Skip to main content

α-Endosulfine in Diabetic Nephropathy

  • Chapter
  • 1330 Accesses

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

The sulfonylureas (SULF) have long been utilized as oral agents in the treatment of type 2 diabetes mellitus (1). The primary effect of SULF is the stimulation of insulin secretion following binding to specific SULF receptors (SUR) on pancreatic β-cells. However, SUR have extensive representation in a multitude of extrapancreatic tissues. Therefore, it is not unanticipated that SULF may induce metabolic changes aside from that of insulin secretion. These drugs have been shown to increase glucose uptake and glucose transporter (GLUT) expression in myocytes, adipocytes, and skeletal muscle cells (25). Moreover, we have documented significant SULF-induced metabolic effects in cultured rat mesangial cells (MCs), including alterations in mesangial matrix metabolism and MC contractility, independent of their effect on the ambient level of glycemia. The latter effect mimicked that provided by other known MC effectors of contractility, for example, atrial natriuretic peptide and angiotensin II.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lebovitz HE, Feinglos MN. Sulfonylurea drugs: mechanism of antidiabetic action and therapeutic usefulness. Diabetes Care 1978;1:189–198.

    Article  PubMed  CAS  Google Scholar 

  2. Jacobs DB, Hayes GR, Lockwood DH. In vitro effects of sulfonylurea on glucose transport and translocation of glucose transporters in adipocytes from streptozotocin-induced diabetic rats. Diabetes 1989;38:205–211.

    Article  PubMed  CAS  Google Scholar 

  3. Wang PH, Moller D, Flier JR, Nayak RC, Smith RJ. Coordinate regulation of glucose transporter function, number, and gene expression by insulin and sulfonylureas in L6 rat skeletal muscle cells. J Clin Invest 1989;84:62–67.

    PubMed  CAS  Google Scholar 

  4. Müller G, Wied S. The sulfonylurea drug glimepiride stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 1993;42:1852–1867.

    Article  PubMed  Google Scholar 

  5. Rogers BJ, Standaert ML, Pollet RJ. Direct effects of sulfonylurea agents on glucose transport in the BC3H-1 myocyte. Diabetes 1987;36:1292–1296.

    Article  PubMed  CAS  Google Scholar 

  6. Cortes P, Riser BL, Asano K, Rodrígez-Barbero A, Narins RG, Yee J. Effects of oral antihyperglycemic agents on extracellular matrix synthesis by mesangial cells. Kidney Int 1998;54:1985–1998.

    Article  PubMed  CAS  Google Scholar 

  7. Giannico G, Biederman J, Hasset C, Yee J, Cortes P. Amelioration of glucose-induced extracellular matrix formation (ECM) by the sulfonylurea glibenclamide (GLIB) in cultured mesangial cells (MC). J Am Soc Nephrol 2002;13:318A.

    Google Scholar 

  8. Asano K, Cortes P, Garvin JL, et al. Characterization of the rat mesangial cell type 2 sulfonylurea receptor. Kid Int 1999;55:2289–2298.

    Article  CAS  Google Scholar 

  9. Inagaki N, Gonoi T, Clement IV JP, et al. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 1996;16:1011–1017.

    Article  PubMed  CAS  Google Scholar 

  10. Chutkow WA, Simon MC, Le Beau MM, Burant CF. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes 1996;45:1439–1445.

    Article  PubMed  CAS  Google Scholar 

  11. Higgins CF. The ABC of Channel Regulation. Cell 1995;82:693–696.

    Article  PubMed  CAS  Google Scholar 

  12. Philipson LH, Steiner DF. Pas de deux or more: The sulfonylurea receptor and K+ channels. Science 1995;268:372, 373.

    Article  PubMed  CAS  Google Scholar 

  13. Garlid KD, Paucek P, Yarov-Yarovoy P, Sun X, Schindler PA. The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem 1996;271:8796–8799.

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki M, Kotake K, Fujikura K, et al. Kir6.1: A possible subunit of ATP-sensitive K+ channels in mitochondria. Biochem Biophys Res Comm 1997;241:693–697.

    Article  PubMed  CAS  Google Scholar 

  15. Geng X, Li L, Watkins S, Robbins PD, Drain P. The insulin secretory granule is the major site of KATP channels of the endocrine pancreas. Diabetes 2003;52:767–776.

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki M, Sasaki N, Miki T, et al. Role of sarcolemmal KATP channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest 2002;109:509–516.

    Article  PubMed  CAS  Google Scholar 

  17. Carpentier J-L, Sawano F, Ravazzola M, Malisse WJ. Internalization of 3H-glibenclamide in pancreatic islet cells. Diabetologia 1996;29:259–261.

    Article  Google Scholar 

  18. Kawaki J, Nagashima K, Tanaka J, et al. Unresponsiveness to glibenclamide during chronic treatment induced by reduction of ATP-sensitive K+ channel activity. Diabetes 1999;48:2001–2006.

    Article  PubMed  CAS  Google Scholar 

  19. Schwanstecher M, Schwanstecher C, Dickel C, Chudziak F, Moshiri A, Panten U. Location of the sulfonylurea receptor at the cytoplasmic face of the beta-cell membrane. Brit J Pharmacol 1994;113:903–911.

    CAS  Google Scholar 

  20. Zunkler BJ, Trube G, Panten U. How do sulfonylureas approach their receptor in the P-cell plasma membrane? Naunyn-Schmiedeberg’s Arch Pharmacol 1989;340:328–332.

    Article  CAS  Google Scholar 

  21. Ashcroft SJH, Ashcroft FM. The sulfonylurea receptor. Biochem Biophys Acta 1992;1175:45–59.

    Article  PubMed  CAS  Google Scholar 

  22. Dukes ID, Philipson LH. K+ channels: generating excitement in pancreatic P-cells. Diabetes 1996;45:845–853.

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki M, Fujikura K, Inagaki N, Seino S, Takata K. Localization of the ATP-sensitive K+ channel subunit Kir6.2 in mouse pancreas. Diabetes 1997;46:1440–1444.

    Article  PubMed  CAS  Google Scholar 

  24. Brian J, Aguilar-Brian L. The ABCs of ATP-sensitive potassium channels-more pieces of the puzzle. Curr Opin Cell Biol 1997;9:553–559.

    Article  Google Scholar 

  25. Babenko AP, Aguilar-Bryan L, Bryan J. A View of SUR/KIR6.X, K channels. Annu Rev Physiol 1998;60:667–687.

    Article  PubMed  CAS  Google Scholar 

  26. Ashcroft FM. Adenosine 5′-triphosphate-sensitive potassium channels. Ann Rev Neurosci 1988;11:97–118.

    Article  PubMed  CAS  Google Scholar 

  27. Seino S, Iwanaga T, Nagashima K, Miki T. Diverse roles in KATP channels learned from Kir6.2 genetically engineered mice. Diabetes 2000;49:311–318.

    Article  PubMed  CAS  Google Scholar 

  28. Lorenz E, Terzic A. Physical association between recombinant cardiac ATP-sensitive K+channel subunits Kir6.2 and SUR2A. J Mol Cell Cardiol 1999;31:425–434.

    Article  PubMed  CAS  Google Scholar 

  29. Ashcroft SJ, Ashcroft FM. Properties and function of ATP-sensitive K+ channels. Cell Signal 1990;2:197–214.

    Article  PubMed  CAS  Google Scholar 

  30. Gopalakrishnan M, Whitaker KL, Molinari EJ, et al. Characterization of the ATP-Sensitive Potassium Channels (KATP) Expressed in Guinea Pig Bladder Smooth Muscle Cells. J Pharmacol Exper Therap 1998;289:551–558.

    Google Scholar 

  31. Tune JD, Yeh C, Setty S, Downey F ATP-dependent K+ channels contribute to local metabolic coronary vasodilatation in experimental diabetes. Diabetes 2002;51:1201–1207.

    Article  PubMed  CAS  Google Scholar 

  32. Duncker DJ, van Zon NS, Ishibashi Y, Bache RJ. Role of K channels and adenosine in the regulation of coronary blood flow during exercise with normal and restricted coronary blood flow. J Clin Invest 1996;97:996–1009.

    Article  PubMed  CAS  Google Scholar 

  33. Edwards G, Weston AH. The pharmacology of ATP-sensitive potassium channels. Ann Rev Pharmacol Toxicol 1993;33:597–637.

    Article  CAS  Google Scholar 

  34. Yokoshiki H, Katsube Y, Sunagawa M, Seki T, Sperelakis N. Disruption of actin cytoskeleton attenuates sulfonylurea inhibition of cardiac ATP-sensitive K+ channels. Eur J Physiol 1997;434:203–205.

    Article  CAS  Google Scholar 

  35. Song DK, Ashcroft FM. ATP modulation of ATP-sensitive potassium channel ATP sensitivity varies with the type of SUR subunit. J Biol Chem 2001;276:7143–7149.

    Article  PubMed  CAS  Google Scholar 

  36. Loffler-Waltz C, Quast U. Disruption of the actin cytoskeleton abolishes high affinity 3H gliben-clamide binding in rat aortic rings. Naunyn-Schmiedebergs Arch Pharmacol 1998;357:183–185.

    Article  Google Scholar 

  37. Brady PA, Alekseev AE, Alesandrova LA, Gomez LA, Terzic A. A disrupter of actin filaments impairs sulfonylurea-inhibitory gating of cardiac K channels. Am J Physiol 1996;271:H2710–H2716.

    PubMed  CAS  Google Scholar 

  38. Dlugosz JA, Munk S, Ispanovic E, Goldberg HJ, Whiteside C. Mesangial cell filamentous actin disassembly and hypocontractility in high glucose are mediated by PKC-ζ. Am J Physiol Renal Physiol 2002;282:F151–F163.

    PubMed  CAS  Google Scholar 

  39. Alto N, Michel JJC, Dodge KL, Langeberg LK, Scott JD. Intracellular targeting of protein kinases and phosphatases. Diabetes 2002;51(3):S385–S388.

    Article  PubMed  CAS  Google Scholar 

  40. Beesley AH, Qureshi IZ, Giesberts AN, Parker AJ, J White SJ. Expression of sulfonylurea receptor protein in mouse kidney. Pflugers Arch-Eur J Physiol 1999;438:1–7.

    Article  CAS  Google Scholar 

  41. Brochiero E, Wallendorf B, Gagnon D, Laprade R, LaPointe JY Cloning of rabbit Kir6.1, SUR2A, and SUR2B: possible candidates for a renal K channel. Am J Physiol Renal Physiol 2002;282:F289–F300.

    PubMed  Google Scholar 

  42. Tanemoto M, Vanoye CG, Dong K, et al. Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevis oocyte. Am J Physiol Renal Physiol 2000;278:F659–F666.

    PubMed  CAS  Google Scholar 

  43. Szamosfalvi B, Cortes P, Alviani R, et al. Putative subunits of the rat mesangial K: A type 2B sulfonylurea receptor and an inwardly rectifying K+ channel. Kid Int 2002;61:1739–1749.

    Article  CAS  Google Scholar 

  44. Pendergast BD. Glyburide and glipizide, second generation oral sulfonylurea hypoglycemic agents. Clin Pharm 1984;3:473–485.

    Google Scholar 

  45. Russ U, Hambrock A, Artunc F, et al. Coexpression with the inward rectifier K+ channel Kir6.1 increases the affinity of the vascular sulfonylurea receptor SUR2B for glibenclamide. Mol Pharmacol 1999;56:955–961.

    PubMed  CAS  Google Scholar 

  46. Peyrollier K, Heron Virsolvy-Vergine A, LeCam A, Bataille D. Alpha endosulfine is a novel molecule, structurally related to a family of phosphoproteins. Biochem Biophys Res Commun 1996;223:583–586.

    Article  PubMed  CAS  Google Scholar 

  47. Dulubova I, Horiuchi A, Snyder GL, et al. ARPP-16/ARPP-19: a highly conserved family of cAMP-regulated phosphoproteins. J Neurochem 2001;77:229–238.

    Article  PubMed  CAS  Google Scholar 

  48. Irwin N, Chao S, Gorichenko L, et al. Nerve growth factor controls GAP-43 mRNA stability via the phosphoprotein ARPP-19. Proc Natl Acad Sci 2002;99:12,427–12,431.

    Article  PubMed  CAS  Google Scholar 

  49. Heron L, Virsolvy A, Apiou F, Le Cam A, Bataille D. Isolation, characterization, and chromosomal localization of the human ENSA gene that encodes alpha-endosulfine, a regulator of beta-cell KATP channels. Diabetes 1999;48:1873–1876.

    Article  PubMed  CAS  Google Scholar 

  50. Bataille D, Heron L, Virsolvy A, et al. α-Endosulfine, a new entity in the control of insulin secretion. Cell Mol Life Sci 1999;56:78–84.

    Article  PubMed  CAS  Google Scholar 

  51. Gros L, Breant B, Duchene B, et al. Localization of α-endosulfine in pancreatic somatostatin 8-cells and expression during rat pancreas development. Diabetologia 2002;45:703–710.

    Article  PubMed  CAS  Google Scholar 

  52. Kim SH Lubec G. Brain a-endosulfine is manifold decreased in brains from patients with Alzheimer’s disease: a tentative marker and drug target? Neurosci Lett 2001;310:77–80.

    Article  PubMed  CAS  Google Scholar 

  53. Yee J, Cortes P, Barnes JL, Alviani R, Biederman JI, Szamosfalvi B. Rat mesangial a-endosulfine. Kid Int 2004;65:1731–1739.

    Article  CAS  Google Scholar 

  54. Yee J, Szamosfalvi B. A New Mesangial Triumvirate: Sulfonylureas, Their Receptors and Endosulfines Exp Neph 2002;10:1–6.

    CAS  Google Scholar 

  55. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853.

    Article  Google Scholar 

  56. Klein R, Klein BEK, Moss SE, Cruickshanks K. Ten-year incidence of gross proteinuria in people with diabetes. Diabetes 1995;44:916–923.

    Article  PubMed  CAS  Google Scholar 

  57. Carpenter A-M, Goetz FC, LeCompte PM, Williamson JR. Glomerulosclerosis in type 2 (non-insulin-dependent) diabetes mellitus: relationship to glycemia in the University Group Diabetes Program (UGDP). Diabetologia 1993;36:1057–1063.

    Article  PubMed  CAS  Google Scholar 

  58. Biederman J, Vera E, Pankhaniya R, et al. Effects of sulfonylureas, a-endosulfine counterparts, on glomerulosclerosis in type 1 and type 2 models of diabetes. Kid Int 2005;67:554–565.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yee, J., Szamosfalvi, B. (2006). α-Endosulfine in Diabetic Nephropathy. In: Cortes, P., Mogensen, C.E. (eds) The Diabetic Kidney. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-153-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-153-6_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-624-5

  • Online ISBN: 978-1-59745-153-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics