Skip to main content

Abstract

Listeria monocytogenes is a Gram-positive, intracellular bacterial pathogen responsible for severe food-borne illnesses resulting in central nervous system infection or abortion. L. monocytogenes induces its own internalization into mammalian cells, escapes from the host cell phagosome, replicates extensively in the cytosol, and spreads from one host cell to another through an F-actin-dependent motility process. Previously, classical genetic approaches were used to identify bacterial virulence factors critical for the intracellular life cycle of L. monocytogenes. The recent availability of the nucleotide sequence of L. monocytogenes has provided the potential for global analysis of bacterial proteins that affect pathogenesis. In this chapter, ways in which the L. monocytogenes genome has been used to probe the functions of bacterial proteins in virulence is discussed. At the end of the chapter, future genomic- or proteomic-based approaches that might improve or expand on current work are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vazquez-Boland, J. A., Kuhn, M., Berche, P., et al. (2001) Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584–640.

    Article  PubMed  CAS  Google Scholar 

  2. Mead, P. S., Slutsker, L., Dietz, V., et al. (1999) Food-related illness and death in the United States. Emerg. Infec. Dis. 5, 607–625.

    Article  CAS  Google Scholar 

  3. Glaser, P., Frangeul, L., Buchrieser, C., et al. (2001) Comparative genomics of Listeria species. Science 294, 849–852.

    PubMed  CAS  Google Scholar 

  4. Tettelin, H. E., Saunders, N. J., Heidelberg, J., et al. (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815.

    Article  PubMed  CAS  Google Scholar 

  5. Parkhill, J., Achtman, M., James, D. D., et al. (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506.

    Article  PubMed  CAS  Google Scholar 

  6. Subtil, A. and Dautry-Varsat, A. (2004) Chlamydia: five years A.G. (after genome). Curr. Opin. Microbiol. 7, 85–92.

    Article  PubMed  CAS  Google Scholar 

  7. Dussurget, O., Pizarro-Cerda, J., and Cossart, P. (2004) Molecular determinants of Listeria monocytogenes virulence. Annu. Rev. Microbiol. 58, 587–610.

    Article  PubMed  CAS  Google Scholar 

  8. Pamer, E. (2004) Immune responses to Listeria monocytogenes. Nat. Rev. Immunol. 4, 812–823.

    Article  PubMed  CAS  Google Scholar 

  9. Tilney, L. G. and Portnoy, D. A. (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite Listeria monocytogenes. J. Cell Biol. 109, 1597–1608.

    Article  PubMed  CAS  Google Scholar 

  10. Cossart, P., Pizarro-Cerda, J., and Lecuit, M. (2003) Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol. 13, 23–31.

    Article  PubMed  CAS  Google Scholar 

  11. Schubert, W. D. and Heinz, D. W. (2003) Structural aspects of adhesion to and invasion of host cells by the human pathogen Listeria monocytogenes. Chembiochem. 4, 1285–1291.

    Article  PubMed  CAS  Google Scholar 

  12. Mengaud, J., Ohayon, H., Gounon, P., Mège, R. M., and Cossart, P. (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of Listeria monocytogenes into epithelial cells. Cell 84, 923–932.

    Article  PubMed  CAS  Google Scholar 

  13. Shen, Y., Naujokas, M., Park, M., and Ireton, K. (2000) InlB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103, 501–510.

    Article  PubMed  CAS  Google Scholar 

  14. Cossart, P. and Sansonetti, P. J. (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248.

    Article  PubMed  CAS  Google Scholar 

  15. Sun, H., Shen, Y., Dokainish, H., Holgado-Madruga, M., Wong, A., and Ireton, K. (2005) Host adaptor proteins Gab1 and CrkII promote InlB-dependent entry of Listeria monocytogenes. Cell Microbiol. 7, 443–457.

    Article  PubMed  CAS  Google Scholar 

  16. Portnoy, D. A., Auerbuch, V., and Glomski, I. J. (2002) The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol. 158, 409–414.

    Article  PubMed  CAS  Google Scholar 

  17. Marquis, H., Doshi, V., and Portnoy, D. A. (1995) The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect. Immun. 63, 4531–4534.

    PubMed  CAS  Google Scholar 

  18. Smith, G. A., Marquis, H., Jones, S., Johnston, N. C., Portnoy, D. A., and Goldfine, H. (1995) The two distinct phospholipases C of Listeria monocytogenes have ovelapping roles in escape from a vacuole and cell-to-cell spread. Infec. Immun. 63, 4231–4237.

    CAS  Google Scholar 

  19. Gedde, M. M., Higgins, D. E., Tilney, L. G., and Portnoy, D. A. (2000) Role of Listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect. Immun. 68, 999–1003.

    Article  PubMed  CAS  Google Scholar 

  20. Kreft, J. and Vazquez-Boland, J. A. (2001) Regulation of virulence genes in Listeria. Int. J. Med. Microbiol. 291, 145–157.

    Article  PubMed  CAS  Google Scholar 

  21. Milohanic, E., Glaser, P., Coppee, J.-Y., et al. (2003) Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol. 47, 1613–1625.

    Article  PubMed  CAS  Google Scholar 

  22. Drevets, D. A., Leenen, P. J. M., and Greenfield, R. A. (2004) Invasion of the central nervous system by intracellular bacteria. Clin. Microbiol. Rev. 17, 323–347.

    Article  PubMed  CAS  Google Scholar 

  23. Lecuit, M., Vandormael-Pournin, S., Lefort, J., et al. (2001) A transgenic model for Listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–1725.

    Article  PubMed  CAS  Google Scholar 

  24. Dramsi, S., Biswas, I., Maguin, E., Braun, L., Mastroeni, P., and Cossart, P. (1995) Entry of L. monocytogenes into hepatocytes requires expression of InlB, a surface protein of the internalin multigene family. Mol. Microbiol. 16, 251–261.

    Article  PubMed  CAS  Google Scholar 

  25. Gaillard, J. L., Jaubert, F., and Berche, P. (1996) The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo. J. Exp. Med. 183, 359–369.

    Article  PubMed  CAS  Google Scholar 

  26. Join-Lambert, O. F., Ezine, S., Le Monnier, A., et al. (2005) Listeria monocytogenes infected bone marrow myeloid cells promote bacterial invasion of the central nervous system. Cell Microbiol. 7, 167–180.

    Article  PubMed  CAS  Google Scholar 

  27. Lecuit, M., Nelson, D. M., Smith, S. D., et al. (2004) Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: Role of internalin interaction with trophoblast E-cadherin. Proc. Natl. Acad. Sci. USA 101, 6142–6157.

    Article  CAS  Google Scholar 

  28. Bakardjiev, A. I., Stacy, B. A., Fisher, S. J., and Portnoy, D. A. (2004) Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infect. Immun. 72, 489–497.

    Article  PubMed  CAS  Google Scholar 

  29. Dramsi, S., Dehoux, P., Lebrun, M., Goossens, P. L., and Cossart, P. (1997) Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect. Immun. 65, 1615–1625.

    PubMed  CAS  Google Scholar 

  30. Raffelsbauer, D., Bubert, A., Engelbrecht, F., et al. (1998) The gene cluster inlC2DE of Listeria monocytogenes contains additional new internalin genes and is important for virulence in mice. Mol. Gen. Genet. 260, 144–158.

    Article  PubMed  CAS  Google Scholar 

  31. Engelbrecht, F., Chun, S.-K., Ochs, C., et al. (1996) A new PrfA-regulated gene of Listeria monocytogenes encoding a small, secreted protein which belongs to the family of internalins. Mol. Microbiol. 21, 823–837.

    Article  PubMed  CAS  Google Scholar 

  32. Glaser, P., Frangeul, L., Buchreiser, C., et al. (2001) Comparative genomics of Listeria species. Science 294, 849–852.

    PubMed  CAS  Google Scholar 

  33. Cabanes, D., Dehoux, P., Dussurget, O., Frangeul, L., and Cossart, P. (2002) Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 10, 238–245.

    Article  PubMed  CAS  Google Scholar 

  34. Kobe, B. and Kajava, A. V. (2001) The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725–732.

    Article  PubMed  CAS  Google Scholar 

  35. Schubert, W. D., Gobel, G., Diepholz, M., et al. (2001) Internalins from the human pathogen Listeria monocytogenes combine three distinct folds into a contiguous internalin domain. J. Mol. Biol. 312, 783–794.

    Article  PubMed  CAS  Google Scholar 

  36. Doumith, M., Cazalet, C., Simoes, N., et al. (2004) New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72, 1072–1083.

    Article  PubMed  CAS  Google Scholar 

  37. Nelson, K. E., Fouts, D. E., Mongodin, E. F., et al. (2004) Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucl. Acids Res. 32, 2386–2395.

    Article  PubMed  CAS  Google Scholar 

  38. Kathariou, S. (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J. Food Prot. 65, 1811–1829.

    PubMed  Google Scholar 

  39. Mori, H. and Ito, K. (2001) The Sec protein-translocation pathway. Trends Microbiol. 9, 494–500.

    Article  PubMed  CAS  Google Scholar 

  40. Lenz, L. L. and Portnoy, D. A. (2002) Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol. Microbiol. 45, 1043–1056.

    Article  PubMed  CAS  Google Scholar 

  41. Lenz, L. L., Mohammadi, S., Geissler, A., and Portnoy, D. A. (2003) SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc. Natl. Acad. Sci. USA 100, 12,432–12,437.

    Article  PubMed  CAS  Google Scholar 

  42. Dramsi, S., Bourdichon, F., Cabanes, D., Lecuit, M., Fsihi, H., and Cossart, P. (2004) FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol. Microbiol. 53, 639–649.

    Article  PubMed  CAS  Google Scholar 

  43. Ton-That, H., Marraffini, L. A., and Schneewind, O. (2004) Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochem. Biophys. Acta 1694, 269–278.

    Article  PubMed  CAS  Google Scholar 

  44. Mazmanian, S. K., Ton-That, H., Su, K., and Schneewind, O. (2002) An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc. Natl. Acad. Sci. USA 99, 2293–2298.

    Article  PubMed  CAS  Google Scholar 

  45. Bierne, H., Mazmanian, S. K., Trost, M., et al. (2002) Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol. Microbiol. 43, 869–881.

    Article  PubMed  CAS  Google Scholar 

  46. Garandeau, C., Reglier-Poupet, H., Dubail, I., Beretti, J.-L., Berche, P., and Charbit, A. (2002) The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Infect. Immun. 70, 1382–1390.

    Article  PubMed  CAS  Google Scholar 

  47. Bierne, H., Garandeau, C., Pucciarelli, M. G., et al. (2004) Sortase B, a new class of sortase in Listeria monocytogenes. J. Bacteriol. 186, 1972–1982.

    Article  PubMed  CAS  Google Scholar 

  48. Lebrun, M., Mengaud, J., Ohayon, H., Nato, F., and Cossart, P. (1996) Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells. Mol. Microbiol. 21, 579–592.

    Article  PubMed  CAS  Google Scholar 

  49. Newton, S. M. C., Klebba, P. E., Raynaud, C., et al. (2005) The svpA-srtB locus of Listeria monocytogenes: fur-mediated iron regulation and effect on virulence. Mol. Microbiol. 55, 927–940.

    Article  PubMed  CAS  Google Scholar 

  50. Mazmanian, S. K., Liu, G., Jensen, E. R., Lenoy, E., and Schneewind, O. (2000) Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA 97, 5510–5515.

    Article  PubMed  CAS  Google Scholar 

  51. Mazmanian, S. K., Skaar, E. P., Gaspar, A. H., et al. (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299, 906–909.

    Article  PubMed  CAS  Google Scholar 

  52. Reglier-Poupet, H., Frehel, C., Dubail, I., et al. (2003) Maturation of lipoproteins by type II signal peptidase is required for phagosomal escape of Listeria monocytogenes. J. Biol. Chem. 278, 49,469–49,477.

    Article  PubMed  CAS  Google Scholar 

  53. Borezee, E., Pellegrini, E., and Berche, P. (2000) OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect. Immun. 68, 7069–7077.

    Article  PubMed  CAS  Google Scholar 

  54. Sampson, J. S., O’Connor, S. P., Stinson, A. R., Tharpe, J. A., and Russel, H. (1994) Cloning and nucleotide sequence of psaA, the Streptococcus pneumoniae gene encoding a 37-kilodalton protein homologous to previously reported Streptococcus sp. adhesins. Infec. Immun. 62, 319–324.

    CAS  Google Scholar 

  55. Reglier-Poupet, H., Pellegrini, E., Charbit, A., and Berche, P. (2003) Identification of LpeA, a PsaA-like membrane protein that promotes cell entry by Listeria monocytogenes. Infect. Immun. 71, 474–482.

    Article  PubMed  CAS  Google Scholar 

  56. Milohanic, E., Jonquieres, R., Cossart, P., Berche, P., and Gaillard, J.-L. (2001) The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol. Microbiol. 39, 1212–1224.

    Article  PubMed  CAS  Google Scholar 

  57. Cabanes, D., Dussurget, O., Dehoux, P., and Cossart, P. (2004) Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol. Microbiol. 51, 1601–1614.

    Article  PubMed  CAS  Google Scholar 

  58. Bubert, A., Sokolovic, Z., Chun, S. K., Papatheodorou, L., Simm, A., and Goebel, W. (1999) Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol. Gen. Genet. 261, 323–336.

    PubMed  CAS  Google Scholar 

  59. Luo, Q., Rauch, M., Marr, A. K., Muller-Altrock, S., and Goebel, W. (2004) In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA-dependent and-independent promoters that are differentially activated by GTP. Mol. Microbiol. 52, 39–52.

    Article  PubMed  CAS  Google Scholar 

  60. Goetz, M., Bubert, A., Wang, G., et al. (2001) Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc. Natl. Acad. Sci. USA 98, 12,221–12,226.

    Article  PubMed  CAS  Google Scholar 

  61. Bergmann, B., Raffelsbauer, D., Kuhn, M., Goetz, M., Hom, S., and Goebel, W. (2002) InlA-but not InlB-mediated internalization of Listeria monocytogenes by non-phagocytic mammalian cells needs the support of other internalins. Mol. Microbiol. 43, 557–570.

    Article  PubMed  CAS  Google Scholar 

  62. Chico-Calero, I., Suarez, M., Gonzalez-Zorn, B., et al; European Listeria Genome Consortium. (2002) Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl. Acad. Sci. USA 99, 431–436.

    Article  PubMed  CAS  Google Scholar 

  63. Ripio, M., Brehm, K., Lara, M., Suarez, M., and Vazquez-Boland, J. A. (1997) Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors. J. Bact. 179, 7174–7180.

    PubMed  CAS  Google Scholar 

  64. Kallipolitis, B. H. and Ingmer, H. (2001) Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol. Lett. 204, 111–115.

    Article  PubMed  CAS  Google Scholar 

  65. Kallipolitis, B. H., Ingmer, H., Gahan, C. G., Hill, C., and Sogaard-Andersen, L. (2003) CesRK, a two-component signal transduction system in Listeria monocytogenes, responds to the presence of cell wall-acting antibiotics and affects beta-lactam resistance. Antimicrob. Agents Chemother. 47, 3421–3429.

    Article  PubMed  CAS  Google Scholar 

  66. Knudsen, G. M., Olsen, J. E., and Dons, L. (2004) Characterization of DegU, a response regulator in Listeria monocytogenes, involved in regulation of motility and contributes to virulence. FEMS Microbiol. Lett. 240, 171–179.

    Article  PubMed  CAS  Google Scholar 

  67. Cotter, P. D., Guinane, C. M., and Hill, C. (2002) The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins. Antimicrob. Agents Chemother. 46, 2784–2790.

    Article  PubMed  CAS  Google Scholar 

  68. Ogura, M. and Tanaka, T. (2002) Recent progress in Bacillus subtilis two-component regulation. Front. Biosci. 7, 1815–1824.

    Article  Google Scholar 

  69. Dramsi, S., Kocks, C., Forestier, C., and Cossart, P. (1993) Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator prfA. Mol. Microbiol. 9, 931–941.

    Article  PubMed  CAS  Google Scholar 

  70. Lingnau, A., Domann, E., Hudel, M., et al. (1995) Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and-independent mechanisms. Infect. Immun. 63, 3896–3903.

    PubMed  CAS  Google Scholar 

  71. Vega, Y., Rauch, M., Banfield, M. J., et al. (2004) New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure-function of the virulence regulator PrfA. Mol. Microbiol. 52, 1553–1565.

    Article  PubMed  CAS  Google Scholar 

  72. Busby, S. and Ebright, R. H. (1999) Transcription activation by catabolite activator protein (CAP). J. Mol. Biol. 293, 199–213.

    Article  PubMed  CAS  Google Scholar 

  73. Dove, S. L., Darst, S. A., and Hochschild, A. (2003) Region 4 of sigma as a target for transcription regulation. Mol. Microbiol. 48, 863–874.

    Article  PubMed  CAS  Google Scholar 

  74. Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M., and Cossart, P. (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561.

    Article  PubMed  Google Scholar 

  75. Shetron-Rama, L. M., Mueller, K., Bravo, J. M., Bouwer, H. G. A., Way, S. S., and Freitag, N. E. (2003) Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol. Microbiol. 48, 1537–1551.

    Article  PubMed  CAS  Google Scholar 

  76. Ermolaeva, S., Novella, S., Vega, Y., Ripio, M.-T., Scortti, M., and Vazquez-Boland, J. A. (2004) Negative control of Listeria monocytogenes virulence genes by a diffusible autorepressor. Mol. Microbiol. 52, 601–611.

    Article  PubMed  CAS  Google Scholar 

  77. Bockmann, R., Dickneite, C., Goebel, W., and Bohne, J. (2000) PrfA mediates specific binding of RNA polymerase of Listeria monocytogenes to PrfA-dependent virulence gene promoters resulting in a transcriptionally active complex. Mol. Microbiol. 36, 487–497.

    Article  PubMed  CAS  Google Scholar 

  78. Renzoni, A., Cossart, P., and Dramsi, S. (1999) PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol. Microbiol. 34, 552–561.

    Article  PubMed  CAS  Google Scholar 

  79. Dussurget, O., Cabanes, D., Dehoux, P., et al. (2002) Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45, 1095–1106.

    Article  PubMed  CAS  Google Scholar 

  80. Hardy, J., Francis, K. P., DeBoer, M., Chu, P., Gibbs, K., and Contag, C. H. (2004) Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303, 851–853.

    Article  PubMed  CAS  Google Scholar 

  81. Sleator, R. D., Wouters, J., Gahan, C. G. M., Abee, T., and Hill, C. (2001) Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl. Environ. Microbiol. 67, 2692–2698.

    Article  PubMed  CAS  Google Scholar 

  82. Sleator, R. D., Wemekamp-Kamphuis, H. H., Gahan, C. G. M., Abee, T., and Hill, C. (2005) A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes. Mol. Microbiol. 55, 1183–1195.

    Article  PubMed  CAS  Google Scholar 

  83. Becker, L. A., Cetin, M. S., Hutkins, R. W., and Benson, A. K. (1998) Identification of the gene encoding the alternative sigma factor sigma B from Listeria monocytogenes and its role in osmotolerance. J. Bacteriol. 180, 4547–4554.

    PubMed  CAS  Google Scholar 

  84. Chaturongakul, S. and Boor, K. J. (2004) RsbT and RsbV contribute to sigmaB-dependent survival under environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Appl. Environ. Microbiol. 70, 5349–5356.

    Article  PubMed  CAS  Google Scholar 

  85. Sue, D., Fink, D., Wiedmann, M., and Boor, K. J. (2004) Sigma B-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology 150, 3843–3855.

    Article  PubMed  CAS  Google Scholar 

  86. Price, C. W. (2000) Protective function and regulation of the general stress response in Bacillus subtilis and related Gram-positive bacteria, in Bacterial Stress Responses (Storz, B. and Hengge-Aronis, R. eds.). ASM Press, Washington, DC, pp. 179–197.

    Google Scholar 

  87. Kazmierczak, M. J., Mithoe, S. C., Boor, K. J., and Wiedmann, M. (2003) Listeria monocytogenes sigma B regulates stress response and virulence functions. J. Bacteriol. 185, 5722–5734.

    Article  PubMed  CAS  Google Scholar 

  88. Kim, H., Boor, K. J., and Marquis, H. (2004) Listeria monocytogenes sigma B contributes to invasion of human intestinal epithelial cells. Infect. Immun. 72, 7374–7378.

    Article  PubMed  CAS  Google Scholar 

  89. Fraser, K. R., Sue, D., Wiedmann, M., Boor, K., and O’Byrne, C. P. (2003) Role of sigma B in regulating the compatible solute uptake systems of Listeria monocytogenes: osmotic induction of opuC Is sigma B dependent. Appl. Environ. Microbiol. 69, 2015–2022.

    Article  PubMed  CAS  Google Scholar 

  90. Sue, D., Boor, K. J., and Wiedmann, M. (2003) Sigma B-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiology 149, 3247–3256.

    Article  PubMed  CAS  Google Scholar 

  91. Cetin, M. S., Zhang, C., Hutkins, R. W., and Benson, A. K. (2004) Regulation of transcription of compatible solute transporters by the general stress sigma factor, sigma B, in Listeria monocytogenes. J. Bacteriol. 186, 794–802.

    Article  PubMed  CAS  Google Scholar 

  92. Rauch, M., Luo, Q., Muller-Altrock, S., and Goebel, W. (2005) SigB-dependent in vitro transcription of prfA and some newly identified genes of Listeria monocytogenes whose expression is affected by PrfA in vivo. J. Bacteriol. 187, 800–804.

    Article  PubMed  CAS  Google Scholar 

  93. Schaumburg, J., Diekmann, O., Hagendorff, P., et al. (2004) The cell wall subproteome of Listeria monocytogenes. Proteomics 4, 2991–3006.

    Article  PubMed  CAS  Google Scholar 

  94. Weeks, M. E., James, D. C., Robinson, G. K., and Smales, C. M. (2004) Global changes in gene expression observed at the transition from growth to stationary phase in Listeria monocytogenes ScottA batch culture. Proteomics 4, 123–135.

    Article  PubMed  CAS  Google Scholar 

  95. Tremoulet, F., Duche, O., Namane, A., Martinie, B., and Labadie, J. C.; European Listeria Genome Consortium. (2002) Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in plantonic mode by proteomic analysis. FEMS Microbiol0. Lett. 210, 25–31.

    Google Scholar 

  96. Helloin, D., Jansch, L., and Phan-Thanh, L. (2003) Carbon starvation survival of Listeria monocytogenes in plantonic state and in biofilm: a proteomic study. Proteomics 3, 2052–2064.

    Article  PubMed  CAS  Google Scholar 

  97. Cohen, P., Bouaboula, M., Bellis, M., et al. (2000) Monitoring cellular responses to Listeria monocytogenes with oligonucleotide arrays. J. Biol. Chem. 275, 11,181–11,190.

    Article  PubMed  CAS  Google Scholar 

  98. Baldwin, D., Vanchinathan, V., Brown, P., and Theriot, J. (2002) A gene-expression program reflecting the innate immune response of cultured intestinal epithelial cells to infection by Listeria monocytogenes. Genome Biology 4, R2.1–R2.14.

    Article  Google Scholar 

  99. Pizarro-Cerda, J., Jonquieres, R., Gouin, E., Vandekerckhove, J., Garin, J., and Cossart, P. (2002) Distinct protein patterns associated with Listeria monocytogenes InlA-or InlBphagosomes. Cell Microbiol. 4, 101–115.

    Article  PubMed  CAS  Google Scholar 

  100. McCaffrey, R. L., Fawcett, P., O’Riordan, M., et al. (2004) A specific gene expression program triggered by Gram-positive bacteria in the cytosol. Proc. Natl. Acad. Sci. USA 101, 11,386–11,391.

    Article  PubMed  CAS  Google Scholar 

  101. Motley, S. T., Morrow, B. J., Liu, X., et al. (2004) Simultaneous analysis of host and pathogen interactions during an in vivo infection reveals local induction of host acute phase response proteins, a novel bacterial stress response, and evidence of a host-imposed metal ion limited environment. Cell Microbiol. 6, 849–865.

    Article  PubMed  CAS  Google Scholar 

  102. Bader, B. D., Heilbut, A., Andrews, B., Tyers, M., Hughes, T., and Boone, C. (2003) Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol. 13, 344–356.

    Article  PubMed  CAS  Google Scholar 

  103. Molle, V., Fujita, M., Jensen, S. T., et al. (2003) The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50, 1683–1701.

    Article  PubMed  CAS  Google Scholar 

  104. Molle, V., Nakaura, Y., Shivers, R. P., et al. (2003) Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genomewide transcript analysis. J. Bacteriol. 185, 1911–1922.

    Article  PubMed  CAS  Google Scholar 

  105. Rain, J. C., Selig, L., Reuse, H. D., et al. (2001) The protein-protein interaction map of Helicobacter pylori. Nature 409, 211–215.

    Article  PubMed  CAS  Google Scholar 

  106. Bailey, S. N., Sabatini, D. M., and Stockwell, B. R. (2004) Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens. Proc. Natl. Acad. Sci. USA 101, 16,144–16,149.

    Article  PubMed  CAS  Google Scholar 

  107. Carpenter, A. E. and Sabatini, D. M. (2004) Systematic genome-wide screens of gene function. Nature Rev. Genet. 5, 11–22.

    Article  CAS  PubMed  Google Scholar 

  108. Boyartchuk, V., Rojas, M., Yan, B.-S., et al. (2004) The host resistance locus sst1 controls innate immunity to Listeria monocytogenes infection in immunodeficient mice. J. Immunol. 173, 5112–5120.

    PubMed  CAS  Google Scholar 

  109. Nolan, P. M., Peters, J., Strivens, M., et al. (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat. Genet. 25, 440–443.

    Article  PubMed  CAS  Google Scholar 

  110. Hrabe de Angelis, M. H., Flaswinkel, H., Fuchs, H., et al. (2000) Genome-wide, largescale production of mutant mice by ENU mutagenesis. Nat. Genet. 25, 444–447.

    Article  PubMed  CAS  Google Scholar 

  111. Walduck, A., Rudel, T., and Meyer, T. F. (2004) Proteomic and gene profiling approaches to study host responses to bacterial infection. Curr. Opin. Microbiol. 7, 33–38.

    Article  PubMed  CAS  Google Scholar 

  112. Cheng, L. W. and Portnoy, D. A. (2003) Drosophila S2 cells: an alternative infection model for Listeria monocytogenes. Cell Microbiol. 5, 875–885.

    Article  PubMed  CAS  Google Scholar 

  113. Mansfield, B. E., Dionne, M. S., Schneider, D. S., and Freitag, N. E. (2003) Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol. 5, 901–911.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ireton, K. (2006). Listeria monocytogenes. In: Chan, V.L., Sherman, P.M., Bourke, B. (eds) Bacterial Genomes and Infectious Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-152-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-152-9_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-496-8

  • Online ISBN: 978-1-59745-152-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics