Skip to main content
  • 1202 Accesses

Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a major cause of death around the world. Diseases caused by nontuberculous mycobacteria are increasingly associated with immunocompromised individuals. The availability of whole-genome sequences of mycobacterial species in the past several years has revolutionized TB research. This chapter provides an overview of the biology of mycobacteria and the diseases that they cause, with emphasis on how recent advances in genomics have improved our knowledge of the lifestyle and phylogeny of these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cornet, G. (1904) Tuberculosis and Acute General Miliary Tuberculosis. W.B. Sauders and Co., Philadelphia.

    Google Scholar 

  2. World Health Organization. Stop TB Annual Report. (2001) World Health Organization, Geneva, Switzerland.

    Google Scholar 

  3. World Health Organization (2002) Leprosy. Global situation. Wkly. Epidemiol. Rec. 77, 1–8.

    Google Scholar 

  4. Cocito, C., Gilot, P., Coene, M., de Kesel, M., Poupart, P., and Vannuffel, P. (1994) Paratuberculosis. Clin. Microbiol. Rev. 7, 328–345.

    PubMed  CAS  Google Scholar 

  5. Cole, S. T., Brosch, R., Parkhill, J., et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.

    Article  PubMed  CAS  Google Scholar 

  6. Garnier, T., Eiglmeier, K., Camus, J. C., et al. (2003) The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA 100, 7877–7882.

    Article  PubMed  CAS  Google Scholar 

  7. Cole, S. T., Eiglmeier, K., Parkhill, J., et al. (2001) Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  8. Fleischmann, R. D., Alland, D., Eisen, J. A., et al. (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184, 5479–5490.

    Article  PubMed  CAS  Google Scholar 

  9. Harmsen, D., Dostal, S., Roth, A., et al. (2003) RIDOM: comprehensive and public sequence database for identification of Mycobacterium species. BMC. Infect. Dis. 3, 26.

    Article  PubMed  Google Scholar 

  10. Primm, T. P., Lucero, C. A., and Falkinham, J. O. (2004) Health impacts of environmental mycobacteria. Clin. Microbiol. Rev. 17, 98–106.

    Article  PubMed  Google Scholar 

  11. Wayne, L. G. and Sramek, H. A. (1992) Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin. Microbiol. Rev. 5, 1–25.

    PubMed  CAS  Google Scholar 

  12. Wolinsky, E. (1992) Mycobacterial diseases other than tuberculosis. Clin. Infect. Dis. 15, 1–10.

    PubMed  CAS  Google Scholar 

  13. Tortoli, E. (2003) Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin. Microbiol. Rev. 16, 319–354.

    Article  PubMed  CAS  Google Scholar 

  14. Roth, A., Fischer, M., Hamid, M. E., Michalke, S., Ludwig, W., and Mauch, H. (1998) Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J. Clin. Microbiol. 36, 139–147.

    PubMed  CAS  Google Scholar 

  15. Cloud, J. L., Neal, H., Rosenberry, R., et al. (2002) Identification of Mycobacterium spp. by using a commercial 16S ribosomal DNA sequencing kit and additional sequencing libraries. J. Clin. Microbiol. 40, 400–406.

    Article  PubMed  CAS  Google Scholar 

  16. Koch, R. (1882) Die Aetiologie der Tuberkulose. Berliner Klinischen Wochenschrift. 15, 221–230.

    Google Scholar 

  17. Salo, W. L., Aufderheide, A. C., Buikstra, J., and Holcomb, T. A. (1994) Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc. Natl. Acad. Sci. USA 91, 2091–2094.

    Article  PubMed  CAS  Google Scholar 

  18. Zink, A. R., Sola, C., Reischl, U., et al. (2003) Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J. Clin. Microbiol. 41, 359–367.

    Article  PubMed  CAS  Google Scholar 

  19. Dye, C., Scheele, S., Dolin, P., Pathania, V., and Raviglione, M. C. (1999) Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282, 677–686.

    Article  PubMed  CAS  Google Scholar 

  20. World Health Organization. Global Tuberculosis Control: Surveillance, Planning, Financing. WHO Report 2004. (2004) World Health Organization, Geneva, Switzerland.

    Google Scholar 

  21. Gazzard, B. (2001) Tuberculosis, HIV and the developing world. Clin. Med. 1, 62–68.

    PubMed  CAS  Google Scholar 

  22. Porter, J. D. (1996) Mycobacteriosis and HIV infection: the new public health challenge. J. Antimicrob. Chemother. 37, 113–120.

    PubMed  CAS  Google Scholar 

  23. Cosma, C. L., Sherman, D. R., and Ramakrishnan, L. (2003) The secret lives of the pathogenic mycobacteria. Annu. Rev. Microbiol. 57, 641–676.

