Skip to main content

Regulation of Ornithine Decarboxylase Expression

  • Chapter

Abstract

It has become increasingly obvious during the last two decades that a multitude of cellular processes are highly dependent on adequate levels of polyamines (16). Too high concentrations of the polyamines are toxic to the cell and may induce cell death or apoptosis (7). On the other hand, too low concentrations may negatively affect anabolic events, such as the synthesis of DNA, RNA, and protein, eventually giving rise to cellgrowth arrest (6). Thus it is important for cells to maintain their polyamine concentrations within rather narrow limits. Polyamine homeostasis is achieved by a careful balance between synthesis, degradation, and uptake of the amines (3). The introduction of molecular techniques in studies concerning polyamine metabolism has revealed a complex network of regulatory mechanisms involved in the cellular control of polyamine levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tabor, H. and Tabor, C. W. (1984) Polyamines. Ann. Rev. Biochem. 53, 749–790.

    Article  PubMed  CAS  Google Scholar 

  2. Pegg, A. E. (1988) Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res. 48, 759–774.

    PubMed  CAS  Google Scholar 

  3. Heby, O. and Persson, L. (1990) Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem. Sci. 15, 153–158.

    Article  PubMed  CAS  Google Scholar 

  4. Jä;nne, J., Alhonen, L., and Leinonen, P. (1991) Polyamines: From molecular biology to clinical applications. Ann. Med. 23, 241–259.

    Google Scholar 

  5. Marton, L.J. and Pegg, A. E. (1995) Polyamines as targets for therapeutic intervention. Annu. Rev. Pharmacol. Toxicol. 35, 55–91.

    Article  PubMed  CAS  Google Scholar 

  6. Wallace, H. M., Fraser, A.V., and Hughes, A. (2003) A perspective of polyamine metabolism. Biochem. J. 376, 1–14.

    Article  PubMed  CAS  Google Scholar 

  7. Tome, M. E., Fiser, S. M., Payne, C.M., and Gerner, E. W.(1997) Excess putrescine accumulation inhibits the formation of modified eukaryotic initiation factor 5A (eIF-5A) and induces apoptosis. Biochem. J. 328, 847–854.

    PubMed  CAS  Google Scholar 

  8. McCann, P.P. and Pegg, A. E. (1992) Ornithine decarboxylase as an enzyme target for therapy. Pharmacol. Ther. 54, 195–215.

    Article  PubMed  CAS  Google Scholar 

  9. Hayashi, S., Murakami, Y., and Matsufuji, S. (1996) Ornithine decarboxylase antizyme: A novel type of regulatory protein. Trends Biochem. Sci. 21, 27–30.

    PubMed  CAS  Google Scholar 

  10. Coffino, P. (2001) Regulation of cellular polyamines by antizyme. Nat. Rev. Mol. Cell. Biol. 2, 188–194.

    Article  PubMed  CAS  Google Scholar 

  11. Watanabe, S., Kusama-Eguchi, K., Kobayashi, H., and Igarashi, K. (1991) Estimation of polyamine binding to macromolecules and ATP in bovine lymphocytes and rat liver. J. Biol. Chem. 266, 20,803–20,809.

    PubMed  CAS  Google Scholar 

  12. Katz, A. and Kahana, C.(1987) Transcriptional activation of mammalian ornithine decarboxylase during stimulated growth. Mol. Cell. Biol. 7, 2641–2643.

    PubMed  CAS  Google Scholar 

  13. Olson, E.N. and Spizz, G. (1986) Mitogens and protein synthesis inhibitors induce ornithine decarboxylase gene transcription through separate mechanisms in the BC3H1 muscle cell line. Mol. Cell. Biol. 6, 2792–2799.

    PubMed  CAS  Google Scholar 

  14. Wallon, U. M., Persson, L., and Heby, O. (1995) Regulation of ornithine decarboxylase during cell growth. Changes in the stability and translatability of the mRNA, and in the turnover of the protein. Mol. Cell Biochem. 146, 39–44.

    Article  PubMed  CAS  Google Scholar 

  15. Law, G. L., Li, R.-S., and Morris, D. R. (1996) Transcriptional control of the ODC gene. In: Polyamines: Regulation and Molecular Interaction (CaseroJr., R. A., ed.), R.G. Landes Company, Austin, TX pp. 5–26.

