Skip to main content

Abstract

Nucleoside/nucleobase analogs (bromodeoxyuridine, iododeoxyuridine, 5fluorouracil, fluorodeoxyuridine, difluorodeoxycytidine, fluoroadenine arabinoside, fluoromethylenedeoxycytidine) can synergistically enhance ionizing radiation-induced cell killing. These analogs are able to radiosensitize a wide variety of tumor cell types in vitro and several have proven clinical efficacy as well. They share a requirement for intracellular metabolism to phosphorylated forms. As triphosphate analogs they can serve as substrates for nucleic acid synthesis and subsequent incorporation into DNA has been correlated with radiosensitization for bromo- and iododeoxyuridine. Each of these analogs also inhibits an enzyme involved in deoxynucleotide metabolism resulting in depletion of at least one deoxynucleoside triphosphate pool. This effect appears to be responsible for radiosensitization with fluorodeoxyuridine difluorodeoxycytidine and fluoromethylenedeoxycytidine in a manner similar to hydroxyurea which elicits radiosensitization solely through its depletion of deoxynucleotides as a result of ribonucleotide reductase inhibition. In addition these analogs promote accumulation of cells in S-phase which appears to be necessary for radiosensitization. Combined with data demonstrating that mismatch repair defective cells are better radiosensitized by these compounds the evidence suggests that errors in DNA replication contribute to radiosensitization. It is essential to define more completely the mechanism(s) responsible for radiosensitization with these important drugs in order to optimize antitumor efficacy and limit normal tissue toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fertil, B., Dertnger, H., Courdi, A., and Malaise, E. P. Mean inactivation dose: a useful concept for intercomparison of human cell survival curves. Radiat. Res., 99, 73–84, 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Steel, G. G., and Peckham, M. J. Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int. J. Radiat. Oncol. Biol. Phys., 5, 85–91, 1979.

    PubMed  CAS  Google Scholar 

  3. Chou, T.-C., and Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enz. Reg., 22, 27–55, 1984.

    Article  CAS  Google Scholar 

  4. Greco, W. R., Park, H. S., and Rustum, Y. M. Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloro-platinum and 1—D-arabinofuranosylcytosine. Cancer Res., 50, 5318–5327, 1990.

    PubMed  CAS  Google Scholar 

  5. Terasima, T., and Tolmach, L. J. Variations in several responses of HeLa cells to X-irradiation during divison cycle. Biophysical J., 3, 11–33, 1963.

    Article  CAS  Google Scholar 

  6. Sinclair, W. K., and Morton, R. A. X-ray sensitivity during cell generation cycle of cultured Chinese hamster cells. Radiat. Res., 29, 450–474, 1966.

    Article  PubMed  CAS  Google Scholar 

  7. Prusoff, W., and Goz, B. Halogenated pyrimidine deoxyribonucleosides. In A. C. Sartorelli and D. G. Johns (nteds.), Handbook of Experimental Pharmacology, vol. 38, pp. 272–347. New York: Springer-Verlag, 1975.

    Google Scholar 

  8. Goz, B. The effects of incorporation of 5-halogenated deoxyuridines into the DNA of eukaryotic cells. Pharmacol. Rev., 29, 249–272, 1978.

    Google Scholar 

  9. Lee, L.-S., and Cheng, Y. Human deoxythymidine kinase II: substrate specificity and kinetic behavior of the cytoplasmic and mitochondrial isozymes derived from blast cells of acute myelocytic leukemia. Biochemistry, 15, 3686–3690, 1976.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, L.-S., and Cheng, Y. Human deoxythymidine kinase. I. Purification and general properties of the cytoplasmic and mitochondrial isozymes derived from blast cells of acute myelocytic leukemia. J. Biol. Chem., 251, 2600–2604, 1976.

    PubMed  CAS  Google Scholar 

  11. Eriksson, S., Kierdaszuk, B., Munch-Petersen, B., Oberg, O., and Johansson, N. G. Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biochem. Biophys. Res. Commun., 176, 586–592, 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Parker, W. B., Bapat, A. R., Shen, J.-X., Townsend, A. J., and Cheng, Y. Interaction of 2-halogenated dATP analogs (F, Cl, and Br) with human DNA polymerases, DNA primase, and ribonucleotide reductase. Mol. Pharmacol., 34, 485–491, 1988.

    PubMed  CAS  Google Scholar 

  13. Djordjevic, B., and Szybalski, W. Genetics of human cell lines. III. Incorporation of 5-bromo-and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity. J. Exp. Med., 112, 509–531, 1960.

    Article  PubMed  CAS  Google Scholar 

  14. Lawrence, T. S., Davis, M. A., Maybaum, J., et al. The potential superiority of bromodeoxyuridine to iododeoxyuridine as a radiation sensitizer in the treatment of colorectal cancer. Cancer Res., 52, 3698–3704, 1992.

    PubMed  CAS  Google Scholar 

  15. Dewey, W. C., and Humphrey, R. M. Increase in radiosensitivity to ionizing radiation related to replacement of thymidine in mammalian cells with 5-bromodeoxyuridine. Radiat. Res., 26, 538, 1965.

    Article  PubMed  CAS  Google Scholar 

  16. McLaughlin, P. W., Lawrence, T. S., Seabury, H., et al. Bromodeoxyuridine-mediated radiosensitization in human glioma: the effect of concentration, duration, and fluoropyrimidine modulation. Int. J. Radiat. Oncol. Biol. Phys., 30, 601–607, 1994.

    PubMed  CAS  Google Scholar 

  17. Mancini, W. R., Stetson, P. L., Lawrence, T. S., Wagner, L. M., Greenberg, H. S., and Ensminger, W. D. Variability of 5-bromo-2′-deoxyuridine incorporation into DNA of human glioma cell lines and modulation with fluoropyrimidines. Cancer Res., 51, 870–874, 1991.

    PubMed  CAS  Google Scholar 

  18. Lawrence, T. S., Davis, M. A., Maybaum, J., Stetson, P. L., and Ensminger, W. D. The effect of single vs double-strand substitution on halogenated pyrimidine-induced radiosensitization and DNA strand breakage in human tumor cells. Radiat. Res., 123, 192–198, 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Kinsella, T. J., Dobson, P. A., Mitchell, J. B., and Fornace, A. J. Enhancement of X-ray induced DNA damage by pretreatment with halogenated pyrimidine analogs. Int. J. Radiat. Oncol. Biol. Phys., 13, 733–739, 1987.

    PubMed  CAS  Google Scholar 

  20. Iliakis, G., Kurtzman, S., Pantelias, G., and Okayasu, R. Mechanism of radiosensitization by halogenatedpyrimidines: effect of BrdU on radiation induction of DNA and chromosome damage and its correlation with cell killing. Radiat. Res., 119,286–304, 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Lawrence, T. S., Davis, M. A., Maybaum, J., Stetson, P. L., and Ensminger, W. D. The dependence of halogenated pyrimidine incorporation and radiosensitization on the duration of drug exposure. Int. J. Radiat. Oncol. Biol. Phys., 18, 1393–1398, 1990.

    PubMed  CAS  Google Scholar 

  22. Tishler, R. B., and Geard, C. R. Correlation of sensitizer enhancement ratio with bromodeoxyuridine concentration and exposure time in human cervical-carcinoma cells treated with low-dose rate irradiation. Int. J. Radiat. Oncol. Biol. Phys., 22, 495–498, 1992.

    PubMed  CAS  Google Scholar 

  23. Fornace, A. J., Dobson, P. A., and Kinsella, T. J. Enhancement of radiation damage in cellular DNA following unifilar substitution with iododeoxyuridine. Int. J. Radiat. Oncol. Biol. Phys., 18, 1990.

    Google Scholar 

  24. Dillehay, L. E., Thompson, L. H., and Carrano, A. V. DNA-strand breaks associated with halogenated pyrimidine incorporation. Mutat. Res., 131, 129–136, 1984.

    PubMed  CAS  Google Scholar 

  25. Zimbrick, J. D., Ward, J. E, and Myers, L. S., Jr. Studies on the chemical basis of cellular radiosensitizatioin by 5-bromouracil substitution in DNA. II. Pulse-and steady-state radiolysis of bromouracil-substituted and unsubstituted DNA. Int. J. Radiat. Biol., 16, 525–534, 1969.

    Article  CAS  Google Scholar 

  26. Lawrence, T. S., Davis, M. A., and Normolle, D. P. Effect of bromodeoxyuridine on radiation-induced DNA damage and repair based on DNA fragment size using pulsed-field gel electrophoresis. Radiat. Res., 144, 282–287, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Marti, T. M., Kunz, C., and Fleck, O. DNA mismatch repair and mutation avoidance pathways. J. Cell. Physiol., 191, 28–41, 2002.

    Article  PubMed  Google Scholar 

  28. Toft, N. J., and Arends, M. J. DNA mismatch repair and colorectal cancer. J. Pathol., 185, 123–129, 1998.

    Article  PubMed  CAS  Google Scholar 

  29. Berry, S. E., Garces, C., Hwang, H.-S., et al. The mismatch repair protein, hMLH1, mediates 5-substituted halogenated thymidine analogue cytotoxicity, DNA incorporation, and radiosensitization in human colon cancer cells. Cancer Res., 59, 1840–1845, 1999.

    PubMed  CAS  Google Scholar 

  30. Berry, S. E., Davis, T. W., Schupp, J. E., Hwang, H.-S., de Wind, N., and Kinsella, T. J. Selective radiosensitization of drug-resistant MutS homologue-2 (MSH2) mismatch repair-deficient cells by halogenated thymidine (dThd) analogues: Msh2 mediates dThd analogue DNA levels and the differential cytotoxicity and cell cycle effects of the dThd analogues and 6-thioguanine. Cancer Res., 60, 5773–5780, 2003.

    Google Scholar 

  31. Berry, S. E., Loh, T., Yan, T., and Kinsella, T. J. Role of MutSαin the recognition of iododeoxyuridine in DNA. Cancer Research 63, 5490–5495. 2003.

    PubMed  CAS  Google Scholar 

  32. Taverna, P., Hwang, H.-S., Schupp, J. E., et al. Inhibition of base excision repair potentiates iododeoxyuridine-induced cytotoxicity and radiosensitization. Cancer Res., 63, 838–846, 2003.

    PubMed  CAS  Google Scholar 

  33. Meuth, M., and Green, H. Induction of a deoxycytidineless state in cultured mammalian cells by bromodeoxyuridine. Cell, 2, 109–112, 1974.

    Article  PubMed  CAS  Google Scholar 

  34. Ashman, C. R., and Davidson, R. L. Bromodeoxyuridine mutagenesis in mammalian cells is related to deoxyribonucleotide pool imbalance. Mol. Cell. Biol., 1, 254–260, 1981.

    PubMed  CAS  Google Scholar 

  35. Shewach, D. S., Ellero, J., Mancini, W. R., and Ensminger, W. D. Decrease in TTP pools mediated by 5-bromo-2′-deoxyuridine exposure in a human glioblas-toma cell line. Biochem. Pharmacol., 43, 1579–1585, 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Epstein, A. H., Lebovics, R. S., Goffman, T., et al. Treatment of locally advanced cancer of the head and neck with 5′-iododeoxyuridine and hyperfractionated radiation-therapy—measurement of cell labeling and thymidine replacement. J.N.C.I., 86, 1775–1780, 1994.

    Article  CAS  Google Scholar 

  37. Greenberg, H. S., Chandler, W. R, Diaz, R. R, et al. Intra-arterial bromodeoxyuri-dine radiosensitization and radiation in treatment of malignant astrocytomas. J. Neurosurg., 69, 500–505, 1988.

    PubMed  CAS  Google Scholar 

  38. Sullivan, F. J., Herscher, L. L., Cook, J. A., et al. National-Cancer-Institute (Phase-II) study of high-grade glioma treated with accelerated hyperfractionated radiation and iododeoxyuridine—results in anaplastic astrocytoma. Int. J. Radiat. Oncol. Biol. Phys., 30, 583–590, 1991.

    Google Scholar 

  39. Phillips, T. L., Levin, V. A., Ahn, D. K., et al. Evaluation of bromodeoxyuridine in glioblastoma-multiforme—a Northern California Cancer Center phase-II study. Int. J. Radiat. Oncol. Biol. Phys., 21, 709–714, 1991.

    PubMed  CAS  Google Scholar 

  40. Goffman, T., Tochner, Z., and Glatstein, E. Primary-treatment of large and massive adult sarcomas with iododeoxyuridine and aggressive hyperfractionated irradiation. Cancer, 67, 572–576, 1991.

    Article  PubMed  CAS  Google Scholar 

  41. Robertson, J. M., Sondak, V. K., Weiss, S. A., Sussman, J. J., Chang, A. E., and Lawrence, T. S. Preoperative radiation-therapy and iododeoxyuridine for large retroperitoneal sarcomas. Int. J. Radiat. Oncol. Biol. Phys., 31, 87–92, 1995.

    Article  PubMed  CAS  Google Scholar 

  42. Chang, A. E., Collins, J. M., Speth, P. A. J., et al. A phase-I study of intraarterial iododeoxyuridine in patients with colorectal liver metastases. J. Clin. Oncol., 7, 662–668, 1989.

    PubMed  CAS  Google Scholar 

  43. Eisbruch, A., Robertson, J. M., Johnston, C. M., et al. Bromodeoxyuridine alternating with radiation for advanced uterine cervix cancer: a phase I and drug incorporation study. J. Clin. Oncol., 17, 31–40, 1999.

    PubMed  CAS  Google Scholar 

  44. Levin, V. A., Prados, M. R., Wara, W. M., et al. Radiation-therapy and bromodeoxyuridine chemotherapy followed by procarbazine, lomustine, and vincristine for the treatment of anaplastic gliomas. Int. J. Radiat. Oncol. Biol. Phys., 32, 75–83, 1995.

    Article  PubMed  CAS  Google Scholar 

  45. Prados, M. D., Scott, C., Sandler, H., et al. A phase 3 randomized study of radiotherapy plus procarbazine, CCNU, and vincristine (PCV) with or without BUdR for the treatment of anaplastic astrocytoma: a preliminary report of RTOG 9404. Int. J. Radiat. Oncol. Biol. Phys., 45, 1109–1115, 1999.

    Article  PubMed  CAS  Google Scholar 

  46. Ensminger, W. D., Walker, S. C., Stetson, P. L., et al. Clinical-pharmacology of hepatic arterial infusions of 5-bromo-2′-deoxyuridine. Cancer Res., 54, 2121–2124, 1994.

    PubMed  CAS  Google Scholar 

  47. Prados, M. D., Scott, C. B., Rotman, M., et al. Influence of bromodeoxyuridine radiosensitization on malignant glioma patient survival: a retrospective comparison of survival data from the northern California Oncology Group (NCOG) and Radiation Therapy Oncology Group trials (RTOG) for glioblastoma multiforme and anaplastic astrocytoma. Int. J. Radiat. Oncol. Biol. Phys., 40, 653–659, 1998.

    Article  PubMed  CAS  Google Scholar 

  48. Knol, J. A., Walker, S. C., Robertson, J. M., et al. Incorporation of 5-bromo-2′-deoxyuridine into colorectal liver metastases and liver in patients receiving a 7-d hepatic arterial infusion. Cancer Res., 55, 3687–3691, 1995.

    PubMed  CAS  Google Scholar 

  49. Lawrence, T. S., Davis, M. A., Stetson, P. L., Maybaum, J., and Ensminger, W. D. Kinetics of bromodeoxyuridine elimination from human colon-cancer cells in-vitro and in-vivo. Cancer Res., 54, 2964–2968, 1994.

    PubMed  CAS  Google Scholar 

  50. Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. Meta-analysis Group in Cancer. J. Clin. Oncol., 16, 301–308, 1998.

    Google Scholar 

  51. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rate. Advanced Colorectal Cancer Meta-Analysis Project. J. Clin. Oncol., 10, 896–903, 1992.

    Google Scholar 

  52. Saltz, L. B., Cox, J. V., Blanke, C., et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N. Engl. J. Med., 343, 905–914, 2000.

    Article  PubMed  CAS  Google Scholar 

  53. Ensminger, W. D. Intrahepatic arterial infusion of chemotherapy: pharmacologic principles. Semin. Oncol., 29, 119–125, 2002.

    Article  PubMed  CAS  Google Scholar 

  54. Abeles, R. H., and Alston, T. A. Enzyme-inhibition by fluoro compounds. J. Biol. Chem., 265, 16,705–16,708, 1990.

    PubMed  CAS  Google Scholar 

  55. Wohlhueter, R. M., Mcivor, R. S., and Plagemann, P. G. W. Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic-acid into cultured mammalian-cells. J. Cell. Physiol., 104, 309–319, 1980.

    Article  PubMed  CAS  Google Scholar 

  56. Ardalan, B., and Glazer, R. An update on the biochemistry of 5-fluorouracil. Cancer Treat. Rev., 8, 157–167, 1981.

    Article  PubMed  CAS  Google Scholar 

  57. Myers, C. E. The pharmacology of the fluoropyrimidines. Pharmacol. Rev., 33, 1–15, 1981.

    PubMed  CAS  Google Scholar 

  58. Longley, D. B., Harkin, D. P., and Johnston, P. G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 3, 330–338, 2003.

    Article  PubMed  CAS  Google Scholar 

  59. Harris, B. E., Song, R., Soong, S. J., and Diasio, R. B. Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res., 50, 197–201, 1990.

    PubMed  CAS  Google Scholar 

  60. Baccanari, D. P., Davis, S. T., Knick, V. C., and Spector, T. 5-Ethynyluracil (776C85): a potent modulator of the pharmacokinetics and antitumor efficacy of 5-fluorouracil. Proc. Natl. Acad. Sci. U. S. A., 90, 11064–11068, 1993.

    Article  PubMed  CAS  Google Scholar 

  61. Spector, T., Cao, S., Rustum, Y. M., Harrington, J. A., and Porter, D. J. Attenuation of the antitumor activity of 5-fluorouracil by (R)-5-fluoro-5,6-dihydrouracil. Cancer Res., 55, 1239–1241, 1995.

    PubMed  CAS  Google Scholar 

  62. Lang, T. T., Selner, M., Young, J. D., and Cass, C. E. Acquisition of human con-centrative nucleoside transporter 2 (hCNT2) activity by gene transfer confers sensitivity to fluoropyrimidine nucleosides in drug-resistant leukemia cells. Mol. Pharmacol., 60, 1143–1152, 2001.

    PubMed  CAS  Google Scholar 

  63. Ingraham, H. A., Tseng, B. Y., and Goulian, M. Nucleotide levels and incorporation of 5-fluorouracil and uracil into DNA of cells treated with 5-fluorodeoxyuri dine. Mol. Pharmacol., 21, 211–216, 1982.

    PubMed  CAS  Google Scholar 

  64. Canman, C. E., Lawrence, T. S., Shewach, D. S., Tang, H.-Y., and Maybaum, J. Resistance to fluorodeoxyuridine-induced DNA damage and cytotoxicity correlates with an elevation of deoxyuridine triphosphatase activity and failure to accumulate deoxyuridine triphosphate. Cancer Res., 53, 5219–5223, 1993.

    PubMed  CAS  Google Scholar 

  65. Ingraham, H. A., Tseng, B. Y., and Goulian, M. Nucleotide levels and incorporation of 5-fluorouracil and uracil into DNA of cells treated with 5-fluorodeoxyuri-dine. Mol. Pharmacol., 21, 211–216, 1982.

    PubMed  CAS  Google Scholar 

  66. Kufe, D. W., Major, P. P., Egan, E. M., and Loh, E. 5-Fluoro-2′-deoxyuridine incorporation in L1210 DNA. J. Biol. Chem., 256, 8885–8888, 1981.

    PubMed  CAS  Google Scholar 

  67. Davis, M. A., Tang, H. Y., Maybaum, J., and Lawrence, T. S. Dependence of flu-orodeoxyuridine-mediated radiosensitization on S-phase progression. Int. J. Radiat. Oncol. Biol. Phys., 67, 509–517, 1995.

    CAS  Google Scholar 

  68. Danenberg, P. V. Thymidylate synthetase—target enzyme in cancer chemotherapy. Biochim. Biophys. Acta, 473, 73–92, 1977.

    PubMed  CAS  Google Scholar 

  69. Bruso, C. E., Shewach, D. S., and Lawrence, T. S. Fluorodeoxyuridine-induced radiosensitization and inhibition of DNA double strand break repair in human colon cancer cells. Int. J. Radiat. Oncol. Biol. Phys., 19, 1411–1417, 1990.

    PubMed  CAS  Google Scholar 

  70. Tattersall, M. H. N., and Harrap, K. R. Changes in the deoxyribonucleotide triphosphate pools of mouse 5178Y lymphoma cells following exposure to methotrexate or 5-fluorouracil. Cancer Res., 33, 3086–3090, 1973.

    PubMed  CAS  Google Scholar 

  71. Chong, L., and Tattersall, M. H. N. 5,10-Dideazatetrahydrofolic acid reduces toxicity and deoxyadenosine triphosphate pool expansion in cultured L1210 cells treated with inhibitors of thymidylate synthase. Biochem. Pharmacol., 49, 819–827, 1995.

    Article  PubMed  CAS  Google Scholar 

  72. Yoshioka, A., Tanaka, S., Hiraoka, O., et al. Deoxyribonucleotide triphosphate imbalance. J. Biol. Chem., 262, 8235–8241, 1987.

    PubMed  CAS  Google Scholar 

  73. Cheng, Y., and Nakayama, K. Effects of 5-fluoro-2?-deoxyuridine on DNA metabolism in HeLa cells. Mol. Pharmacol., 23, 171–174, 1983.

    PubMed  CAS  Google Scholar 

  74. Houghton, J. A., Tillman, D. M., and Harwood, F. G. Ratio of 2′-deoxyadenosine-5′-triphosphate thymidine-5′-triphosphate influences the commitment of human colon carcinoma cells to thymineless death. Clin. Cancer Res., 1, 723–730, 1995.

    PubMed  CAS  Google Scholar 

  75. Buchholz, D. J., Lepek, K. J., Rich, T. A., and Murray, D. 5-Fluorouracil-radiation interactions in human colon adenocarcinoma cells. Int. J. Radiat. Oncol. Biol. Phys., 32, 1053–1058, 1995.

    Article  PubMed  CAS  Google Scholar 

  76. McGinn, C. J., Miller, E. M., Lindstrom, M. J., Kunugi, K. A., Johnston, P. G., and Kinsella, T. J. The role of cell cycle redistribution in radiosensitization: implications regarding the mechanism of fluorodeoxyuridine radiosensitization. Int. J. Radiat. Oncol. Biol. Phys., 30, 851–859, 1994.

    PubMed  CAS  Google Scholar 

  77. Naida, J. D., Davis, M. A., and Lawrence, T. S. The effect of activation of wild-type p53 function on fluoropyrimidine-mediated radiosensitization. Int. J. Radiat. Oncol. Biol. Phys., 41, 675–680, 1998.

    Article  PubMed  CAS  Google Scholar 

  78. Lawrence, T. S., Davis, M. A., and Loney, T. L. Fluoropyrimidine-mediated radiosensitization depends on cyclin E-dependent kinase activation. Cancer Res., 56, 3203–3206, 1996.

    PubMed  CAS  Google Scholar 

  79. Tang, H. Y., Davis, M. A., Strickfaden, S. M., Maybaum, J., and Lawrence, T. S. Influence of cell-cycle phase on radiation-induced cytotoxicity and DNA-damage in human colon-cancer (Ht29) and Chinese-hamster ovary cells. Radiat. Res., 138, S109–S112, 1994.

    Article  PubMed  CAS  Google Scholar 

  80. Kufe, D. W., and Major, P. P. 5-Fluorouracil incorporation into human breast carcinoma RNA correlates with cytotoxicity. J. Biol. Chem., 256, 9802–9805, 1981.

    PubMed  CAS  Google Scholar 

  81. Lawrence, T. S., Davis, M. A., and Maybaum, J. Dependence of 5-fluorouracil-mediated radiosensitization on DNA-directed effects. Int. J. Radiat. Oncol. Biol. Phys., 29, 519–523, 1994.

    PubMed  CAS  Google Scholar 

  82. Hwang, H. S., Davis, T. W., Houghton, J. A., and Kinsella, T. J. Radiosensitivity of thymidylate synthase-deficient human tumor cells is affected by progression through the G(1) restriction point into S-phase: implications for fluoropyrimidine radiosensitization. Cancer Res., 60, 92–100, 2000.

    PubMed  CAS  Google Scholar 

  83. Lawrence, T. S., Blackstock, A. W., and McGinn, C. The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin. Radiat. Oncol., 13, 13–21, 2003.

    Article  PubMed  Google Scholar 

  84. Schuetz, J. D., Wallace, H. J., and Diasio, R. B. DNA-repair following incorporation of 5-fluorouracil into DNA of mouse bone-marrow cells. Cancer Chemother. Pharmacol., 21, 208–210, 1988.

    Article  PubMed  CAS  Google Scholar 

  85. Ingraham, H. A., Dickey, L., and Goulian, M. DNA fragmentation and cytotoxi-city from increased cellular deoxyuridylate. Biochemistry, 25, 3225–3230, 1986.

    Article  PubMed  CAS  Google Scholar 

  86. Canman, C. E., Tang, H.-Y., Normolle, D. P., Lawrence, T. S., and Maybaum, J. Variations in patterns of DNA damage induced in human colorectal tumor cells by 5-fluorodeoxyuridine: implications for mechanisms of resistance and cytotox-icity. Proc. Natl. Acad. Sci. U. S. A., 89, 10,474–10,478, 1992.

    Article  PubMed  CAS  Google Scholar 

  87. Lawrence, T. S., Davis, M. A., Chang, E. Y., Canman, C. E., Maybaum, J., and Radany, E. H. Lack of dependence of 5-fluorodeoxyuridine-mediated radiosensitization on cytotoxicity. Radiat. Res., 143, 281–285, 1995.

    Article  PubMed  CAS  Google Scholar 

  88. Chu, E., Voeller, D. M., Jones, K. L., et al. Identification of a thymidylate syn-thase ribonucleoprotein complex in human colon-cancer cells. Mol. Cell. Biol., 14, 207–213, 1994.

    PubMed  CAS  Google Scholar 

  89. Tillman, D. M., Petak, I., and Houghton, J. A. A Fas-dependent component in 5-fluorouracil/leucovorin-induced cytotoxicity in colon carcinoma cells. Clin. Cancer Res., 5, 425–430, 1999.

    PubMed  CAS  Google Scholar 

  90. Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., and Bonner, W. M. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Current Biol., 10, 886–895, 2000.

    Article  CAS  Google Scholar 

  91. McGinn, C. J., Shewach, D. S., and Lawrence, T. S. Radiosensitizing nucleo-sides. J.N.C.I., 4, 1193–1203, 1996.

    Article  Google Scholar 

  92. Bartelink, H., Roelofsen, F., Eschwege, F., et al. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: results of a phase III randomized trial of the European organization for research and treatment of cancer radiotherapy and gastrointestinal cooperative groups. J. Clin. Oncol., 15, 2040–2049, 1997.

    PubMed  CAS  Google Scholar 

  93. Browman, G. P., Cripps, C., Hodson, D. I., Eapen, L., Sathya, J., and Levine, M. N. Placebo-controlled randomized trial of infusional fluorouracil during standard radiotherapy in locally advanced head and neck-cancer. J. Clin. Oncol., 12, 2648–2653, 1994.

    PubMed  CAS  Google Scholar 

  94. Radiation-therapy combined with adriamycin or 5-fluorouracil for the treatment of locally unresectable pancreatic-carcinoma. Cancer, 56, 2563–2568, 1985.

    Google Scholar 

  95. Morris, M., Eifel, P. J., Lu, J. D., et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N. Engl. J. Med., 340, 1137–1143, 1999.

    Article  PubMed  CAS  Google Scholar 

  96. Merlano, M., Benasso, M., Corvo, R., et al. Five-year update of a randomized trial of alternating radiotherapy and chemotherapy compared with radiotherapy alone in treatment of unresectable squamous cell carcinoma of the head and neck. J.N.C.I., 88, 583–589, 1996.

    Article  CAS  Google Scholar 

  97. Wendt, T. G., Grabenbauer, G. G., Rodel, C. M., et al. Simultaneous radiochemotherapy vs radiotherapy alone in advanced head and neck cancer: a randomized multicenter study. J. Clin. Oncol., 16, 1318–1324, 1998.

    PubMed  CAS  Google Scholar 

  98. Denis, F., Garaud, P., Bardet, E., et al. Final results of the 94=01 French Head and Neck Oncology and Radiotherapy Group randomized trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma. J. Clin. Oncol., 22, 69–76, 2004.

    Article  PubMed  Google Scholar 

  99. Vokes, E. E., Kies, M. S., Haraf, D. J., et al. Concomitant chemoradiotherapy as primary therapy for locoregionally advanced head and neck cancer. J. Clin. Oncol., 18, 1652–1661, 2000.

    PubMed  CAS  Google Scholar 

  100. Villalona-Calero, M. A., Weiss, G. R., Burris, H. A., et al. Phase I and pharmaco-kinetic study of the oral fluoropyrimidine capecitabine in combination with pacli-taxel in patients with advanced solid malignancies. J. Clin. Oncol., 17, 1915–1925, 1999.

    PubMed  CAS  Google Scholar 

  101. Minsky, B. D. UFT plus oral leucovorin calcium (Orzel) and radiation in combined modality therapy: a comprehensive review. Int. J. Cancer, 96, 1–10, 2001.

    Article  PubMed  CAS  Google Scholar 

  102. Corvo, R., Pastrone, I., Scolaro, T., Marcenaro, M., Berretta, L., and Chiara, S. Radiotherapy and oral capecitabine in the preoperative treatment of patients with rectal cancer: rationale, preliminary results and perspectives. Tumori, 89, 361–367, 2003.

    PubMed  CAS  Google Scholar 

  103. Robertson, J. M., Lawrence, T. S., Andrews, J. C., Walker, S., Kessler, M. L., and Ensminger, W. D. Long-term results of hepatic artery fluorodeoxyuridine and conformal radiation therapy for primary hepatobiliary cancers. Int. J. Radiat. Oncol. Biol. Phys., 37, 325–330, 1997.

    Article  PubMed  CAS  Google Scholar 

  104. Miller, R., Dewar, E. P., Kapadia, C. R., et al. Randomized clinical trial of adjuvant radiotherapy and 5-fluorouracil infusion in colorectal cancer (AXIS). Br. J. Surg., 90, 1200–1212, 2003.

    Article  CAS  Google Scholar 

  105. Kaye, S. B. Gemcitabine: current status of phase I and II trials. J. Clin. Oncol., 12, 1527–1531, 1994.

    PubMed  CAS  Google Scholar 

  106. Moore, M., Andersen, J., Burris, H., et al. A randomized trial of gemcitabine (Gem) vs 5FU as first-line therapy in advanced pancreatic cancer. Proc. Am. Soc. Clin. Oncol., 14, 199, 1995.

    Google Scholar 

  107. Burris, H. A. I., Moore, M. J., Green, M. R., et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol., 15, 2403–2413, 1997.

    PubMed  CAS  Google Scholar 

  108. Abratt, R., Bezwoda, W. R., Falkson, G., Goedhals, L., Hacking, D., and Rugg, T. Efficacy and safety profile of gemcitabine in non-small-cell lung cancer: a phase II study. J. Clin. Oncol., 12, 1535–1540, 1994.

    PubMed  CAS  Google Scholar 

  109. Abratt, R. P., Bezwoda, W. R., Goedhals, L., and Hacking, D. J. Weekly gemcitabine with monthly cisplatin: effective chemotherapy for advanced non-small-cell lung cancer. J. Clin. Oncol., 15, 744–749, 1997.

    PubMed  CAS  Google Scholar 

  110. Plunkett, W., Huang, P., Searcy, C. E., and Gandhi, V. Gemcitabine: preclinical pharmacology and mechanisms of action. Semin. Oncol., 23, 3–15, 1996.

    PubMed  CAS  Google Scholar 

  111. Burke, T., Lee, S., Ferguson, P. J., and Hammond, J. R. Interaction of 2′,2′-diflu-orodeoxycytidine (gemcitabine) and formycin B with the Na+-dependent and-independent nucleoside transporters of Ehrlich ascites tumor cells. J. Pharmacol. Exp. Ther., 286, 1333–1340, 1998.

    PubMed  CAS  Google Scholar 

  112. Hammond, J. R., Lee, S., and Ferguson, P. J. [H-3]Gemcitabine uptake by nucleoside transporters in a human head and neck squamous carcinoma cell line. J. Pharmacol. Exp. Ther., 288, 1185–1191, 1999.

    PubMed  CAS  Google Scholar 

  113. Heinemann, V., Hertel, L. W., Grindey, G. B., and Plunkett, W. Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-β-D-arabinofuranosylcytosine. Cancer Res., 48, 4024–4031, 1988.

    PubMed  CAS  Google Scholar 

  114. Shewach, D. S., Reynolds, K. K., and Hertel, L. Nucleotide specificity of human deoxycytidine kinase. Mol. Pharmacol., 42, 518–524, 1992.

    PubMed  CAS  Google Scholar 

  115. Baker, C. H., Banzon, J., Bollinger, J. M., et al. 2′-Deoxy-2′-methylenecyti-dine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: Potent mechanism-based inhibitors of ribonucleotide reductase. J. Med. Chem., 34, 1879–1884, 1991.

    Article  PubMed  CAS  Google Scholar 

  116. Heinemann, V., Xu, Y.-Z., Chubb, S., et al. Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2′,2′-difluorodeoxycytidine. Mol.Pharmacol., 38, 567–572, 1990.

    PubMed  CAS  Google Scholar 

  117. Lawrence, T. S., Chang, E. Y., Hahn, T. M., Hertel, L. W., and Shewach, D. S. Radiosensitization of pancreatic cancer cells by 2′,2′-difluoro-2′-deoxycytidine. Int. J. Radiat. Oncol. Biol. Phys., 34, 867–872, 1996.

    Article  PubMed  CAS  Google Scholar 

  118. Shewach, D. S., Hahn, T. M., Chang, E., Hertel, L. W., and Lawrence, T. S. Metabolism of 2′,2′-difluoro-2′-deoxycytidine and radiation sensitization of human colon carcinoma cells. Cancer Res., 54, 3218–3223, 1994.

    PubMed  CAS  Google Scholar 

  119. Ostruszka, L. J., and Shewach, D. S. The role of DNA synthesis inhibition in the cytotoxicity of 2′,2′-difluoro-2′-deoxycytidine. Cancer Chemother. Pharmacol., 52, 325–332, 2003.

    Article  PubMed  CAS  Google Scholar 

  120. Huang, P., Chubb, S., Hertel, L. W., Grindey, G. B., and Plunkett, W. Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res., 51, 6110–6117, 1991.

    PubMed  CAS  Google Scholar 

  121. Ross, D. D., and Cuddy, D. P. Molecular effects of 2′,2′-difluorodeoxycytidine (gemcitabine) on DNA replication in intact HL-60 cells. Biochem. Pharmacol., 48, 1619–1630, 1994.

    Article  PubMed  CAS  Google Scholar 

  122. Jiang, H. Y., Hickey, R. J., Abdel-Aziz, W., and Malkas, L. H. Effects of gemcitabine and araC on in vitro DNA synthesis mediated by the human breast cell DNA synthesome. Cancer Chemother. Pharmacol., 45, 320–328, 2000.

    Article  PubMed  CAS  Google Scholar 

  123. Schy, W. E., Hertel, L. W., Kroin, J. S., Bloom, L. B., Goodman, M. E, and Richardson, F. C. Effect of a template-located 2′,2′-difluorodeoxycytidine on the kinetics and fidelity of base insertion by Klenow (3′-5′exonuclease-) fragment. Cancer Res., 53, 4582–4587, 1993.

    PubMed  CAS  Google Scholar 

  124. Ruiz van Haperen, V. W. T., Veerman, G., Vermorken, J. B., and Peters, G. J. 2′,2′-Difluoro-deoxycytidine (gemcitabine) incorporation into RNA and DNA of tumour cell lines. Biochem. Pharmacol., 46, 762–766, 1993.

    Article  Google Scholar 

  125. Abbruzzese, J. L., Grunewald, R., Weeks, E. A., et al. A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J. Clin. Oncol., 9, 491–498, 1991.

    PubMed  CAS  Google Scholar 

  126. Heinemann, V., Xu, Y.-Z., Chubb, S., Sen, A., Hertel, L. W., Grindey, G. B., and Plunkett, W. Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer Res., 52, 533–539, 1992.

    PubMed  CAS  Google Scholar 

  127. Rockwell, S., and Grindey, G. B. Effect of 2′,2′-difluorodeoxycytidine on the viability and radiosensitivity of EMT6 cells in vitro. Oncol. Res., 4, 151–155, 1992.

    PubMed  CAS  Google Scholar 

  128. Lawrence, T. S., Chang, E. Y., Hahn, T. M., and Shewach, D. S. Delayed radiosensitization of human colon carcinoma cells after a brief exposure to 2′,2′-difluoro-2′-deoxycytidine (gemcitabine). Clin. Cancer Res., 6, 777–782, 1997.

    Google Scholar 

  129. Rosier, J. E, Beauduin, M., Bruniaux, M., et al. The effect of 2′-2 ′difluo-rodeoxycytidine (dFdC, gemcitabine) on radiation-induced cell lethality in two human head and neck squamous carcinoma cell lines differing in intrinsic radiosensitivity. Int. J. Radiat. Biol., 75, 245–251, 1999.

    Article  PubMed  CAS  Google Scholar 

  130. Shewach, D. S., and Lawrence, T. S. Gemcitabine and radiosensitization in human tumor cells. Invest. New Drugs, 14, 257–263, 1996.

    Article  PubMed  CAS  Google Scholar 

  131. Tolis, C., Peters, G. J., Ferreira, C. G., Pinedo, H. M., and Giaccone, G. Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur. J. Cancer, 35, 706–807, 1999.

    Article  Google Scholar 

  132. Cappella, P., Tomasoni, D., Faretta, M., et al. Cell cycle effects of gemcitabine. Int. J. Cancer, 93, 401–408, 2001.

    Article  PubMed  CAS  Google Scholar 

  133. Latz, D., Fleckenstein, K., Eble, M., Blatter, J., Wannenmacher, M., and Weber, K. J. Radiosensitizing potential of gemcitabine (2′,2′-difluoro-2′-deoxycytidine) within the cell cycle in vitro. Int. J. Radiat. Oncol. Biol. Phys., 41, 875–882, 1998.

    Article  PubMed  CAS  Google Scholar 

  134. Ostruszka, L. J., and Shewach, D. S. The role of cell cycle progression in radiosensitization by 2′,2′-difluoro-2′-deoxycytidine. Cancer Res., 60, 6080–6088, 2000.

    PubMed  CAS  Google Scholar 

  135. Chen, M., Hough, A. M., and Lawrence, T. S. The role of p53 in gemcitabine-mediated cytotoxicity and radiosensitization. Cancer Chemother. Pharmacol., 45, 369–374, 2000.

    Article  PubMed  CAS  Google Scholar 

  136. Robinson, B. W., and Shewach, D. S. Radiosensitization by gemcitabine in p53 wild-type and mutant MCF-7 breast carcinoma cell lines. Clin. Cancer Res., 7, 2581–2589, 2001.

    PubMed  CAS  Google Scholar 

  137. Gregoire, V., Rosier, J. F., De Bast, M., et al. Role of deoxycytidine kinase (dCK) activity in gemcitabine’s radioenhancement in mice and human cell lines in vitro. Radiother. Oncol., 63, 329–338, 2002.

    Article  PubMed  CAS  Google Scholar 

  138. Gregoire, V., Beauduin, M., Bruniaux, M., DeCoster, B., Octave Prignot, M., and Scalliet, P. Radiosensitization of mouse sarcoma cells by fludarabine (F-ara-A) or gemcitabine (dFdC), two nucleoside analogues, is not mediated by an increased induction or a repair inhibition of DNA double-strand breaks as measured by pulsed-field gel electrophoresis. Int. J. Radiat. Biol., 73, 511–520, 1998.

    Article  PubMed  CAS  Google Scholar 

  139. Rosier, J. F., Michaux, L., Ameye, G., et al. The radioenhancement of two human head and neck squamous cell carcinomas by 2′-2′difluorodeoxycytidine (gemcitabine; dFdC) is mediated by an increase in radiation-induced residual chromosome aberrations but not residual DNA DSBs. Mut. Res. Fundam. Mol. Mech. Mutagen., 527, 15–26, 2003.

    Article  CAS  Google Scholar 

  140. van Putten, J. W. G., Groen, H. J. M., Smid, K., Peters, G. J., and Kampinga, H. H. End-joining deficiency and radiosensitization induced by gemcitabine. Cancer Res., 61, 1585–1591, 2001.

    PubMed  Google Scholar 

  141. Wachters, F. M., van Putten, J. W. G., Maring, J. G., Zdzienicka, M. Z., Groen, H. J. M., and Kampinga, H. H. Selective targeting of homologous DNA recombination repair by gemcitabine. Int. J. Radiat. Oncol. Biol. Phys., 57, 553–562, 2003.

    Article  PubMed  CAS  Google Scholar 

  142. Kunz, B. A. Genetic effects of deoxyribonucleotide imbalances. Environ. Mutagen., 4, 695–725, 1982.

    Article  PubMed  CAS  Google Scholar 

  143. Bebenek, K., Roberts, J. D., and Kunkel, T. A. The effects of dNTP pool imbalances on frameshift fidelity during DNA replication. J. Biol. Chem., 267, 3589–3596, 1992.

    PubMed  CAS  Google Scholar 

  144. Martomo, S. A., and Mathews, C. K. Effects of biological DNA precursor pool asymmetry upon accuracy of DNA replication in vitro. Mutat. Res. Fundam. Mol. Mech. Mutagen., 499, 197–211, 2002.

    Article  CAS  Google Scholar 

  145. Koi, M., Umar, A., Chauhan, D. P., et al. Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reducesN-methyl-N?-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. Cancer Res., 54, 4308–4312, 1994.

    PubMed  CAS  Google Scholar 

  146. Jacob, S., Aguado, M., Fallik, D., and Praz, F. The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res., 61, 6555–6562, 2001.

    PubMed  CAS  Google Scholar 

  147. Robinson, B. W., Im, M. L, Ljungman, M., Praz, F., and Shewach, D. S. Enhanced radiosensitization with gemcitabine in mismatch repair-deficient HCT-116 cells. Cancer Res., 63, 6935–6941, 2003.

    PubMed  CAS  Google Scholar 

  148. Lawrence, T. S., Davis, M. A., Hough, A., and Rehemtulla, A. The role of apoptosis in 2′,2′-difluoro-2′-deoxycytidine (gemcitabine)-mediated radiosensitization. Clin. Cancer Res., 7, 314–319, 2001.

    PubMed  CAS  Google Scholar 

  149. Eisbruch, A., Shewach, D. S., Bradford, C. R., et al. Radiation concurrent with gemcitabine for locally advanced head and neck cancer: a phase I trial and intra-cellular drug incorporation study. J. Clin. Oncol., 19, 792–799, 2001.

    PubMed  CAS  Google Scholar 

  150. Eisbruch, A., Lyden, T., Bradford, C. R., et al. Objective assessment of swallowing dysfunction and aspiration after radiation concurrent with chemotherapy for head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys., 53, 23–28, 2002.

    Article  PubMed  Google Scholar 

  151. Fields, M. T., Eisbruch, A., Normolle, D., et al. Radiosensitization produced in vivo by once-vs. twice-weekly 2′,2′-difluoro-2′-deoxycytidine (gemcitabine). Int. J. Radiat. Oncol. Biol. Phys., 47, 785–791, 2000.

    Article  PubMed  CAS  Google Scholar 

  152. Blackstock, A. W., Bernard, S. A., Richards, F., et al. Phase I trial of twice-weekly gemcitabine and concurrent radiation in patients with advanced pancreatic cancer. J. Clin. Oncol., 17, 2208–2212, 1999.

    PubMed  CAS  Google Scholar 

  153. Pipas, J. M., Mitchell, S. E., Barth, R. J., et al. Phase I study of twice-weekly gemcitabine and concomitant external-beam radiotherapy in patients with a denocar-cinoma of the pancreas. Int. J. Radiat. Oncol. Biol. Phys., 50, 1317–1322, 2001.

    Article  PubMed  CAS  Google Scholar 

  154. McGinn, C. J., Zalupski, M., Shureiqi, I., et al. Phase I trial of radiation dose escalation with concurrent weekly full-dose gemcitabine in patients with advanced pancreatic cancer. J. Clin. Oncol., 19, 4202–4208, 2001.

    PubMed  CAS  Google Scholar 

  155. Mason, K. A., Milas, L., Hunter, N. R., et al. Maximizing therapeutic gain with gemcitabine and fractionated radiation. Int. J. Radiat. Oncol. Biol. Phys., 44, 1125–1135, 1999.

    Article  PubMed  CAS  Google Scholar 

  156. Milas, L., Fujii, T., Hunter, N., et al. Enhancement of tumor radioresponse in vivo by gemcitabine. Cancer Res., 59, 104–114, 1999.

    Google Scholar 

  157. Gregoire, V., Beauduin, M., Rosier, J. F., et al. Kinetics of mouse jejunum radiosensitization by 2′,2′-difluorodeoxycytidine (gemcitabine) and its relationship with pharmacodynamics of DNA synthesis inhibition and cell cycle redistribution in crypt cells. Br. J. Cancer, 76, 1315–1321, 1997.

    PubMed  CAS  Google Scholar 

  158. Wolff, R. A., Evans, D. B., Gravel, D. M., et al. Phase I trial of gemcitabine combined with radiation for the treatment of locally advanced pancreatic adenocarcinoma. Clin. Cancer Res., 7, 2246–2253, 2001.

    PubMed  CAS  Google Scholar 

  159. Lange, S. M., van Groeningen, C. J., Meijer, O. W. M., et al. Gemcitabine-radio-therapy in patients with locally advanced pancreatic cancer. Eur. J. Cancer, 38, 1212–1217, 2002.

    Article  PubMed  Google Scholar 

  160. Talamonti, M. S., Catalano, P. J., Vaughn, D. J., et al. Eastern Cooperative Oncology Group phase I trial of protracted venous infusion fluorouracil plus weekly gemcitabine with concurrent radiation therapy in patients with locally advanced pancreas cancer: a regimen with unexpected early toxicity. J. Clin. Oncol., 18, 3384–3389, 2000.

    PubMed  CAS  Google Scholar 

  161. Muler, J. H., McGinn, C. J., Normolle, D., et al. Phase I trial using a time-to-event continual reassessment strategy for dose escalation of cisplatin combined with gemcitabine and radiation therapy in pancreatic cancer. J. Clin. Oncol., 22, 238–243, 2004.

    Article  PubMed  CAS  Google Scholar 

  162. Trodella, L., Granone, P., Valente, S., et al. Phase I trial of weekly gemcitabine and concurrent radiotherapy in patients with inoperable non-small-cell lung cancer. J. Clin. Oncol., 20, 804–810, 2002.

    Article  PubMed  CAS  Google Scholar 

  163. Blackstock, A. W., Lesser, G. J., Fletcher-Steede, J., et al. Phase I study of twice-weekly gemcitabine and concurrent thoracic radiation for patients with locally advanced non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 51, 1281–1289, 2001.

    Article  PubMed  CAS  Google Scholar 

  164. Goor, C., Scalliet, P., van Meerbeek, J., et al. A phase II study combining gemcitabine with radiotherapy in stage III NSCLC. Ann. Oncol., 7, 101, 1996.

    Google Scholar 

  165. McGinn, C. J., and Zalupski, M. M. Radiation therapy with once-weekly gemcitabine in pancreatic cancer: current status of clinical trials. Int. J. Radiat. Oncol. Biol. Phys., 56, 10–15, 2003.

    Article  PubMed  Google Scholar 

  166. Yavuz, A. A., Aydin, F., Yavuz, M. N., Ilis, E., and Ozdemir, F. Radiation therapy and concurrent fixed dose amifostine with escalating doses of twice-weekly gemcitabine advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys., 51, 974–981, 2001.

    Article  PubMed  CAS  Google Scholar 

  167. Joschko, M. A., Webster, L. K., Groves, J., et al. Enhancement of radiation-induced regrowth delay by gemcitabine in a human tumor xenograft model. Radiat. Oncol. Invest., 5, 62–71, 1997.

    Article  CAS  Google Scholar 

  168. Gandhi, V., and Plunkett, W. Cellular and clinical pharmacology of fludarabine. Clin. Pharmacokinet., 41, 93–103, 2002.

    Article  PubMed  CAS  Google Scholar 

  169. Iliakis, G., and Bryant, P. E. Effects of the nucleoside analogs α-ara-A,β-ara-A and β-ara-C on cell-growth and repair of both potentially lethal damage and DNA double strand breaks in mammalian-cells in culture. AnticancerRes., 3, 143–149, 1983.

    CAS  Google Scholar 

  170. Mustafi R., Heaton, D., Brinkman, W., and Schwartz, J. L. Enhancement of X-ray toxicity in squamous-cell carcinoma cell-lines by DNA-polymerase inhibitors. Int. J. Radiat. Biol., 65, 675–681, 1994.

    Article  PubMed  CAS  Google Scholar 

  171. Kim, J. H., Alfieri, A. A., Kim, S. H., and Fuks, Z. The potentiation of radiation response on murine tumor by fludarabine phosphate. Cancer Lett., 31, 69–76, 1986.

    Article  PubMed  CAS  Google Scholar 

  172. Tseng, W. C., Derse, D., Cheng, Y., Brockman, R. W., and Bennett, L. L. In vitro biological activity of 9-β-D-arabinofuranosyl-2-fluoroadenine and the biochemical actions of its triphosphate on DNA polymerases and ribonucleotide reductase from HeLa cells. Mol. Pharmacol., 21, 474–477, 1982.

    PubMed  CAS  Google Scholar 

  173. Parker, W. B., and Cheng, Y. C. Inhibition of DNA primase by nucleoside triphos-phates and their arabinofuranosyl analogs. Mol. Pharmacol., 31, 146–151, 1987.

    PubMed  CAS  Google Scholar 

  174. Catapano, C. V., Perrino, F. W., and Fernandes, D. J. Primer RNA chain termination induced by 9-β-D-arabinofuranosyl-2-fluoroadenine 5′-triphosphate—a mechanism of DNA synthesis inhibition. J. Biol. Chem., 268, 7179–7185, 1993.

    PubMed  CAS  Google Scholar 

  175. Yang, S. W., Huang, P., Plunkett, W., Becker, F. F., and Chan, J. Y. H. Dual mode of inhibition of purified DNA ligase I from human cells by 9-β-D-arabinofura-nosyl-2-fluoroadenine triphosphate. J. Biol. Chem., 267, 2345–2349, 1992.

    PubMed  CAS  Google Scholar 

  176. Chang, C.-H., and Cheng, Y. Effects of deoxyadenosine triphosphate and 9-β-D-arabinofuranosyladenine 5′-triphosphate on human ribonucleotide reductase from Molt-4F cells and the concept of “self-potentiation.” Cancer Res., 40, 3555–3558, 1980.

    PubMed  CAS  Google Scholar 

  177. White, E. L., Shaddix, S. C., Brockman, R. W., and Bennett, L. L. Comparison of the actions of 9-β-D-arabinofuranosyl-2-fluoroadenine and 9-β-D-arabinofura-nosyladenine on target enzymes from mouse tumor cells. Cancer Res., 42, 2260–2264, 1982.

    PubMed  CAS  Google Scholar 

  178. Huang, P., Chubb, S., and Plunkett, W. Termination of DNA synthesis by 9-β-D-arabinofuranosyl-2-fluoroadenine. A mechanism for cytotoxicity. J. Biol. Chem., 265, 16,617–16,625, 1990.

    PubMed  CAS  Google Scholar 

  179. Huang, P., and Plunkett, W. Fludarabine-and gemcitabine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother. Pharmacol., 36, 181–188, 1995.

    Article  PubMed  CAS  Google Scholar 

  180. Gregoire, V., Hunter, N., Brock, W. A., Milas, L., Plunkett, W., and Hittelman, W. N. Fludarabine improves the therapeutic ratio of radiotherapy in mouse-tumors after single-dose irradiation. Int. J. Radiat. Oncol. Biol. Phys., 30, 363–371, 1994.

    PubMed  CAS  Google Scholar 

  181. Gregoire, V., Hunter, N., Milas, L., Brock, W. A., Plunkett, W., and Hittelman, W. N. Potentiation of radiation-induced regrowth delay in murine tumors by fludarabine. Cancer Res., 54, 468–474, 1994.

    PubMed  CAS  Google Scholar 

  182. Gregoire, V., Van, N. T., Stephens, C., et al. The role of fludarabine-induced apoptosis and cell cycle synchronization in enhanced murine tumor radiation response in vivo. Cancer Res., 54, 6201–6209, 1994.

    PubMed  CAS  Google Scholar 

  183. Li, L., Liu, X. M., Glassman, A. B., et al. Fludarabine triphosphate inhibits nucleotide excision repair of cisplatin-induced DNA adducts in vitro. Cancer Res., 57, 1487–1494, 1997.

    PubMed  CAS  Google Scholar 

  184. Yamauchi, T., Nowak, B. J., Keating, M. J., and Plunkett, W. DNA repair initiated in chronic lymphocytic leukemia lymphocytes by 4-hydroperoxycyclophos-phamide is inhibited by fludarabine and clofarabine. Clin. Cancer Res., 7, 3580–3589, 2001.

    PubMed  CAS  Google Scholar 

  185. Laurent, D., Pradier, O., Schmidberger, H., Rave-Frank, M., Frankenberg, D., and Hess, C. F. Radiation rendered more cytotoxic by fludarabine monophosphate in a human oropharynx carcinoma cell line than in fetal lung fibroblasts. J. Cancer Res. Clin. Oncol., 124, 485–492, 1998.

    Article  PubMed  CAS  Google Scholar 

  186. Gregoire, V., Ruifrok, A. C. C., Price, R. E., et al. Effect of intra-peritoneal fludarabine on rat spinal-cord tolerance to fractionated-irradiation. Radiother. Oncol., 36, 50–55, 1995.

    Article  PubMed  CAS  Google Scholar 

  187. Gregoire, V., Ang, K. K., Rosier, J. F., et al. A phase I study of fludarabine combined with radiotherapy in patients with intermediate to locally advanced head and neck squamous cell carcinoma. Radiother. Oncol., 63, 187–193, 2002.

    Article  PubMed  CAS  Google Scholar 

  188. McCarthy, J. R., Matthews, D. P., Stemerick, D. M., et al. Stereospecific method to E-terminal and Z-terminal fluoro olefins and its application to the synthesis of 2′-deoxy-2′-fluoromethylene nucleosides as potential inhibitors of ribonucle-oside diphosphate reductase. J. Am. Chem. Soc., 113, 7439–7440, 1991.

    Article  CAS  Google Scholar 

  189. Takahashi, T., Nakashima, A., Kanazawa, J. J., et al. Metabolism and ribonu-cleotide reductase inhibition of (E)-2 ′-deoxy-2 ′-(fluoromethylene)cytidine, MDL 101,731 in human cervical carcinoma HeLa S-3 cells. Cancer Chemother. Pharmacol., 41, 268–274, 1998.

    Article  PubMed  CAS  Google Scholar 

  190. van der Donk, W. A., Yu, G., Silva, D. J., and Stubbe, J. Inactivation of ribonucleotide reductase by (E)-2′-fluoromethylene-2′-deoxycytidine 5′-diphosphate: a paradigm for nucleotide mechanism-based inhibitors. Biochem., 35, 8381–8391, 1996.

    Article  Google Scholar 

  191. Zhou, Y., Achanta, G., Pelicano, H., Gandhi, V., Plunkett, W., and Huang, P. Action of (E)-2′-deoxy-2?′(fluoromethylene)cytidine on DNA metabolism: incorporation, excision, and cellular response. Mol. Pharmacol., 61, 222–229, 2002.

    Article  PubMed  CAS  Google Scholar 

  192. Bitonti, A. J., Dumont, J. A., Bush, T. L., et al. Regression of human breast tumor xenografts in response to (E)-2′-deoxy-2′-(fluoromethylene)cytidine, and inhibitor of ribonucleoside diphosphate reductase. Cancer Res., 54, 1485–1490, 1994.

    PubMed  CAS  Google Scholar 

  193. Piepmeier, J. M., Rabidou, N., Schold, S. C., Bitonti, A. J., Prakash, N. J., and Bush, T. L. In vitro and in vivo inhibition of glioblastoma and neuroblastoma with MDL 101,731, a ribonucleoside diphosphate reductase inhibitor. Cancer Res., 56, 359–361, 1996.

    PubMed  CAS  Google Scholar 

  194. Miwa, M., Eda, H., Ura, M., et al. High susceptibility of human cancer xenografts with higher levels of cytidine deaminase to a 2 ′-deoxycytidine antimetabolite, 2′-deoxy-2 ′-methylidenecytidine. Clin. Cancer Res., 4, 493–497, 1998.

    PubMed  CAS  Google Scholar 

  195. Snyder, R. D. Effect of 2′-deoxy-2′-(fluoromethylene) cytidine on the ultraviolet and x-ray-sensitivity of HeLa-cells. Oncol. Res., 6, 177–182, 1994.

    PubMed  CAS  Google Scholar 

  196. Coucke, P. A., Decosterd, L. A., Li, Y. X., et al. The ribonucleoside diphosphate reductase inhibitor (E)-2′-deoxy(fluoromethylene)cytidine as a cytotoxic radiosensitizer in vitro. Cancer Res., 59, 5219–5226, 1999.

    PubMed  CAS  Google Scholar 

  197. Li, Y. X., Sun, L. Q., Weber-Johnson, K., Paschoud, N., and Coucke, P. A. Potentiation of cytotoxicity and radiosensitization of (E)-2-deoxy-2′-(fluorometh-ylene) cytidine by pentoxifylline in vitro. Int. J. Cancer, 80, 155–160, 1999.

    Article  PubMed  CAS  Google Scholar 

  198. Sun, L.-Q., Li, Y.-X., Guillou, L., and Coucke, P. A. (E)-2′-Deoxy-2′-(fluo-romethylene) cytidine potentiates radioresponse of two human solid tumor xenografts. Cancer Res., 58, 5411–5417, 1998.

    PubMed  CAS  Google Scholar 

  199. Rodriguez, G. I., Jones, R. E., Orenberg, E. K., Stoltz, M. L., and Brooks, D. J. Phase I clinical trials of tezacitabine [(E)-2 ′-deoxy-2 ′-(fluoromethylene)cytidine] in patients with refractory solid tumors. Clin. Cancer Res., 8, 2828–2834, 2002.

    PubMed  CAS  Google Scholar 

  200. Masuda, N., Negoro, S., Takeda, K., et al. Phase I and pharmacologic study of oral (E)-2′-deoxy-2′-(fluoromethylene) cytidine: on a daily × 5-d schedule. Invest. New Drugs, 16, 245–254, 1998.

    Article  PubMed  CAS  Google Scholar 

  201. Eda, H., Ura, M., Ouchi, K. E, Tanaka, Y., Miwa, M., and Ishitsuka, H. The antiproliferative activity of DMDC is modulated by inhibition of cytidine deaminase. Cancer Res., 58, 1165–1169, 1998.

    PubMed  CAS  Google Scholar 

  202. Reichard, P. Interactions between deoxyribonucleotide and DNA synthesis. Annu. Rev. Biochem., 57, 349–374, 1988.

    Article  PubMed  CAS  Google Scholar 

  203. Yarbro, J. W. Mechanism of action of hydroxyurea. Semin. Oncol., 19, 1–10, 1992.

    PubMed  CAS  Google Scholar 

  204. Donehower, R. C. An overview of the clinical experience with hydroxyurea. Semin. Oncol., 19, 11–19, 1992.

    PubMed  CAS  Google Scholar 

  205. Nocentini, G. Ribonucleotide reductase inhibitors: new strategies for cancer chemotherapy. Crit. Rev. Oncol./Hematol., 22, 89–126, 1996.

    Article  CAS  Google Scholar 

  206. Lori, F., Malykh, A., Cara, A., et al. Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication. Science, 266, 801–805, 1994.

    Article  PubMed  CAS  Google Scholar 

  207. Stubbe, J. Ribonucleotide reductases. Adv. Enzymol., 63, 349–419, 1990.

    PubMed  CAS  Google Scholar 

  208. Jordan, A., and Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem., 67, 71–98, 1998.

    Article  PubMed  CAS  Google Scholar 

  209. Fox, R. M. Changes in deoxynucleoside triphosphate pools induced by inhibitors and modulators of ribonucleotide reductase. Pharmacol. Ther., 30, 31–42, 1985.

    Article  PubMed  CAS  Google Scholar 

  210. Arner, E. S. J., and Eriksson, S. Mammalian deoxyribonucleoside kinases. Pharmacol. Ther., 67, 155–186, 1995.

    Article  PubMed  CAS  Google Scholar 

  211. Moore, E. C., and Hurlbert, R. B. Regulation of mammalian deoxyribonucleotide biosynthesis by nucleotides as activators and inhibitors. J. Biol. Chem., 241, 4802–4809, 1966.

    PubMed  CAS  Google Scholar 

  212. Nutter, L. M., and Cheng, Y. C. Nature and properties of mammalian ribonucle-oside diphosphate reductase. Pharmacol. Ther., 26, 191–207, 1984.

    Article  PubMed  CAS  Google Scholar 

  213. Gandhi, V., Kantarjian, H., Talpaz, M., Robertson, L. E., and O’Brien, S. Cellular pharmacodynamics and plasma pharmacokinetics of parenterally infused hydrox-yurea during a phase I clinical trial in chronic myelogenous leukemia. J. Clin. Oncol., 16, 2321–2331, 1998.

    PubMed  CAS  Google Scholar 

  214. Giles, F. J., Fracasso, P. M., Kantarjian, H. M., et al. Phase I and pharmacody-namic study of Triapine, a novel ribonucleotide reductase inhibitor, in patients with advanced leukemia. Leuk. Res., 27, 1077–1083, 2003.

    Article  PubMed  CAS  Google Scholar 

  215. Sinclair, W. K. Hydroxyurea—differential lethal effects on cultured mammalian cells during cell cycle. Science, 150, 1729, 1965.

    Article  PubMed  CAS  Google Scholar 

  216. Sinclair, W. K. The combined effect of hydroxyurea and x-rays on Chinese hamster cells in vitro. Cancer Res., 28, 198–206, 1968.

    PubMed  CAS  Google Scholar 

  217. Sinclair, W. K. X-ray survival and DNA synthesis in Chinese hamster cells. I. The effect of inhibitors added before x-irradiation. Proc. Natl. Acad. Sci. U. S. A, 58, 115–122, 1967.

    Article  PubMed  CAS  Google Scholar 

  218. Ward, J. E, Joner, E. L, and Blakely, W. F. Effects of inhibitors of DNA strand break repair on HeLa cell radiosensitivity. Cancer Res., 44, 59–63, 1984.

    PubMed  CAS  Google Scholar 

  219. Fram, R. J., and Kufe, D. W. Inhibition of DNA excision repair and the repair of x-ray-induced DNA damage by cytosine arabinoside and hydroxyurea. Pharmacol. Ther., 31, 165–176, 1985.

    Article  PubMed  CAS  Google Scholar 

  220. Kuo, M.-L., Kunugi, K. A., Lindstrom, M. J., and Kinsella, T. J. The interaction of hydroxyurea and iododeoxyuridine on the radiosensitivity of human bladder cancer cells. Cancer Res., 55, 2800–2805, 1995.

    PubMed  CAS  Google Scholar 

  221. Kinsella, T. J. Radiosensitization and cell kinetics: clinical implications for S-phase-specific radiosensitizers. Semin. Oncol., 19, 41–47, 1992.

    PubMed  CAS  Google Scholar 

  222. Hreshchyshyn, M. M., Aron, B. S., Boronow, R. C., et al. Hydroxyurea or placebo combined with radiation to treat stages HTB and IV cervical cancer confined to the pelvis. Int. J. Radiat. Oncol. Biol. Phys., 5, 317–322, 1979.

    PubMed  CAS  Google Scholar 

  223. Piver, M., Khalil, M., and Emrich, L. J. Hydroxyurea plus pelvic irradiation vs placebo plus pelvic irradiation in nonsurgically staged stage IIIB cervical cancer. J. Surg. Oncol., 42, 120–125, 1989.

    Article  PubMed  CAS  Google Scholar 

  224. Prados, M. D., Larson, D. A., Lamborn, K., et al. Radiation therapy and hydroxyurea followed by the combination of 6-thioguanine and BCNU for the treatment of primary malignant brain tumors. Int. J. Radiat. Oncol. Biol. Phys., 40, 57–63, 1998.

    Article  PubMed  CAS  Google Scholar 

  225. Beitler, J. J., Anderson, P., Haynes, H., et al. Phase I clinical trial of parenteral hydroxyurea in combination with pelvic and para-aortic external radiation and brachytherapy for patients with advanced squamous cell cancer of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys., 52, 637–642, 2002.

    Article  PubMed  CAS  Google Scholar 

  226. Argiris, A., Haraf, D. J., Kies, M. S., and Vokes, E. E. Intensive concurrent chemoradiotherapy for head and neck cancer with 5-fluorouracil-and hydrox-yurea-based regimens: reversing a pattern of failure. Oncologist, 8, 350–360, 2003.

    Article  PubMed  CAS  Google Scholar 

  227. Beitler, J. J., Anderson, P., Haynes, H., et al. Phase I clinical trial of parenteral hydroxyurea in combination with pelvic and para-aortic external radiation and brachytherapy for patients with advanced squamous cell cancer of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys., 52, 637–642, 2002.

    Article  PubMed  CAS  Google Scholar 

  228. Wadler, S., Horowitz, R., Rao, J., Mao, X., Schlesinger, K., and Schwartz, E. L. Interferon augments the cytotoxicity of hydroxyurea without enhancing its activity against the M2 subunit of ribonucleotide reductase: effects in wild-type and resistant human colon cancer cells. Cancer Chemother. Pharmacol., 38, 522–528, 1996.

    Article  PubMed  CAS  Google Scholar 

  229. Robinson, B. W., and Shewach, D. S. Gemcitabine enhances the mutation rate in mismatch repair deficient but not in mismatch repair proficient HCT116 cells. Proc. Am. Assoc. Cancer Res., 44, 1173, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shewach, D.S., Lawrence, T.S. (2006). Nucleoside Radiosensitizers. In: Peters, G.J. (eds) Deoxynucleoside Analogs In Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-148-2_13

Download citation

Publish with us

Policies and ethics