilcox CS. The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes. Kidney Int 2001;59:1859–1864.PubMedCrossRefGoogle Scholar
  27. 27.
    Ohishi K, Carmines PK. Superoxide dismutase restores the influence of nitric oxide on renal arterioles in diabetes mellitus. J Am Soc Nephrol 1995;5:1559–1566.PubMedGoogle Scholar
  28. 28.
    Suzuki YJ, Ford GD. Superoxide stimulates IP3-induced Ca2+ release from vascular smooth muscle sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol 1992;262:H114–H116.Google Scholar
  29. 29.
    Katusic ZS, Vanhoutte PM. Superoxide anion is an endothelium-derived contracting factor. Am J Physiol Heart Circ Physiol 1989;257:H33–H37.Google Scholar
  30. 30.
    Wu L, De Champlain J. Superoxide anion-induced formation of inositol phosphates involves tyrosine kinase activation in smooth muscle cells from rat mesenteric artery. Biochem Biophys Res Commun 1999;259:239–243.PubMedCrossRefGoogle Scholar
  31. 31.
    Tabet F, Savoia C, Schiffrin EL, Touyz RM. Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 2004;44:200–208.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang AY, Yi F, Teggatz EG, Zou AP, Li PL. Enhanced production and action of cyclic ADP-ribose during oxidative stress in small bovine coronary arterial smooth muscle. Microvasc Res 2004;67:159–167.PubMedCrossRefGoogle Scholar
  33. 33.
    Suzuki YJ, Ford GD. Inhibition of Ca2+-ATPase of vascular smooth muscle sarcoplasmic reticulum by reactive oxygen intermediates. Am J Physiol Heart Circ Physiol 1991;261:H568–H574.Google Scholar
  34. 34.
    Kimura C, Cheng W, Hisadome K, et al. Superoxide anion impairs contractility in cultured aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 2002;283:H382–H390.PubMedGoogle Scholar
  35. 35.
    Wei EP, Kontos HA, Beckman JS. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol Heart Circ Physiol 1996;271:H1262–H1266.Google Scholar
  36. 36.
    Liu YP, Terata K, Rusch NJ, Gutterman DD. High glucose impairs voltage-gated K+ channel current in rat small coronary arteries. Circ Res 2001;89:146–152.PubMedCrossRefGoogle Scholar
  37. 37.
    Navar LG, Inscho EW, Majid DSA, Imig JD, Harrison-Bernard LM, Mitchell KD. Paracrine regulation of the renal microcirculation. Physiol Rev 1996;76:425–536.PubMedGoogle Scholar
  38. 38.
    Gebremedhin D, Kaldunski M, Jacobs ER, Harder DR, Roman RJ. Coexistence of two types of Ca2+-activated K+ channels in rat renal arterioles. Am J Physiol Renal Fluid Electrolyte Physiol 1996;270:F69–F81.Google Scholar
  39. 39.
    Roman RJ, Harder DR. Cellular and ionic signal transduction mechanisms for the mechanical activation of renal arterial vascular smooth muscle. J Am Soc Nephrol 1993;4:986–996.PubMedGoogle Scholar
  40. 40.
    Benkusky NA, Lewis SJ, Kooy NW. Peroxynitrite-mediated attenuation of a-and P-adrenoceptor agonist-induced vascular responses in vivo. Eur J Pharmacol 1999;364:151–158.PubMedCrossRefGoogle Scholar
  41. 41.
    Benkusky NA, Lewis SJ, Kooy NW. Attenuation of vascular relaxation after development of tachyphylaxis to peroxynitrite in vivo. Am J Physiol 1998;275:H501–H508.PubMedGoogle Scholar
  42. 42.
    Brzezinska AK, Gebremedhin D, Chilian WM, Kalyanaraman B, Elliott SJ. Peroxynitrite reversibly inhibits Ca2+-activated K+ channels in rat cerebral artery smooth muscle cells. Am J Physiol Heart Circ Physiol 2000;278:H1883–H1890.PubMedGoogle Scholar
  43. 43.
    Elliott SJ, Lacey DJ, Chilian WM, Brzezinska AK. Peroxynitrite is a contractile agonist of cerebral artery smooth muscle cells. Am J Physiol 1998;275:H1585–H1591.PubMedGoogle Scholar
  44. 44.
    Li H, Gutterman DD, Rusch NJ, Bubolz A, Liu Y. Nitration and functional loss of voltage-gated K+ channels in rat coronary microvessels exposed to high glucose. Diabetes 2004;53:2436–2442.PubMedCrossRefGoogle Scholar
  45. 45.
    Gonzalez-Pacheco FR, Caramelo C, Castilla MA, et al. Mechanism of vascular smooth muscle cells activation by hydrogen peroxide: role of phospholipase Cγ. Nephrol Dial Transplant 2002;17:392–398.PubMedCrossRefGoogle Scholar
  46. 46.
    Thengchaisri N, Kuo L. Hydrogen peroxide induces endothelium-dependent and-independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol Heart Circ Physiol 2003;285:H2255–H2263.PubMedGoogle Scholar
  47. 47.
    Ellis A, Pannirselvam M, Anderson TJ, Triggle CR. Catalase has negligible inhibitory effects on endothelium-dependent relaxations in mouse isolated aorta and small mesenteric artery. Br J Pharmacol 2003;140:1193–1200.PubMedCrossRefGoogle Scholar
  48. 48.
    Fujimoto S, Asano T, Sakai M, et al. Mechanisms of hydrogen peroxide-induced relaxation in rabbit mesenteric small artery. Eur J Pharmacol 2001;412:291–300.PubMedCrossRefGoogle Scholar
  49. 49.
    Cseko C, Bagi Z, Koller A. Biphasic effect of hydrogen peroxide on skeletal muscle arteriolar tone via activation of endothelial and smooth muscle signaling pathways. J Appl Physiol 2004;97:1130–1137.PubMedCrossRefGoogle Scholar
  50. 50.
    Gao YJ, Hirota S, Zhang DW, Janssen LJ, Lee RM. Mechanisms of hydrogen-peroxide-induced biphasic response in rat mesenteric artery. Br J Pharmacol 2003;138:1085–1092.PubMedCrossRefGoogle Scholar
  51. 51.
    Hattori T, Kajikuri J, Katsuya H, Itoh T. Effects of H2O2 on membrane potential of smooth muscle cells in rabbit mesenteric resistance artery. Eur J Pharmacol 2003;464:101–109.PubMedCrossRefGoogle Scholar
  52. 52.
    Barlow RS, White RE. Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKca channel activity. Am J Physiol Heart Circ Physiol 1998;44:H1283–H1289.Google Scholar
  53. 53.
    Hayabuchi Y, Nakaya Y, Matsuoka S, Kuroda Y Hydrogen peroxide-induced vascular relaxation in porcine coronary arteries is mediated by Ca2+-activated Ksu+ channels. Heart Vessels 1998;13:9–17.PubMedGoogle Scholar
  54. 54.
    hen YF, Cowley AW Jr, Zou AP Increased H2O2 counteracts the vasodilator and natriuretic effects of superoxide dismutation by tempol in renal medulla. Am J Physiol Regul Integr Comp Physiol 2003;285:R827–R833.PubMedGoogle Scholar
  55. 55.
    Carmines PK, Fallet RW, Pollock JS. Effect of H2O2 on afferent arteriolar diameter in normal rat kidney. FASEB J 2005;19:A1145 (Abstract).Google Scholar
  56. 56.
    Mayhan WG, Patel KP Treatment with dimethylthiourea prevents impaired dilatation of the basilar artery during diabetes mellitus. Am J Physiol Heart Circ Physiol 1998;274:H1895–H1901.Google Scholar
  57. 57.
    Marshall JJ, Wei EP, Kontos HA. Independent blockade of cerebral vasodilation from acetylcholine and nitric oxide. Am J Physiol Heart Circ Physiol 1988;255:H847–H854.Google Scholar
  58. 58.
    Wei EP, Christman CW, Kontos HA, Povlishock JT Effects of oxygen radicals on cerebral arterioles. Am J Physiol Heart Circ Physiol 1985;248:H157–H162.Google Scholar
  59. 59.
    Shen J-Z, Zheng X-F, Kwan C-Y Differential contractile actions of reactive oxygen species on rat aorta: selective activation of ATP receptor by H2O2. Life Sci 2000;66:291–296.CrossRefGoogle Scholar
  60. 60.
    Bilzer M, Lauterburg BH. Effects of hypochlorous acid and chloramines on vascular resistance, cell integrity, and biliary glutathione disulfide in the perfused rat liver: modulation by glutathione. J Hepatol 1991;46:84–89.CrossRefGoogle Scholar
  61. 61.
    Turan NN, Demiryurek AT, Kanzik I. Hypochlorous acid-induced responses in sheep isolated pulmonary artery rings. Pharmacol Res 2000;41:589–596.PubMedCrossRefGoogle Scholar
  62. 62.
    Stocker R, Huang A, Jeranian E, et al. Hypochlorous acid impairs endothelium-derived nitric oxide bioactivity through a superoxide-dependent mechanism. Arterioscler Thromb Vasc Biol 2004;24:2028–2033.PubMedCrossRefGoogle Scholar
  63. 63.
    Jaimes EA, Sweeney C, Raij L. Effects of the reactive oxygen species hydrogen peroxide and hypochlorite on endothelial nitric oxide production. Hypertension 2001;38:877–883.PubMedGoogle Scholar
  64. 64.
    Zhang C, Yang J, Jennings LK. Leukocyte-derived myeloperoxidase amplifies high glucose-induced endothelial dysfunction through interaction with high glucose-stimulated, vascular non-leukocyte-derived reactive oxygen species. Diabetes 2004;53:2950–2959.PubMedCrossRefGoogle Scholar
  65. 65.
    Malle E, Woenckhaue C, Waeg G, Esterbauer H, Grone EF, Grone HJ. Immunological evidence for hypochlorite-modified proteins in human kidney. Am J Pathol 1997;150:603–615.PubMedGoogle Scholar
  66. 66.
    Maruyama Y, Lindholm B, Stenvinkel P. Inflammation and oxidative stress in ESRD—the role of myeloperoxidase. J Nephrol 2004;17(8):S72–S76.PubMedGoogle Scholar
  67. 67.
    Porubsky S, Schmid H, Bonrouhi M, et al. Influence of native and hypochlorite-modified low-density lipoprotein on gene expression in human proximal tubular epithelium. Am J Pathol 2004;164:2175–2187.PubMedGoogle Scholar
  68. 68.
    Utimura R, Fujihara CK, Mattar AL, Malheiros DMAC, Noronha ID, Zatz R. Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int 2003;63:209–216.PubMedCrossRefGoogle Scholar
  69. 69.
    Wilcox CS. Redox regulation of the afferent arteriole and tubuloglomerular feedback. Acta Physiol Scand 2003;179:217–223.PubMedCrossRefGoogle Scholar
  70. 70.
    Garvin JL, Ortiz PA. The role of reactive oxygen species in the regulation of tubular function. Acta Physiol Scand 2003;179:225–232.PubMedCrossRefGoogle Scholar
  71. 71.
    Carmines PK, Fujiwara K. Altered electromechanical coupling in the renal microvasculature during the early stage of diabetes mellitus. Clin Exp Pharmacol Physiol 2002;29:143–148.PubMedCrossRefGoogle Scholar
  72. 72.
    Bank N, Lahorra MA, Aynedjian HS. Acute effect of calcium and insulin on hyperfiltration of early diabetes. Am J Physiol Endocrinol Metab 1987;252:E13–E20.Google Scholar
  73. 73.
    Williams BW, Schrier RW. Effect of elevated extracellular glucose concentrations on transmembrane calcium ion fluxes in cultured rat VSMC. Kidney Int 1993;44:344–351.PubMedCrossRefGoogle Scholar
  74. 74.
    Bast JP, Singaravelu K, Ehlers CJ, Fallet RW, Carmines PK. Impaired renal preglomerular responses to depolarization in diabetes: potential roles of extracellular glucose and oxidative stress. FASEB J 2004;18:A293 (Abstract).Google Scholar
  75. 75.
    Carmines PK, Ohishi K, Ikenaga H. Functional impairment of renal afferent arteriolar voltage-gated calcium channels in rats with diabetes mellitus. J Clin Invest 1996;98:2564–2571.PubMedGoogle Scholar
  76. 76.
    Carmines PK, Fowler BC, Bell PD. Segmentally distinct effects of depolarization on intracellular [Ca2+ in renal arterioles. Am J Physiol Renal Fluid Electrolyte Physiol 1993;265:F677–F685.Google Scholar
  77. 77.
    Fallet RW, Ikenaga H, Bast JP, Carmines PK. Relative contributions of Ca2+ mobilization and influx in renal arteriolar contractile responses to arginine vasopressin. Am J Physiol Renal Physiol 2005;288:F551.CrossRefGoogle Scholar
  78. 78.
    Salomonsson M, Sorensen CM, Arendshorst WJ, Steendahl J, Holstein-Rathlou NH. Calcium handling in afferent arterioles. Acta Physiol Scand 2004;181:421–429.PubMedCrossRefGoogle Scholar
  79. 79.
    Ikenaga H, Bast JP, Fallet RW, Carmines PK. Exaggerated impact of ATP-sensitive K+ channels on afferent arteriolar diameter in diabetes mellitus. J Am Soc Nephrol 2000;11:1199–1207.PubMedGoogle Scholar
  80. 80.
    Loutzenhiser RD, Parker MJ. Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP-sensitive K+ channels. Circ Res 1994;74:861–869.PubMedGoogle Scholar
  81. 81.
    Reslerova M, Loutzenhiser R. Divergent mechanisms of ATP-sensitive K+ channel-induced vasodilation in renal afferent and efferent arterioles: Evidence of L-type Ca2+ channel-dependent and-independent actions of pinacidil. Circ Res 1995;77:1114–1120.PubMedGoogle Scholar
  82. 82.
    Reslerova M, Loutzenhiser R. Renal microvascular actions of calcitonin gene-related peptide. Am J Physiol Renal Physiol 1998;274:F1078–F1085.Google Scholar
  83. 83.
    Lorenz JN, Schnermann J, Brosius FC, Briggs JP, Furspan PB. Intracellular ATP can regulate afferent arteriolar tone via ATP-sensitive K+ channels in the rabbit. J Clin Invest 1992;90:733–740.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Pamela K. Carmines
    • 1
  • Joseph P. Bast
    • 2
  • Naohito Ishii
    • 3
  1. 1.Department of Cellular and Integrative PhysiologyUniversity of Nebraska College of MedicineOmaha
  2. 2.Department of MedicineLoyola University Stritch School of MedicineChicago
  3. 3.Department of Hematological InformaticsKitasato University School of Allied Health SciencesKanagawaJapan

Personalised recommendations