    Google Scholar 

  16. Abrahamsen, M. S., Li, R.-S., Dietrich-Goetz, W., and Morris, D. R. (1992) Multiple DNA elements responsible for transcriptional regulation of the ornithine decarboxylase gene by protein kinase A. J. Biol. Chem. 267, 18,866–18,873.

    PubMed  CAS  Google Scholar 

  17. Verma, A. K. (1988) Inhibition of phorbol ester-induced ornithine decarboxylase gene transcription by retinoic acid: a possible mechanism of antitumor promoting activity of retinoids. Prog. Clin. Biol. Res. 259, 245–260.

    PubMed  CAS  Google Scholar 

  18. Verma, A. K., Hsieh, J.T., and Pong, R. C. (1988) Mechanisms involved in ornithine decarboxylase induction by 12-O-tetradecanoylphorbol-13-acetate, a potent mouse skin tumor promoter and an activator of protein kinase C. Adv. Exp. Med. Biol. 250, 273–290.

    PubMed  CAS  Google Scholar 

  19. O’Brien, T. G., Megosh, L. C., Gilliard, G., and Soler, A. P. (1997) Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res. 57, 2630–2637.

    PubMed  CAS  Google Scholar 

  20. Megosh, L., Gilmour, S. K., Rosson, D., et al. (1995) Increased frequency of spontaneous skin tumors in transgenic mice which overexpress ornithine decarboxylase. Cancer Res. 55, 4205–4209.

    PubMed  CAS  Google Scholar 

  21. Guo, Y., Cleveland, J.L., and O’Brien, T. G. (2005) Haploinsufficiency for odc modifies mouse skin tumor susceptibility. Cancer Res. 65, 1146–1149.

    Article  PubMed  CAS  Google Scholar 

  22. Auvinen, M., Paasinen, A., Andersson, L.C., and Holtta, E. (1992) Ornithine decarboxylase activity is critical for cell transformation. Nature 360, 355–358.

    Article  PubMed  CAS  Google Scholar 

  23. Auvinen, M., Laine, A., Paasinen-Sohns, A., et al. (1997) Human ornithine decarboxylaseoverproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer Res. 57, 3016–3025.

    PubMed  CAS  Google Scholar 

  24. Nilsson, J.A. and Cleveland, J. L. (2003) Myc pathways provoking cell suicide and cancer. Oncogene 22, 9007–9021.

    Article  PubMed  CAS  Google Scholar 

  25. Prendergast, G. C., Lawe, D., and Ziff, E. B. (1991) Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 65, 395–407.

    Article  PubMed  CAS  Google Scholar 

  26. Blackwell, T. K., Huang, J., Ma, A., et al. (1993) Binding of myc proteins to canonical and noncanonical DNA sequences. Mol. Cell. Biol. 13, 5216–5224.

    PubMed  CAS  Google Scholar 

  27. Bello-Fernandez, C. and Cleveland, J. L. (1992) c-myc Transactivates the ornithine decarboxylase gene. Curr. Top. Microbiol. Immunol. 182, 445–452.

    PubMed  CAS  Google Scholar 

  28. Bello-Fernandez, C., Packham, G., and Cleveland, J. L. (1993) The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc. Natl. Acad. Sci. USA 90, 7804–7808.

    Article  PubMed  CAS  Google Scholar 

  29. Tobias, K. E., Shor, J., and Kahana, C. (1995) C-Myc and Max transregulate the mouse ornithine decarboxylase promoter through interaction with two downstream CACGTG motifs. Oncogene 11, 1721–1727.

    PubMed  CAS  Google Scholar 

  30. Packham, G., Bello-Fernandez, C., and Cleveland, J. L. (1994) Position and orientation independent transactivation by c-Myc. Cell Mol. Biol. Res. 40, 699–706.

    PubMed  CAS  Google Scholar 

  31. Nilsson, J. A., Maclean, K. H., Keller, U. B., Pendeville, H., Baudino, T.A., and Cleveland, J.L. (2004) Mnt loss triggers Myc transcription targets, proliferation, apoptosis, and transformation. Mol. Cell. Biol. 24, 1560–1569.

    Article  PubMed  CAS  Google Scholar 

  32. Packham, G. and Cleveland, J. L. (1995) c-Myc and apoptosis. Biochim. Biophys. Acta 1242, 11–28.

    PubMed  Google Scholar 

  33. Packham, G., Porter, C.W., and Cleveland, J. L. (1996) C-Myc induces apoptosis and cell cycle progression by separable, yet overlapping, pathways. Oncogene 13, 461–469.