    Article  PubMed  CAS  Google Scholar 

  24. Smith, I. (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16, 463–496.

    Article  PubMed  CAS  Google Scholar 

  25. Amer, A. O. and Swanson, M. S. (2002) A phagosome of one’s own: a microbial guide to life in the macrophage. Curr. Opin. Microbiol. 5, 56–61.

    Article  PubMed  CAS  Google Scholar 

  26. Deretic, V. and Fratti, R. A. (1999) Mycobacterium tuberculosis phagosome. Mol. Microbiol. 31, 1603–1609.

    Article  PubMed  CAS  Google Scholar 

  27. Stewart, G. R., Robertson, B. D., and Young, D. B. (2003) Tuberculosis: a problem with persistence. Nat. Rev. Microbiol. 1, 97–105.

    Article  PubMed  CAS  Google Scholar 

  28. Wayne, L. G. (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur. J. Clin. Microbiol. Infect. Dis. 13, 908–914.

    Article  PubMed  CAS  Google Scholar 

  29. Lawn, S. D., Butera, S. T., and Shinnick, T. M. (2002) Tuberculosis unleashed: the impact of human immunodeficiency virus infection on the host granulomatous response to Mycobacterium tuberculosis. Microbes. Infect. 4, 635–646.

    Article  PubMed  CAS  Google Scholar 

  30. Espinal, M. A. (2003) The global situation of MDR-TB. Tuberculosis 83, 44–51.

    Article  PubMed  Google Scholar 

  31. Mukherjee, J. S., Rich, M. L., Socci, A. R., et al. (2004) Programmes and principles in treatment of multidrug-resistant tuberculosis. Lancet 363, 474–481.

    Article  PubMed  Google Scholar 

  32. Nachega, J. B. and Chaisson, R. E. (2003) Tuberculosis drug resistance: a global threat. Clin. Infect. Dis. 36, S24–S30.

    Article  PubMed  CAS  Google Scholar 

  33. Valway, S. E., Sanchez, M. P., Shinnick, T. F., et al. (1998) An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N. Engl. J. Med. 338, 633–639.

    Article  PubMed  CAS  Google Scholar 

  34. Glynn, J. R., Whiteley, J., Bifani, P. J., Kremer, K., and van Soolingen, D. (2002) Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg. Infect. Dis. 8, 843–849.

    PubMed  Google Scholar 

  35. van Soolingen, D., Qian, L., de Haas, P. E., et al. (1995) Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J. Clin. Microbiol. 33, 3234–3238.

    PubMed  Google Scholar 

  36. Tsolaki, A. G., Hirsh, A. E., DeRiemer, K., et al. (2004) Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc. Natl. Acad. Sci. USA 101, 4865–4870.

    Article  PubMed  CAS  Google Scholar 

  37. Perna, N. T., Plunkett, G., Burland, V., et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533.

    Article  PubMed  CAS  Google Scholar 

  38. Sreevatsan, S., Pan, X., Stockbauer, K. E., et al. (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionary recent global dissemination. Proc. Natl. Acad. Sci. USA 94, 9869–9874.

    Article  PubMed  CAS  Google Scholar 

  39. Barnes, P. F. and Cave, M. D. (2003) Molecular epidemiology of tuberculosis. N. Engl. J. Med. 349, 1149–1156.

    Article  PubMed  CAS  Google Scholar 

  40. van Soolingen, D. (2001) Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J. Intern. Med. 249, 1–26.

    Article  PubMed  Google Scholar 

  41. Mostrom, P., Gordon, M., Sola, C., Ridell, M., and Rastogi, N. (2002) Methods used in the molecular epidemiology of tuberculosis. Clin. Microbiol. Infect. 8, 694–704.

    Article  PubMed  CAS  Google Scholar 

  42. Brosch, R., Gordon, S. V., Marmiesse, M., et al. (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. USA 99, 3684–3689.

    Article  PubMed  CAS  Google Scholar 

  43. Gutacker, M. M., Smoot, J. C., Migliaccio, C. A., et al. (2002) Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. Genetics 162, 1533–1543.

    PubMed  CAS  Google Scholar 

  44. Mostowy, S., Cousins, D., Brinkman, J., Aranaz, A., and Behr, M. A. (2002) Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J. Infect. Dis. 186, 74–80.

    Article  PubMed  CAS  Google Scholar 

  45. Mostowy, S., Onipede, A., Gagneux, S., et al. (2004) Genomic analysis distinguishes Mycobacterium africanum. J. Clin. Microbiol. 42, 3594–3599.

