The Prospect of a Novel Therapeutic, Bone Morphogenetic Protein-7, in Diabetic Nephropathy

  • Keith A. Hruska
  • Laura Petris
  • Tingting Li
  • Song Wang
  • Theresa Geurs
  • Frank Strebeck
  • Qing Chen
  • Helen Liapis
Part of the Contemporary Diabetes book series (CDI)


We are in the midst of a worldwide epidemic of diabetes and hypertension. In the United States, the overall incidence of end-stage kidney disease (ESKD) is increasing at an alarming rate due to this epidemic. Recently, the incidence of ESKD was estimated at 336 per million per year (1), such that the number of patients with ESKD may approach 2.24 million by 2030. Moreover, approx 11% of the population is estimated to have chronic kidney disease (CKD), with nearly half the patients with a glomerular filtration rate (GFR) less than 60 mL/min/1.73 m2 (2). Similar estimates for other countries have been described in Europe (3), Japan (4), and Australia (5). The most common form of CKD in all of these countries is diabetic nephropathy (DN), accounting for approx 40% of the new cases of ESKD in developed countries.


Chronic Kidney Disease Diabetic Nephropathy Bone Morphogenetic Protein Renal Fibrosis Kidney Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    USRDS: The United States renal data system. Am J Kidney Dis 2003;42(6 Suppl 5):1–230.Google Scholar
  2. 2.
    Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: third national health and nutrition examination survey. Am J Kidney Dis 2003;41:1–15.PubMedCrossRefGoogle Scholar
  3. 3.
    Hillege HL, Janssen WMT, Bak AAA, et al. Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J Int Med 2001;249:519–526.CrossRefGoogle Scholar
  4. 4.
    Iseki K. The Okinawa screening program. J Am Soc Neph 2003;14(7 Suppl 2):S127–S130.CrossRefGoogle Scholar
  5. 5.
    Chadban SJ, Briganti EM, Kerr PG, et al. Prevalence of kidney damage in Australian adults: the AusDiab kidney study. J Am Soc Neph 2003;14:S131–S138.CrossRefGoogle Scholar
  6. 6.
    Berl T, Hunsicker LG, Lewis JB, et al. Cardiovascular outcomes in the Irbesartan diabetic nephropathy trial of patients with type 2 diabetes and overt nephropathy. Ann Intern Med 2003;138:542–549.PubMedGoogle Scholar
  7. 7.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. NEJM 1993;329:1456–1462.PubMedCrossRefGoogle Scholar
  8. 8.
    Jafar TH, Stark PC, Schmid CH, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Int Med 2003;139:244–252.PubMedGoogle Scholar
  9. 9.
    K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis 2004;43(5 Suppl 1):1–290.Google Scholar
  10. 10.
    The diabetes control and complications trial (DCCT) research group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the diabetes control and complications trial. Kidney Int 1995;47:1703–1720.Google Scholar
  11. 11.
    Adler AI, Stevens RJ, Manley SE, et al. Development and progression of nephropathy in type 2 diabetes: The United Kingdom prospective diabetes study (UKPDS 64). Kidney Int 2003;63:225–232.PubMedCrossRefGoogle Scholar
  12. 12.
    Schieppati A, Remuzzi G. Proteinuria and its consequences in renal disease. Acta Paediatr Suppl 2003;443:9–13.Google Scholar
  13. 13.
    Remuzzi G, Ruggenenti P, Perico N. Chronic renal diseases: Renoprotective benefits of reninangiotensin system inhibition. Ann Intern Med 2002;136:604–615.PubMedGoogle Scholar
  14. 14.
    Eddy AA. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 1996;7:2495–2508.PubMedGoogle Scholar
  15. 15.
    Fogo AB. Pathology of progressive nephropathies. Curr Opin Nephrol Hypertens 2000;9:241–246.PubMedCrossRefGoogle Scholar
  16. 16.
    Shi Y, Massague J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 2003;113:685–700.PubMedCrossRefGoogle Scholar
  17. 17.
    Miyazono K, Kusanagi K, Inoue H. Divergence and convergence of TGF-β/BMP signaling. J Cell Physiol 2001;187:265–276.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 1999;400:687–693.PubMedCrossRefGoogle Scholar
  19. 19.
    Lo RS, Massagué J. Ubiquitin-dependent degradation of TGF-β-activated Smad2. Nat Cell Biol 1999;1:472–478.PubMedCrossRefGoogle Scholar
  20. 20.
    Fukuchi M, Imamura T, Chiba T, et al. Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol Biol Cell 2001;12:1431–1443.PubMedGoogle Scholar
  21. 21.
    Ebisawa T, Fukuchi M, Murakami G, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001;276:12,477–12,480.PubMedCrossRefGoogle Scholar
  22. 22.
    Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T. Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol Biol Cell 2003;14:2809–2817.PubMedCrossRefGoogle Scholar
  23. 23.
    Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFP activation. J Cell Sci 2003;116:217–224.PubMedCrossRefGoogle Scholar
  24. 24.
    Gumienny TL, Padgett RW. The other side of TGF-β superfamily signal regulation: thinking outside the cell. Trends Endo Metab 2002;13:295–299.CrossRefGoogle Scholar
  25. 25.
    Garcia Abreu J, Coffinier C, Larrain J, Oelgeschlager M, De Robertis EM. Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems. Gene 2002;287:39–47.PubMedGoogle Scholar
  26. 26.
    Wilkinson L, Kolle G, Wen D, Piper M, Scott J, Little M. CRIM1 regulates the rate of processing and delivery of bone morphogenetic proteins to the cell surface. J Biol Chem 2003;278:34,181–34,188.PubMedCrossRefGoogle Scholar
  27. 27.
    Balemans W, Van Hul W Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 2002;250:231–250.PubMedGoogle Scholar
  28. 28.
    Laurikkala J, Kassai Y, Pakkasjarvi L, Thesleff I, Itoh N. Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot. Dev Biol 2003;264:91–105.PubMedCrossRefGoogle Scholar
  29. 29.
    Ohukubo T, Ozawa M. The transcription factor Snail down-regulates the tight junction components independently of E-cadherin down-regulation. J Cell Sci 2004;117(Pt 9):1675–1685.CrossRefGoogle Scholar
  30. 30.
    Groppe J, Greenwald J, Wiater E, et al. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 2002;420:636–642.PubMedCrossRefGoogle Scholar
  31. 31.
    Lin J, Patel SR, Cheng X, et al. Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med 2005;11:387–393.PubMedCrossRefGoogle Scholar
  32. 32.
    Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nat Cell Biol 2002;4:599–604.PubMedGoogle Scholar
  33. 33.
    Chen S, Lechleider RJ. Transforming growth factor-β-induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res 2004;94:1195–1202.PubMedCrossRefGoogle Scholar
  34. 34.
    Dudley AT, Robertson EJ. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Develop Dynamics 1997;208:349–362.CrossRefGoogle Scholar
  35. 35.
    Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 1995;9:2795–2807.PubMedCrossRefGoogle Scholar
  36. 36.
    Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 1995;9:2808–2820.PubMedCrossRefGoogle Scholar
  37. 37.
    Dudley AT, Godin RE, Robertson EJ. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev 1999;13:1601–1613.PubMedCrossRefGoogle Scholar
  38. 38.
    Martinez G, Loveland KL, Clark AT, Dziadek M, Bertram JF. Expression of bone morphogenetic protein receptors in the developing mouse metanephros. Exp Nephrol 2001;9:372–379.PubMedCrossRefGoogle Scholar
  39. 39.
    Vrljicak P, Myburgh D, Ryan AK, van Rooijen MA, Mummery CL, Gupta IR. Smad expression during kidney development. AJP-Ren Physiol 2004;286:F625–F633.CrossRefGoogle Scholar
  40. 40.
    Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell 1998;1:673–683.PubMedCrossRefGoogle Scholar
  41. 41.
    Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 2003;34:303–307.PubMedCrossRefGoogle Scholar
  42. 42.
    Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A. Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 2004;131:3401–3410.PubMedCrossRefGoogle Scholar
  43. 43.
    Miyazaki Y, Oshima K, Fogo A, Hogan BLM, Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 2000;105:863–873.PubMedCrossRefGoogle Scholar
  44. 44.
    Vukicevic S, Basic V, Rogic D, et al. Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest 1998;102:202–214.PubMedGoogle Scholar
  45. 45.
    Simon M, Maresh JG, Harris SE, et al. Expression of bone morphogenetic protein-7 mRNA in normal and ischemic adult rat kidney. Am J Physiol 1999;276:F382–F389.PubMedGoogle Scholar
  46. 46.
    Gould SE, Day M, Jones S, Dorai H. BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int 2002;61:51–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang SN, Lapage J, Hirschberg R. Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. J Am Soc Nephrol 2001;12:2392–2399.PubMedGoogle Scholar
  48. 48.
    Bosukonda D, Shis MS, Sampath KT, Vukicevic S. Characterization of receptors for osteogenic pro-tein-1/bone morphogenetic protein-7 (OP-1/BMP-7) in rat kidneys. Kidney Int 2000;5:1902–1911.Google Scholar
  49. 49.
    Wang S, Hirschberg R. Bone morphogenetic protein-7 signals opposing transforming growth factor β in mesangial cells. J Biol Chem 2004;279:23,200–23,206.PubMedCrossRefGoogle Scholar
  50. 50.
    Surendran K, Austin PF, Farrell F, Hruska KA. Renal protection in a model of obstructive uropathy by bone morphogenetic protein-7 (BMP-7). J Urology 2005; submitted.Google Scholar
  51. 51.
    Hruska K, Guo G, Wozniak M, et al. Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Phys (Renal) 2000;279:F130–F143.Google Scholar
  52. 52.
    Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S. Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol 2002;13:S14–S21.PubMedCrossRefGoogle Scholar
  53. 53.
    Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGFp1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003;9(7):964–968.PubMedCrossRefGoogle Scholar
  54. 54.
    Zeisberg M, Bottiglio C, Kumar N, et al. Bone morphogenic protein-7 inhibits progresion of chronic renal fibrosis associated with two genetic mouse models. Am J Phys (Renal) 2003;285:F1060–F1067.Google Scholar
  55. 55.
    Wang S, Chen Q, Simon TC, et al. Bone morphogenetic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int 2003;63:2037–2049.PubMedCrossRefGoogle Scholar
  56. 56.
    Dunn SR, Zhu Y, Qiu G, McCue P, Sharma K. Bone morphogenic protein (BMP-7) increases albuminuria in the dh/db mouse. J Am Soc Neph 2004;15:724A.Google Scholar
  57. 57.
    Bottinger EP, Bitzer M. TGF-β signaling in renal disease. J Am Soc Neph 2002;13:2600–2610.CrossRefGoogle Scholar
  58. 58.
    Kopp JB, Factor VM, Mozes M, et al. Transgenic mice with increased plasma levels of TGF-β 1 develop progressive renal disease. Lab Invest 1996;74:991–1033.PubMedGoogle Scholar
  59. 59.
    Ledbetter S, Kurtzberg L, Doyle S, Pratt BM. Renal fibrosis in mice treated with human recombinant transforming growth factor-β2. Kidney Int 2000;58:2367–2376.PubMedCrossRefGoogle Scholar
  60. 60.
    Ziyadeh FN, Hoffman BB, Han DC, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci 2000;97:8015–8020.PubMedCrossRefGoogle Scholar
  61. 61.
    Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003;112:1776–1784.PubMedCrossRefGoogle Scholar
  62. 62.
    Poncelet AC, Schnaper HW Sp1 and Smad proteins cooperate to mediate transforming growth factorbeta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells. J Biol Chem 2001;276:6983–6992.PubMedCrossRefGoogle Scholar
  63. 63.
    Runyan CE, Schnaper HW, Poncelet AC. The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-β1. J Biol Chem 2004;279:2632–2639.PubMedCrossRefGoogle Scholar
  64. 64.
    Fujimoto M, Maezawa Y, Yokote K, et al. Mice lacking Smad3 are protected against streptozotocininduced diabetic glomerulopathy. Biochem Biophys Res Com 2003;305:1002–1007.PubMedCrossRefGoogle Scholar
  65. 65.
    Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003;112:1486–1494.PubMedCrossRefGoogle Scholar
  66. 66.
    Wang S, Hirschberg R. BMP7 antagonizes TGF-beta-dependent fibrogenesis in mesangial cells. Am J Phys (Renal) 2003;284:F1006–F1013.Google Scholar
  67. 67.
    Zawaideh MA, Surendran K, Hruska KA. BMP-7 inhibits high glucose induced renal glomerular mesangial cell phenotype. J Am Soc Neph 2003;14:62A.Google Scholar
  68. 68.
    Zhang XL, Selbi W, de la Motte C, Hascall V, Phillips A. Renal proximal tubular epithelial cell transforming growth factor-β1 generation and monocyte binding. Am J Pathol 2004;165:763–773.PubMedGoogle Scholar
  69. 69.
    Ito T, Williams JD, Fraser D, Phillips AO. Hyaluronan attenuates transforming growth factor-β1mediated signaling in renal proximal tubular epithelial cells. Am J Pathol 2004;164:1979–1988.PubMedGoogle Scholar
  70. 70.
    Selbi W, de la Motte C, Hascall V, Phillips A. BMP-7 modulates hyaluronan-mediated proximal tubular cell-monocyte interaction. J Am Soc Neph 2004;15:1199–1211.CrossRefGoogle Scholar
  71. 71.
    Leung-Hagesteijn C, Hu MC, Mahendra AS, et al. Integrin-linked kinase mediates bone morphogenetic protein 7-dependent renal epithelial cell morphogenesis. Mol Cell Biol 2005;25:3648–3657.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Keith A. Hruska
    • 1
  • Laura Petris
    • 2
  • Tingting Li
    • 3
  • Song Wang
    • 4
  • Theresa Geurs
    • 5
  • Frank Strebeck
    • 5
  • Qing Chen
    • 6
  • Helen Liapis
    • 7
  1. 1.Department of PediatricsWashington University School of MedicineSt. Louis
  2. 2.Departments of Pediatrics and Internal MedicineWashington University School of MedicineSt. Louis
  3. 3.Department of Internal MedicineWashington University School of MedicineSt. Louis
  4. 4.Third Hospital of Beijing Medical UniversityBeijingChina
  5. 5.Department of PediatricsWashington University School of MedicineSt. LouisMO
  6. 6.Department of Internal MedicineWashington University School of MedicineSt. LouisMO
  7. 7.Department of PathologyWashington UniversitySt. LouisMO

Personalised recommendations