    PubMed  CAS  Google Scholar 

  34. Packham, G. and Cleveland, J. L. (1994) Ornithine decarboxylase is a mediator of c-Mycinduced apoptosis. Mol. Cell. Biol. 14, 5741–5747.

    PubMed  CAS  Google Scholar 

  35. Packham, G. and Cleveland, J. L. (1997) Induction of ornithine decarboxylase by IL-3 is mediated by sequential c-Myc-independent and c-Myc-dependent pathways. Oncogene 15, 1219–1232.

    Article  PubMed  CAS  Google Scholar 

  36. Iwamoto, M., Ahnen, D. J., Franklin, W.A., and Maltzman, T. H. (2000) Expression of beta-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis 21, 1935–1940.

    Article  PubMed  CAS  Google Scholar 

  37. Groden, J., Thliveris, A., Samowitz, W., et al. (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600.

    Article  PubMed  CAS  Google Scholar 

  38. Kinzler, K. W., Nilbert, M. C., Su, L.K., et al. (1991) Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665.

    Article  PubMed  CAS  Google Scholar 

  39. He, T. C., Sparks, A. B., Rago, C., et al. (1998) Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512.

    Article  PubMed  CAS  Google Scholar 

  40. Meyskens, F. L., Jr. and Gerner, E. W. (1999) Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin. Cancer Res. 5, 945–951.

    PubMed  CAS  Google Scholar 

  41. Erdman, S. H., Ignatenko, N. A., Powell, M.B., et al. (1999) APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis 20, 1709–1713.

    Article  PubMed  CAS  Google Scholar 

  42. Giardiello, F. M., Hamilton, S. R., Krush, A. J., et al. (1993) Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med. 328, 1313–1316.

    Article  PubMed  CAS  Google Scholar 

  43. Walhout, A. J. M., Gubbels, J. M., Bernards, R., Van der Vliet, P.C., and Timmers, H. T. M. (1997) c-Myc/Max heterodimers bind cooperatively to the E-box sequences located in the first intron of the rat ornithine decarboxylase (ODC) gene. Nucleic Acids Res. 25, 1493–1501.

    Article  PubMed  CAS  Google Scholar 

  44. Guo, Y., Harris, R. B., Rosson, D., Boorman, D., and O’Brien, T. G. (2000) Functional analysis of human ornithine decarboxylase alleles. Cancer Res. 60, 6314–6317.

    PubMed  CAS  Google Scholar 

  45. Martinez, M. E., O’Brien, T. G., Fultz, K.E., et al. (2003) Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc. Natl. Acad. Sci. USA 100, 7859–7864.

    Article  PubMed  CAS  Google Scholar 

  46. Steinbach, G., Lynch, P. M., Phillips, R.K., et al. (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342, 1946–1952.

    Article  PubMed  CAS  Google Scholar 

  47. Thun, M. J., Henley, S.J., and Patrono, C. (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 94, 252–266.

    PubMed  CAS  Google Scholar 

  48. Gerner, E.W., and Meyskens, F. L., Jr. (2004) Polyamines and cancer: Old molecules, new understanding. Nat. Rev. Cancer 4, 781–792.

    Article  PubMed  CAS  Google Scholar 

  49. White, M. W., Kameji, T., Pegg, A.E., and Morris, D. R. (1987) Increased efficiency of translation of ornithine decarboxylase mRNA in mitogen-activated lymphocytes. Eur J. Biochem. 170, 87–92.

    Article  PubMed  CAS  Google Scholar 

  50. Fredlund, J. O., Johansson, M. C., Dahlberg, E., and Oredsson, S. M. (1995) Ornithine decarboxylase and S-adenosylmethionine decarboxylase expression during the cell cycle of Chinese hamster ovary cells. Exp. Cell Res. 216, 86–92.

    Article  PubMed  CAS  Google Scholar 

  51. Persson, L., Svensson, F., and Lovkvist Wallstrom, E. (1996) Regulation of polyamine metabolism. In: Polyamines in Cancer: Basic Mechanisms and Clinical Approaches (Nishioka, K., ed.), R.G. Landes Company, Austin, TX pp. 19–43.

    Google Scholar 

  52. Poulin, R., and Pegg, A. E. (1990) Regulation of ornithine decarboxylase expression by anisosmotic shock in difluoromethylornithine-resistant L1210 cells. J. Biol. Chem. 265, 4025–4032.