    Article  PubMed  CAS  Google Scholar 

  46. Mostowy, S., Cousins, D., and Behr, M. A. (2004) Genomic interrogation of the dassie bacillus reveals it as a unique RD1 mutant within the Mycobacterium tuberculosis complex. J. Bacteriol. 186, 104–109.

    Article  PubMed  CAS  Google Scholar 

  47. Chen, J. M., Alexander, D. C., Behr, M. A., and Liu, J. (2003) Mycobacterium bovis BCG vaccines exhibit defects in alanine and serine catabolism. Infect. Immun. 71, 708–716.

    Article  PubMed  CAS  Google Scholar 

  48. Behr, M. A. and Small, P. M. (1999) A historical and molecular phylogeny of BCG strains. Vaccine 17, 915–922.

    Article  PubMed  CAS  Google Scholar 

  49. Crispen, R. (1989) History of BCG and its substrains. Prog. Clin. Biol. Res. 310, 35–50

    PubMed  CAS  Google Scholar 

  50. Behr, M. A. and Small, P. M. (1997) Has BCG attenuated to impotence? Nature 389, 133–134.

    Article  PubMed  CAS  Google Scholar 

  51. Brewer, T. F. and Colditz, G. A. (1995) Relationship between bacille Calmette-Guerin (BCG) strains and the efficacy of BCG vaccine in the prevention of tuberculosis. Clin. Infect. Dis. 20, 126–135.

    PubMed  CAS  Google Scholar 

  52. Brandt, L., Feino, C. J., Weinreich, O. A., et al. (2002) Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect. Immun. 70, 672–678.

    Article  PubMed  CAS  Google Scholar 

  53. Buddle, B. M., Wards, B. J., Aldwell, F. E., Collins, D. M., and de Lisle, G. W. (2002) Influence of sensitisation to environmental mycobacteria on subsequent vaccination against bovine tuberculosis. Vaccine 20, 1126–1133.

    Article  PubMed  Google Scholar 

  54. Behr, M. A., Wilson, M. A., Gill, W. P., et al. (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284, 1520–1523.

    Article  PubMed  CAS  Google Scholar 

  55. Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C., and Stover, C. K. (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274–1282.

    PubMed  CAS  Google Scholar 

  56. Lewis, K. N., Liao, R., Guinn, K. M., et al. (2003) Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J. Infect. Dis. 187, 117–123.

    Article  PubMed  Google Scholar 

  57. Pym, A. S., Brodin, P., Brosch, R., Huerre, M., and Cole, S. T. (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol. 46, 709–717.

    Article  PubMed  CAS  Google Scholar 

  58. Mostowy, S., Tsolaki, A. G., Small, P. M., and Behr, M. A. (2003) The in vitro evolution of BCG vaccines. Vaccine 21, 4270–4274.

    Article  PubMed  CAS  Google Scholar 

  59. Doherty, T. M. and Andersen, P. (2002) Tuberculosis vaccine development. Curr. Opin. Pulm. Med. 8, 183–187.

    Article  PubMed  Google Scholar 

  60. Kumar, H., Malhotra, D., Goswami, S., and Bamezai, R. N. (2003) How far have we reached in tuberculosis vaccine development? Crit. Rev. Microbiol. 29, 297–312.

    Article  PubMed  CAS  Google Scholar 

  61. Young, D. B. and Stewart, G. R. (2002) Tuberculosis vaccines. Br. Med. Bull. 62, 73–86.

    Article  PubMed  Google Scholar 

  62. Horwitz, M. A. and Harth, G. (2003) A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect. Immun. 71, 1672–1679.

    Article  PubMed  CAS  Google Scholar 

  63. Pym, A. S., Brodin, P., Majlessi, L., et al. (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 9, 533–539.

    Article  PubMed  CAS  Google Scholar 

  64. Stover, C. K., Bansal, G. P., Hanson, M. S., et al. (1993) Protective immunity elicited by recombinant bacille Calmette-Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate Lyme disease vaccine. J. Exp. Med. 178, 197–209.

    Article  PubMed  CAS  Google Scholar 

  65. Stover, C. K., de la Cruz, V. F., Fuerst, T. R., et al. (1991) New use of BCG for recombinant vaccines. Nature 351, 456–460.

    Article  PubMed  CAS  Google Scholar 

  66. Varaldo, P. B., Leite, L. C., Dias, W. O., et al. (2004) Recombinant Mycobacterium bovis BCG expressing the Sm14 antigen of Schistosoma mansoni protects mice from cercarial challenge. Infect. Immun. 72, 3336–3343.

    Article  PubMed  CAS  Google Scholar 

  67. Shelley, M. D., Court, J. B., Kynaston, H., et al. (2004) Intravesical Bacillus Calmette-Guerin in Ta and T1 Bladder Cancer. In: The Cochrane Library 4, John Wiley and Sons, Ltd, Chichester, UK.

    Google Scholar 

  68. Hansen, G. H. A. (1875) On the etiology of leprosy. Br. J. Foreign Med. Chir. Rev. 55, 459–489.

    Google Scholar 

  69. Brennan, P. J. and Vissa, V. D. (2001) Genomic evidence for the retention of the essential mycobacterial cell wall in the otherwise defective Mycobacterium leprae. Lepr. Rev. 72, 415–428.

    PubMed  CAS  Google Scholar 

  70. Behr, M. A., Schroeder, B. G., Brinkman, J. N., Slayden, R. A., and Barry, C. E. (2000) A point mutation in the mma3 gene is responsible for impaired methoxymycolic acid production in Mycobacterium bovis BCG strains obtained after 1927. J. Bacteriol. 182, 3394–3399.

    Article  PubMed  CAS  Google Scholar 

  71. Groathouse, N. A., Rivoire, B., Kim, H., et al. (2004) Multiple polymorphic loci for molecular typing of strains of Mycobacterium leprae. J. Clin. Microbiol. 42, 1666–1672.

    Article  PubMed  CAS  Google Scholar 

  72. Shin, Y. C., Lee, H., Walsh, G. P., Kim, J. D., and Cho, S. N. (2000) Variable numbers of TTC repeats in Mycobacterium leprae DNA from leprosy patients and use in strain differentiation. J. Clin. Microbiol. 38, 4535–4538.

    PubMed  CAS  Google Scholar 

  73. Chacon, O., Bermudez, L. E., and Barletta, R. G. (2004) Johne’s disease, inflammatory bowel disease, and Mycobacterium paratuberculosis. Annu. Rev. Microbiol. 58, 329–363.

    Article  PubMed  CAS  Google Scholar 

  74. Greenstein, R. J. (2003) Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet Infect. Dis. 3, 507–514.

    Article  PubMed  Google Scholar 

  75. Hermon-Taylor, J. and Bull, T. (2002) Crohn’s disease caused by Mycobacterium avium subspecies paratuberculosis: a public health tragedy whose resolution is long overdue. J. Med. Microbiol. 51, 3–6.

    PubMed  Google Scholar 

  76. Novi, C., Rindi, L., Lari, N., and Garzelli, C. (2000) Molecular typing of Mycobacterium avium isolates by sequencing of the 16S-23S rDNA internal transcribed spacer and comparison with IS1245-based fingerprinting. J. Med. Microbiol. 49, 1091–1095.

    PubMed  CAS  Google Scholar 

  77. Krzywinska, E., Krzywinski, J., and Schorey, J. S. (2004) Naturally occurring horizontal gene transfer and homologous recombination in Mycobacterium. Microbiology 150, 1707–1712.

    Article  PubMed  CAS  Google Scholar 

  78. Whittington, R. J., Marshall, D. J., Nicholls, P. J., Marsh, I. B., and Reddacliff, L. A. (2004) Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl. Environ. Microbiol. 70, 2989–3004.

    Article  PubMed  CAS  Google Scholar 

  79. Falkinham, J. O., Norton, C. D., and LeChevallier, M. W. (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinking water distribution systems. Appl. Environ. Microbiol. 67, 1225–1231.

    Article  PubMed  CAS  Google Scholar 

  80. Skriwan, C., Fajardo, M., Hagele, S., et al. (2002) Various bacterial pathogens and symbionts infect the amoeba Dictyostelium discoideum. Int. J. Med. Microbiol. 291, 615–624.

    Article  PubMed  Google Scholar 

  81. Semret, M., Zhai, G., Mostowy, S., et al. (2004) Extensive genomic polymorphism within Mycobacterium avium. J. Bacteriol. 186, 6332–6334.

    Article  PubMed  CAS  Google Scholar 

  82. Bull, T. J., Hermon-Taylor, J., Pavlik, I., El-Zaatari, F., and Tizard, M. (2000) Characterization of IS900 loci in Mycobacterium avium subsp. paratuberculosis and development of multiplex PCR typing. Microbiology 146, 2185–2197.

    PubMed  CAS  Google Scholar 

  83. Amonsin, A., Li, L. L., Zhang, Q., et al. (2004) Multilocus short sequence repeat sequencing approach for differentiating among Mycobacterium avium subsp. paratuberculosis strains. J. Clin. Microbiol. 42, 1694–1702.

    Article  PubMed  CAS  Google Scholar 

  84. Dohmann, K., Strommenger, B., Stevenson, K., et al. (2003) Characterization of genetic differences between Mycobacterium avium subsp. paratuberculosis type I and type II isolates. J. Clin. Microbiol. 41, 5215–5223.