    PubMed  CAS  Google Scholar 

  53. Lundgren, D. W. (1992) Effect of hypotonic stress on ornithine decarboxylase mRNA expression in cultured cells. J. Biol. Chem. 267, 6841–6847.

    PubMed  CAS  Google Scholar 

  54. Lovkvist-Wallstrom, E., Stjernborg-Ulvsback, L., Scheffler, I.E., and Persson, L. (1995) Regulation of mammalian ornithine decarboxylase-Studies on the induction of the enzyme by hypotonic stress. Eur J. Biochem. 231, 40–44.

    Article  PubMed  CAS  Google Scholar 

  55. Kozak, M. (1987) An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148.

    Article  PubMed  CAS  Google Scholar 

  56. Brabant, M., McConlogue, L., vanDaalen Wetters, T., and Coffino, P. (1988) Mouse ornithine decarboxylase gene: cloning, structure, and expression. Proc. Natl. Acad. Sci. USA 85, 2200–2204.

    Article  PubMed  CAS  Google Scholar 

  57. Grens, A. and Scheffler, I. E. (1990) The 5′ and 3′untranslated regions of ornithine decarboxylase mRNA affect the translational efficiency. J. Biol. Chem. 265, 11,810–11,816.

    PubMed  CAS  Google Scholar 

  58. Manzella, J.M. and Blackshear, P. J. (1990) Regulation of rat ornithine decarboxylase mRNA translation by its 5′untranslated region. J. Biol. Chem. 265, 11,817–11,822.

    PubMed  CAS  Google Scholar 

  59. Lorenzini, E.C. and Scheffler, I. E. (1997) Co-operation of the 5′and 3′untranslated regions of ornithine decarboxylase mRNA and inhibitory role of its 3′untranslated region in regulating the translational efficiency of hybrid RNA species via cellular factor(s). Biochem. J. 326, 361–367.

    PubMed  CAS  Google Scholar 

  60. Manzella, J.M. and Blackshear, P. J. (1992) Specific protein binding to a conserved region of the ornithine decarboxylase mRNA 5′untranslated region. J. Biol. Chem. 267, 7077–7082.

    PubMed  CAS  Google Scholar 

  61. Holm, I., Persson, L., Stjernborg, L., Thorsson, L., and Heby, O. (1989) Feedback control of ornithine decarboxylase expression by polyamines. Analysis of ornithine decarboxylase mRNA distribution in polysome profiles and of translation of this mRNA in vitro. Biochem. J. 258, 343–350.

    PubMed  CAS  Google Scholar 

  62. van Daalen Wetters, T., Macrae, M., Brabant, M., Sittler, A., and Coffino, P. (1989) Polyamine-mediated regulation of mouse ornithine decarboxylase is post-translational. Mol. Cell. Biol. 9, 5484–5490.

    PubMed  Google Scholar 

  63. Kahana, C. and Nathans, D. (1985) Nucleotide sequence of murine ornithine decarboxylase mRNA. Proc. Natl. Acad. Sci. USA 82, 1673–1677.

    Article  PubMed  CAS  Google Scholar 

  64. McKendrick, L., Pain, V.M., and Morley, S. J. (1999) Translation initiation factor 4E. Int. J. Biochem. Cell Biol. 31, 31–35.

    Article  PubMed  CAS  Google Scholar 

  65. Koromilas, A. E., Lazaris-Karatzas, A., and Sonenberg, N. (1992) mRNAs containing extensive secondary structure in their 5′non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J. 11, 4153–4158.

    PubMed  CAS  Google Scholar 

  66. Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208.

    Article  PubMed  CAS  Google Scholar 

  67. Kozak, M. (1989) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol. Cell. Biol. 9, 5134–5142.

    PubMed  CAS  Google Scholar 

  68. Pain, V.M. (1996) Initiation of protein synthesis in eukaryotic cells. Eur J. Biochem. 236, 747–771.

    Article  PubMed  CAS  Google Scholar 

  69. Lynch, M., Fitzgerald, C., Johnston, K. A., Wang, S., and Schmidt, E. V. (2004) Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth. J. Biol. Chem. 279, 3327–3339.

    Article  PubMed  CAS  Google Scholar 

  70. Polunovsky, V. A., Rosenwald, I. B., Tan, A.T., et al. (1996) Translational control of programmed cell death: Eukaryotic translation initiation factor 4E blocks apoptosis in growthfactor-restricted fibroblasts with physiologically expressed or deregulated Myc. Mol. Cell. Biol. 16, 6573–6581.

    PubMed  CAS  Google Scholar 

  71. Raught, B. and Gingras, A. C. (1999) eIF4E activity is regulated at multiple levels. Int. J. Biochem. Cell Biol. 31, 43–57.

    Article  PubMed  CAS  Google Scholar 

  72. Lazaris-Karatzas, A., Montine, K.S., and Sonenberg, N.(1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′cap. Nature 345, 544–547.

    Article  PubMed  CAS  Google Scholar 

  73. Zimmer, S. G., DeBenedetti, A., and Graff, J. R. (2000) Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis. Anticancer Res. 20, 1343–1351.

    PubMed  CAS  Google Scholar 

  74. Rousseau, D., Kaspar, R., Rosenwald, I., Gehrke, L., and Sonenberg, N. (1996) Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl. Acad. Sci. USA 93, 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  75. Shantz, L. M., Hu, R.H., and Pegg, A. E. (1996) Regulation of ornithine decarboxylase in a transformed cell line that overexpresses translation initiation factor eIF-4E. Cancer Res. 56, 3265–3269.

    PubMed  CAS  Google Scholar 

  76. Graff, J. R., DeBenedetti, A., Olson, J.W., Tamez, P., Casero, R. A., Jr., and Zimmer, S. G. (1997) Translation of ODC mRNA and polyamine transport are suppressed in rastransformed CREF cells by depleting translation initiation factor 4E. Biochem. Biophys. Res. Commun. 240, 15–20.

    Article  PubMed  CAS  Google Scholar 

  77. Shantz, L.M. and Pegg, A. E. (1994) Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cancer Res. 54, 2313–2316.

    PubMed  CAS  Google Scholar 

  78. Shantz, L. M., Coleman, C.S., and Pegg, A.E. (1996) Expression of an ornithine decarboxylase dominant-negative mutant reverses eukaryotic initiation factor 4E-induced cell transformation. Cancer Res. 56, 5136–5140.

    PubMed  CAS  Google Scholar 

  79. Martinez-Salas, E. (1999) Internal ribosome entry site biology and its use in expression vectors. Curr. Opin. Biotechnol. 10, 458–464.

    Article  PubMed  CAS  Google Scholar 

  80. Sachs, A. B. (2000) Cell cycle-dependent translation initiation: IRES elements prevail. Cell 101, 243–245.

    Article  PubMed  CAS  Google Scholar 

  81. Pelletier, J. and Sonenberg, N. (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.

    Article  PubMed  CAS  Google Scholar 

  82. Sonenberg, N. (1990) Measures and counter measures in the modulation of initiation factor activities by viruses. New Biol. 2, 402–409.

    PubMed  CAS  Google Scholar 

  83. van der Velden, A.W., Thomas, A.A. (1999) The role of the 5′untranslated region of an mRNA in translation regulation during development. Int. J. Biochem. Cell Biol. 31, 87–106.

    Article  PubMed  Google Scholar 

  84. Pyronnet, S., Pradayrol, L., and Sonenberg, N. (2000) A cell cycle-dependent internal ribosome entry site. Mol. Cell 5, 607–616.

    Article  PubMed  CAS  Google Scholar 

  85. Heby, O., Gray, J. W., Lindl, P. A., Marton, L.J., and Wilson, C. B. (1976) Changes in L-ornithine decarboxylase activity during the cell cycle. Biochem. Biophys. Res. Commun. 71, 99–105.

    Article  PubMed  CAS  Google Scholar 

  86. Kozak, M. (2001) New ways of initiating translation in eukaryotes? Mol. Cell. Biol. 21, 1899–1907.

    Article  PubMed  CAS  Google Scholar 

  87. Schneider, R., Agol, V. I., Andino, R., et al. (2001) New ways of initiating translation in eukaryotes. Mol. Cell. Biol. 21, 8238–8246.

    Article  PubMed  CAS  Google Scholar 

  88. Kozak, M.(2003) Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation. Gene 318, 1–23.

    Google Scholar 

  89. Van Eden, M.E., Byrd, M. P., Sherrill, K.W., and Lloyd, R.E. (2004) Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA 10, 720–730.

    Article  PubMed  CAS  Google Scholar 

  90. Komar, A.A. and Hatzoglou, M. (2005) Internal ribosome entry sites in cellular mRNAs: The mystery of their existence. J. Biol. Chem. 280, 23,425–23,428.

    Article  PubMed  CAS  Google Scholar 

  91. Persson, L., Holm, I., and Heby, O. (1988) Regulation of ornithine decarboxylase mRNA translation by polyamines. Studies using a cell-free system and a cell line with an amplified ornithine decarboxylase gene. J. Biol. Chem. 263, 3528–3533.

    PubMed  CAS  Google Scholar 

  92. Lövkvist Wallström, E. and Persson, L. (1999) No role of the 5′untranslated region of ornithine decarboxylase mRNA in the feedback control of the enzyme. Mol. Cell. Biochem. 197, 71–78.

    Article  Google Scholar 

  93. Lövkvist, W. E., Takao, K., Wendt, A., Vargiu, C., Yin, H., and Persson, L.(2001) Importance of the 3′untranslated region of ornithine decarboxylase mRNA in the translational regulation of the enzyme. Biochem. J. 356, 627–634.

    Article  Google Scholar 

  94. Black, B. L., Lu, J., and Olson, E. N. (1997) The MEF2A 3′untranslated region functions as a cis-acting translational repressor. Mol. Cell. Biol. 17, 2756–2763.

    PubMed  CAS  Google Scholar 

  95. Piecyk, M., Wax, S., Beck, A.R., et al. (2000) TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J. 19, 4154–4163.

    Article  PubMed  CAS  Google Scholar 

  96. Mbella, E. G., Bertrand, S., Huez, G., and Octave, J. N. (2000) A GG nucleotide sequence of the 3′untranslated region of amyloid precursor protein mRNA plays a key role in the regulation of translation and the binding of proteins. Mol. Cell. Biol. 20, 4572–4579.

    Article  PubMed  CAS  Google Scholar 

  97. Hayashi, S. and Murakami, Y. (1995) Rapid and regulated degradation of ornithine decarboxylase. Biochem. J. 306, 1–10.

    PubMed  CAS  Google Scholar 

  98. Murakami, Y., Matsufuji, S., Kameji, T., et al. (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360, 597–599.

    Article  PubMed  CAS  Google Scholar 

  99. Ghoda, L., van Daalen Wetters, T., Macrae, M., Ascherman, D., and Coffino, P. (1989) Prevention of rapid intracellular degradation of ODC by a carboxyl-terminal truncation. Science 243, 1493–1495.

    Article  PubMed  CAS  Google Scholar 

  100. Rom, E. and Kahana, C. (1994) Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting. Proc. Natl. Acad. Sci. USA 91, 3959–3963.

    Article  PubMed  CAS  Google Scholar 

  101. Matsufuji, S., Matsufuji, T., Miyazaki, Y., et al. (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80, 51–60.

    Article  PubMed  CAS  Google Scholar 

  102. Palanimurugan, R., Scheel, H., Hofmann, K., and Dohmen, R.J. (2004) Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. EMBO J. 23, 4857–4867.

    Article  PubMed  CAS  Google Scholar 

  103. Ivanov, I. P., Gesteland, R.F., and Atkins, J. F. (1998) A second mammalian antizyme: conservation of programmed ribosomal frameshifting. Genomics 52, 119–129.

    Article  PubMed  CAS  Google Scholar 

  104. Ivanov, I. P., Rohrwasser, A., Terreros, D. A., Gesteland, R.F., and Atkins, J. F. (2000) From the cover: discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: Antizyme 3 [In Process Citation]. Proc. Natl. Acad. Sci. USA 97, 4808–4813.

    Article  PubMed  CAS  Google Scholar 

  105. Svensson, F., Ceriani, C., Lövkvist Wallström, E., et al. (1997) Cloning of a trypanosomatid gene coding for an ornithine decarboxylase that is metabolically unstable even though it lacks the C-terminal degradation domain. Proc. Natl. Acad. Sci. USA 94, 397–402.

    Article  PubMed  CAS  Google Scholar 

  106. Nasizadeh, S., Jeppsson, A., and Persson, L. (2003) Proteasomal degradation of a trypanosomal ornithine decarboxylase. Cell. Physiol. Biochem. 13, 321–328.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Persson, L. (2006). Regulation of Ornithine Decarboxylase Expression. In: Wang, JY., Casero, R.A. (eds) Polyamine Cell Signaling. Humana Press. https://doi.org/10.1007/978-1-59745-145-1_23

Download citation

Publish with us

Policies and ethics