    Article  PubMed  CAS  Google Scholar 

  85. Motiwala, A. S., Strother, M., Amonsin, A., et al. (2003) Molecular epidemiology of Mycobacterium avium subsp. paratuberculosis: evidence for limited strain diversity, strain sharing, and identification of unique targets for diagnosis. J. Clin. Microbiol. 41, 2015–2026.

    Article  PubMed  CAS  Google Scholar 

  86. Bannantine, J. P., Hansen, J. K., Paustian, M. L., et al. (2004) Expression and immunogenicity of proteins encoded by sequences specific to Mycobacterium avium subsp. paratuberculosis. J. Clin. Microbiol. 42, 106–114.

    Article  PubMed  CAS  Google Scholar 

  87. van der Werf, T. S., Stinear, T., Stienstra, Y., van der Graaf, W. T., and Small, P. L. (2003) Mycolactones and Mycobacterium ulcerans disease. Lancet 362, 1062–1064.

    Article  PubMed  CAS  Google Scholar 

  88. MacCallum, P., Tolhurst, J. C., Buckle, G., and Sissons, H. A. (1948) A new mycobacterial infection in man. J. Pathol. Bacteriol. 60, 93–122.

    Article  PubMed  CAS  Google Scholar 

  89. Clancey, J. K. (1964) Mycobacterial skin ulcers in Uganda: description of a new mycobacterium (Mycobacterium Buruli). J. Pathol. Bacteriol. 88, 175–187.

    Article  PubMed  CAS  Google Scholar 

  90. Decostere, A., Hermans, K., and Haesebrouck, F. (2004) Piscine mycobacteriosis: a literature review covering the agent and the disease it causes in fish and humans. Vet. Microbiol. 99, 159–166.

    Article  PubMed  CAS  Google Scholar 

  91. Stinear, T. P., Mve-Obiang, A., Small, P. L., et al. (2004) Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc. Natl. Acad. Sci. USA 101, 1345–1349.

    Article  PubMed  CAS  Google Scholar 

  92. Gao, L. Y., Guo, S., McLaughlin, B., Morisaki, H., Engel, J. N., and Brown, E. J. (2004) A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol. Microbiol. 53, 1677–1693.

    Article  PubMed  CAS  Google Scholar 

  93. Chan, K., Knaak, T., Satkamp, L., Humbert, O., Falkow, S., and Ramakrishnan, L. (2002) Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection. Proc. Natl. Acad. Sci. USA 99, 3920–3925.

    Article  PubMed  CAS  Google Scholar 

  94. Ramakrishnan, L. and Falkow, S. (1994) Mycobacterium marinum persists in cultured mammalian cells in a temperature-restricted fashion. Infect. Immun. 62, 3222–3229.

    PubMed  CAS  Google Scholar 

  95. Ramakrishnan, L., Federspiel, N. A., and Falkow, S. (2000) Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439.

    Article  PubMed  CAS  Google Scholar 

  96. Ramakrishnan, L., Valdivia, R. H., McKerrow, J. H., and Falkow, S. (1997) Mycobacterium marinum causes both long-term subclinical infection and acute disease in the leopard frog (Rana pipiens). Infect. Immun. 65, 767–773.

    PubMed  CAS  Google Scholar 

  97. Andrew, P. W. and Roberts, I. S. (1993) Construction of a bioluminescent mycobacterium and its use for assay of antimycobacterial agents. J. Clin. Microbiol. 31, 2251–2254.

    PubMed  CAS  Google Scholar 

  98. Mayuri, Bagchi, G., Das, T. K., and Tyagi, J. S. (2002) Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR-DevS two-component system, Rv3134c and chaperone alpha-crystallin homologues. FEMS Microbiol. Lett. 211, 231–237.

    PubMed  CAS  Google Scholar 

  99. Triccas, J. A., Parish, T., Britton, W. J., and Gicquel, B. (1998) An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol. Lett. 167, 151–156.

    Article  PubMed  CAS  Google Scholar 

  100. Wei, J., Dahl, J. L., Moulder, J. W., et al. (2000) Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages. J. Bacteriol. 182, 377–384.

    Article  PubMed  CAS  Google Scholar 

  101. Gardner, G. M. and Weiser, R. S. (1947) A bacteriophage for Mycobacterium smegmatis. Proc. Soc. Exp. Biol. Med. 66, 205–206.

    Google Scholar 

  102. Bardarov, S. J., Dou, H., Eisenach, K., et al. (2003) Detection and drug-susceptibility testing of M. tuberculosis from sputum samples using luciferase reporter phage: comparison with the Mycobacteria Growth Indicator Tube (MGIT) system. Diagn. Microbiol. Infect. Dis. 45, 53–61.

    Article  PubMed  CAS  Google Scholar 

  103. Carriere, C., Riska, P. F., Zimhony, O., et al. (1997) Conditionally replicating luciferase reporter phages: improved sensitivity for rapid detection and assessment of drug susceptibility of Mycobacterium tuberculosis. J. Clin. Microbiol. 35, 3232–3239.

    PubMed  CAS  Google Scholar 

  104. Hazbon, M. H., Guarin, N., Ferro, B. E., et al. (2003) Photographic and luminometric detection of luciferase reporter phages for drug susceptibility testing of clinical Mycobacterium tuberculosis isolates. J. Clin. Microbiol. 41, 4865–4869.

    Article  PubMed  CAS  Google Scholar 

  105. Riska, P. F. and Jacobs, W. R. Jr. (1998) The use of luciferase-reporter phage for antibiotic-susceptibility testing of mycobacteria. Methods Mol. Biol. 101, 431–455.

    PubMed  CAS  Google Scholar 

  106. Riska, P. F., Su, Y., Bardarov, S., et al. (1999) Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. J. Clin. Microbiol. 37, 1144–1149.

    PubMed  CAS  Google Scholar 

  107. Bardarov, S., Bardarov, J. S. J., Pavelka, J. M. J., et al. (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148, 3007–3017.

    PubMed  CAS  Google Scholar 

  108. Bardarov, S., Kriakov, J., Carriere, C., et al. (1997) Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94, 10,961–10,966.

    Article  PubMed  CAS  Google Scholar 

  109. Jacobs, W. R. Jr., Snapper, S. B., Tuckman, M., and Bloom, B. R. (1989) Mycobacteriophage vector systems. Rev. Infect. Dis. 11, S404–S410.

    PubMed  CAS  Google Scholar 

  110. Pearson, R. E., Jurgensen, S., Sarkis, G. J., Hatfull, G. F., and Jacobs, W. R. J. (1996) Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria. Gene 183, 129–136.

    Article  PubMed  CAS  Google Scholar 

  111. Jacobs, W. R. J., Tuckman, M., and Bloom, B. R. (1987) Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327, 532–535.

    Article  PubMed  CAS  Google Scholar 

  112. Pedulla, M. L., Ford, M. E., Houtz, J. M., et al. (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171–182.

    Article  PubMed  CAS  Google Scholar 

  113. Hendrix, R. W., Smith, M. C., Burns, R. N., Ford, M. E., and Hatfull, G. F. (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. USA 96, 2192–2197.

    Article  PubMed  CAS  Google Scholar 

  114. Hatfull, G. F. and Sarkis, G. J. (1993) DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol. Microbiol. 7, 395–405.

    Article  PubMed  CAS  Google Scholar 

  115. Ford, M. E., Sarkis, G. J., Belanger, A. E., Hendrix, R. W., and Hatfull, G. F. (1998) Genome structure of mycobacteriophage D29: implications for phage evolution. J. Mol. Biol. 279, 143–164.

    Article  PubMed  CAS  Google Scholar 

  116. Ford, M. E., Stenstrom, C., Hendrix, R. W., and Hatfull, G. F. (1998) Mycobacteriophage TM4: genome structure and gene expression. Tuber. Lung Dis. 79, 63–73.

    Article  PubMed  CAS  Google Scholar 

  117. Mediavilla, J., Jain, S., Kriakov, J., et al. (2000) Genome organization and characterization of mycobacteriophage Bxb1. Mol. Microbiol. 38, 955–970.

    Article  PubMed  CAS  Google Scholar 

  118. Marmiesse, M., Brodin, P., Buchrieser, C., et al. (2004) Macro-array and bioinformatic analyses reveal mycobacterial ‘core’ genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiology 150, 483–496.

    Article  PubMed  CAS  Google Scholar 

  119. Brennan, P. J. (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 83, 91–97.

    Article  PubMed  CAS  Google Scholar 

  120. Brennan, P. J. and Nikaido, H. (1995) The envelope of mycobacteria. Ann. Rev. Biochem. 64, 29–63.

    Article  PubMed  CAS  Google Scholar 

  121. Liu, J. and Nikaido, H. (1999) A mutant in Mycobacterium smegmatis defective in the biosynthesis of mycolic acids accumulates meromycolates. Proc. Natl. Acad. Sci. USA 96, 4011–4016.

    Article  PubMed  CAS  Google Scholar 

  122. Kolattukudy, P. E., Fernandes, N. D., Azad, A. K., Fitzmaurice, A. M., and Sirakova, T. D. (1997) Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol. Microbiol. 24, 263–270.

    Article  PubMed  CAS  Google Scholar 

  123. Liu, J., Barry, C. E., Besra, G. S., and Nikaido, H. (1996) Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J. Biol. Chem. 271, 29,545–29,551.

    Article  PubMed  CAS  Google Scholar 

  124. Liu, J., Rosenberg, E. Y., and Nikaido, H. (1995) Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc. Natl. Acad. Sci. USA 92, 11,254–11,258.

    Article  PubMed  CAS  Google Scholar 

  125. Minnikin, D. E., Kremer, L., Dover, L. G., and Besra, G. S. (2002) The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol. 9, 545–553.

    Article  PubMed  CAS  Google Scholar 

  126. Cox, J. S., Chen, B., McNeil, M., and Jacobs, W. R. J. (1999) Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83.

    Article  PubMed  CAS  Google Scholar 

  127. Nigou, J., Gilleron, M., and Puzo, G. (2003) Lipoarabinomannans: from structure to biosynthesis. Biochimie 85, 153–166.

    Article  PubMed  CAS  Google Scholar 

  128. Adindla, S. and Guruprasad, L. (2003) Sequence analysis corresponding to the PPE and PE proteins in Mycobacterium tuberculosis and other genomes. J. Biosci. 28, 169–179.

    Article  PubMed  CAS  Google Scholar 

  129. Sampson, S. L., Lukey, P., Warren, R. M., van Helden, P. D., Richardson, M., and Everett, M. J. (2001) Expression, characterization and subcellular localization of the Mycobacterium tuberculosis PPE gene Rv1917c. Tuberculosis 81, 305–317.

    Article  PubMed  CAS  Google Scholar 

  130. Choudhary, R. K., Mukhopadhyay, S., Chakhaiyar, P., et al. (2003) PPE antigen Rv2430c of Mycobacterium tuberculosis induces a strong B-cell response. Infect. Immun. 71, 6338–6343.

    Article  PubMed  CAS  Google Scholar 

  131. Okkels, L. M., Brock, I., Follmann, F., et al. (2003) PPE protein (Rv3873) from DNA segment RD1 of Mycobacterium tuberculosis: strong recognition of both specific T-cell epitopes and epitopes conserved within the PPE family. Infect. Immun. 71, 6116–6123.

    Article  PubMed  CAS  Google Scholar 

  132. Zubrzycki, I. Z. (2004) Analysis of the products of genes encompassed by the theoretically predicted pathogenicity islands of Mycobacterium tuberculosis and Mycobacterium bovis. Proteins 54, 563–568.

    Article  PubMed  CAS  Google Scholar 

  133. Sassetti, C. M. and Rubin, E. J. (2003) Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA 100, 12,989–12,994.

    Article  PubMed  CAS  Google Scholar 

  134. Andersen, P., Andersen, A. B., Sorensen, A. L., and Nagai, S. (1995) Recall of longlived immunity to Mycobacterium tuberculosis infection in mice. J. Immunol. 154, 3359–3372.

    PubMed  CAS  Google Scholar 

  135. Berthet, F. X., Rasmussen, P. B., Rosenkrands, I., Andersen, P., and Gicquel, B. (1998) A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecularmass culture filtrate protein (CFP-10). Microbiology 144, 3195–3203.

    Article  PubMed  CAS  Google Scholar 

  136. Hsu, T., Hingley-Wilson, S. M., Chen, B., et al. (2003) The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl. Acad. Sci. USA 100, 12,420–12,425.

    Article  PubMed  CAS  Google Scholar 

  137. Sorensen, A. L., Nagai, S., Houen, G., Andersen, P., and Andersen, A. B. (1995) Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect. Immun. 63, 1710–1717.

    PubMed  CAS  Google Scholar 

  138. Okkels, L. M. and Andersen, P. (2004) Protein-protein interactions of proteins from the ESAT-6 family of Mycobacterium tuberculosis. J. Bacteriol. 186, 2487–2491.

    Article  PubMed  CAS  Google Scholar 

  139. Gey, V. P. N., Gamieldien, J., Hide, W., Brown, G. D., Siezen, R. J., and Beyers, A. D. (2001) The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Grampositive bacteria. Genome Biol. 2, 1–18.

    Google Scholar 

  140. van Pinxteren, L. A., Ravn, P., Agger, E. M., Pollock, J., and Andersen, P. (2000) Diagnosis of tuberculosis based on the two specific antigens ESAT-6 and CFP10. Clin. Diagn. Lab. Immunol. 7, 155–160.

    Article  PubMed  Google Scholar 

  141. Collins, D. M., Kawakami, R. P., Wards, B. J., Campbell, S., and de Lisle, G. W. (2003) Vaccine and skin testing properties of two avirulent Mycobacterium bovis mutants with and without an additional esat-6 mutation. Tuberculosis 83, 361–366.

    Article  PubMed  CAS  Google Scholar 

  142. Wards, B. J., de Lisle, G. W., and Collins, D. M. (2000) An esat6 knockout mutant of Mycobacterium bovis produced by homologous recombination will contribute to the development of a live tuberculosis vaccine. Tuber. Lung Dis. 80, 185–189.

    Article  PubMed  CAS  Google Scholar 

  143. Brandt, L., Elhay, M., Rosenkrands, I., Lindblad, E. B., and Andersen, P. (2000) ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect. Immun. 68, 791–795.

    Article  PubMed  CAS  Google Scholar 

  144. Mollenkopf, H. J., Groine-Triebkorn, D., Andersen, P., Hess, J., and Kaufmann, S. H. (2001) Protective efficacy against tuberculosis of ESAT-6 secreted by a live Salmonella typhimurium vaccine carrier strain and expressed by naked DNA. Vaccine 19, 4028–4035.

    Article  PubMed  CAS  Google Scholar 

  145. Mustafa, A. S. and Al-Attiyah, R. (2003) Tuberculosis: looking beyond BCG vaccines. J. Postgrad. Med. 49, 134–140.

    Google Scholar 

  146. Olsen, A. W., Hansen, P. R., Holm, A., and Andersen, P. (2000) Efficient protection against Mycobacterium tuberculosis by vaccination with a single subdominant epitope from the ESAT-6 antigen. Eur. J. Immunol. 30, 1724–1732.

    Article  PubMed  CAS  Google Scholar 

  147. Haile, Y., Caugant, D. A., Bjune, G., and Wiker, H. G. (2002) Mycobacterium tuberculosis mammalian cell entry operon (mce) homologs in Mycobacterium other than tuberculosis (MOTT). FEMS Immunol. Med. Microbiol. 33, 125–132.

    Article  PubMed  CAS  Google Scholar 

  148. Arruda, S., Bomfim, G., Knights, R., Huima-Byron, T., and Riley, L. W. (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261, 1454–1457.

    Article  PubMed  CAS  Google Scholar 

  149. Kumar, A., Bose, M., and Brahmachari, V. (2003) Analysis of expression profile of mammalian cell entry (mce) operons of Mycobacterium tuberculosis. Infect. Immun. 71, 6083–6087.

    Article  PubMed  CAS  Google Scholar 

  150. Das, A. K., Mitra, D., Harboe, M., et al. (2003) Predicted molecular structure of the mammalian cell entry protein Mce1A of Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 302, 442–447.

    Article  PubMed  CAS  Google Scholar 

  151. Chitale, S., Ehrt, S., Kawamura, I., et al. (2001) Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol. 3, 247–254.

    Article  PubMed  CAS  Google Scholar 

  152. Shimono, N., Morici, L., Casali, N., et al. (2003) Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc. Natl. Acad. Sci. USA 100, 15,918–15,923.

    Article  PubMed  CAS  Google Scholar 

  153. Mukamolova, G. V., Kaprelyants, A. S., Young, D. I., Young, M., and Kell, D. B. (1998) A bacterial cytokine. Proc. Natl. Acad. Sci. USA 95, 8916–8921.

    Article  PubMed  CAS  Google Scholar 

  154. Mukamolova, G. V., Turapov, O. A., Young, D. I., Kaprelyants, A. S., Kell, D. B., and Young, M. (2002) A family of autocrine growth factors in Mycobacterium tuberculosis. Mol. Microbiol. 46, 623–635.

    Article  PubMed  CAS  Google Scholar 

  155. Shleeva, M., Mukamolova, G. V., Young, M., Williams, H. D., and Kaprelyants, A. S. (2004) Formation of ‘non-culturable’ cells of Mycobacterium smegmatis in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation. Microbiology 150, 1687–1697.

    Article  PubMed  CAS  Google Scholar 

  156. Tufariello, J. M., Jacobs, W. R. Jr., and Chan, J. (2004) Individual Mycobacterium tuberculosis resuscitation-promoting factor homologues are dispensable for growth in vitro and in vivo. Infect. Immun. 72, 515–526.

    Article  PubMed  CAS  Google Scholar 

  157. Yeremeev, V. V., Kondratieva, T. K., Rubakova, E. I., et al. (2003) Proteins of the Rpf family: immune cell reactivity and vaccination efficacy against tuberculosis in mice. Infect. Immun. 71, 4789–4794.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Alexander, D.C., Liu, J. (2006). Mycobacterial Genomes. In: Chan, V.L., Sherman, P.M., Bourke, B. (eds) Bacterial Genomes and Infectious Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-152-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-152-9_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-496-8

  • Online ISBN: 978-1-59745-152-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics