Skip to main content

Recent Advances in the Understanding of Mammalian Polyamine Catabolism

The Regulation and Potential Role of Polyamine Catabolism in Drug Response and Disease Processes

  • Chapter
Polyamine Cell Signaling

Abstract

As more data emerge, the significance of polyamine catabolism in polyamine homeostasis, drug response, and disease etiology is expanding. Importantly, the regulation and function of the polyamine catabolic pathway has emerged as a rational target for drug intervention in both chemotherapeutic and chemopreventive strategies. Mammalian intracellular polyamine catabolism had long been thought to be a two-step process primarily regulated by a rate-limiting acetyltransferase, spermidine/spermine N1-acetyltransferase (SSAT), followed by the activity of a constitutively expressed acetylpolyamine oxidase (PAO). However, as recent reports have clearly demonstrated, mammalian polyamine catabolism also includes the activity of a previously unrecognized spermine oxidase (SMO/PAOh1). The production of reactive oxygen species (ROS) and other toxic products by these various polyamine catabolic enzymes can result in both useful and potentially dangerous consequences. This chapter will examine some of the most recent findings related to polyamine catabolism and will address the cloning and characterization of mammalian polyamine oxidases, including the newly discovered SMO/PAOh1. Additionally, further characterization of the highly regulated SSAT, as facilitated by many recent advances with transgenic models, will be discussed with respect to the potential role that it and the oxidases play in determining response to various drugs and stimuli. Although the polyamine catabolic pathway is well described and being studied in multiple organisms, this work will focus primarily on results directly related to mammalian systems, with special emphasis given to the relationship between polyamine catabolism and human disease. Specifically, data indicating that the induction of polyamine catabolism by specific antitumor polyamine analogs plays a direct role in determining drug response will be discussed. Also to be examined is the recent recognition that the oxidation of polyamines contributes to disease processes, and the potential targeting of polyamine catabolism as a strategy for chemoprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Metcalf, B. W., Bey, P., Danzin, C., Jung, M. J., Casara, P., and Vevert, J. P. (1978) Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E. C4.1.1.17) by substrate and product analogues. J. Am. Chem. Soc. 100, 2551–2553.

    Article  CAS  Google Scholar 

  2. Gerner, E. W. and Meyskens, F. L., Jr. (2004) Polyamines and cancer: old molecules, new understanding. Nat. Rev. Cancer 4, 781–792.

    Article  PubMed  CAS  Google Scholar 

  3. Bacchi, C. J. and Yarlett, N. (1993) Effects of antagonists of polyamine metabolism on African trypanosomes. Acta Trop. 54, 225–236.

    Article  PubMed  CAS  Google Scholar 

  4. Bergeron, R. J., McManis, J. S., Liu, C. Z., et al. (1994) Antiproliferative properties of polyamine analogues: A structure-activity study. J. Med. Chem. 37, 3464–3476.

    Article  PubMed  CAS  Google Scholar 

  5. Bergeron, R. J., Neims, A. H., McManis, J. S., et al. (1988) Synthetic polyamine analogues as antineoplastics. J. Med. Chem. 31, 1183–1190.

    Article  PubMed  CAS  Google Scholar 

  6. Casero, R. A. and Woster, P. M. (2001) Terminally alkylated polyamine analogues as chemotherapeutic agents. J. Med. Chem. 44, 1–26.

    Article  PubMed  CAS  Google Scholar 

  7. Thomas, T. and Thomas, T. J. (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol. Life Sci. 58, 244–258.

    Article  PubMed  CAS  Google Scholar 

  8. Frydman, B., Blokhin, A. V., Brummel, S., et al. (2003) Cyclopropane-containing polyamine analogues are efficient growth inhibitors of a human prostate tumor xenograft in nude mice. J. Med. Chem. 46, 4586–4600.

    Article  PubMed  CAS  Google Scholar 

  9. Huang, Y., Hager, E. R., Phillips, D. L., et al. (2003) A novel polyamine analog inhibits growth and induces apoptosis in human breast cancer cells. Clin. Cancer Res. 9, 2769–2777.

    PubMed  CAS  Google Scholar 

  10. Huang, Y., Hager, E. R., Phillips, D. L., et al. (2002) Conformationally constrained polyamine analogues and oligoamines inhibit growth and induce apoptosis in human breast cancer cells. Prof. Am. Assoc. Cancer Res. 43, 90.

    Google Scholar 

  11. Wallace, H. M. and Fraser, A. V. (2003) Polyamine analogues as anticancer drugs. Biochem. Soc. Trans. 31, 393–396.

    Article  PubMed  CAS  Google Scholar 

  12. Fraser, A. V., Woster, P. M., Wallace, H. M. (2002) Induction of apoptosis in human leukaemic cells by IPENSpm, a novel polyamine analogue and anti-metabolite. Biochem. J. 367, 307–312.

    Article  PubMed  CAS  Google Scholar 

  13. Casero, R. A., Jr., Celano, P., Ervin, S. J., Wiest, L., and Pegg, A. E. (1990) High specific induction of spermidine/spermine N1-acetyltransferase in a human large cell lung carcinoma. Biochem. J. 270, 615–620.

    PubMed  CAS  Google Scholar 

  14. Casero, R. A., Jr., Celano, P., Ervin, S. J., Porter, C. W., Bergeron, R. J., and Libby, P. R. (1989) Differential induction of spermidine/spermine N1-acetyltransferase in human lung cancer cells by the bis(ethyl)polyamine analogues. Cancer Res. 49, 3829–3833.

    PubMed  CAS  Google Scholar 

  15. Casero, R. A., Jr., Mank, A. R., Xiao, L., Smith, J., Bergeron, R. J., and Celano, P. (1992) Steady-state messenger RNA and activity correlates with sensitivity to N1, N12-bis(ethyl)spermine in human cell lines representing the major forms of lung cancer. Cancer Res. 52, 5359–5363.

    PubMed  CAS  Google Scholar 

  16. Casero, R. A., Wang, Y., Stewart, T. M., et al. (2003) The role of polyamine catabolism in anti-tumour drug response. Biochem. Soc. Trans. 31, 361–365.

    Article  PubMed  CAS  Google Scholar 

  17. Seiler, N. (2004) Catabolism of polyamines. Amino Acids 26, 217–233.

    PubMed  CAS  Google Scholar 

  18. Wallace, H. M., Duthie, J., Evans, D. M., Lamond, S., Nicoll, K. M., and Heys, S. D. (2000) Alterations in polyamine catabolic enzymes in human breast cancer tissue. Clin. Cancer Res. 6, 3657–3661.

    PubMed  CAS  Google Scholar 

  19. Casero, R. A., Jr. and Pegg, A. E. (1993) Spermidine/spermine N1-acetyltransferase-the turning point in polyamine metabolism. FASEB J. 7, 653–661.

    PubMed  CAS  Google Scholar 

  20. Casero, R. A., Jr., Celano, P., Ervin, S. J., Applegren, N. B., Wiest, L., and Pegg, A. E. (1991) Isolation and characterization of a cDNA clone that codes for human spermidine/spermine N1-acetyltransferase. J. Biol. Chem. 266, 810–814.

    PubMed  CAS  Google Scholar 

  21. Pegg, A. E., Stanley, B. A., Wiest, L., and Casero, R. A., Jr. (1992) Nucleotide sequence of hamster spermidine/spermine-N1-acetyltransferase cDNA. Biochim. Biophys. Acta 1171, 106–108.

    PubMed  CAS  Google Scholar 

  22. Fogel-Petrovic, M., Kramer, D. L., Ganis, B., Casero, R. A., Jr., and Porter, C. W. (1993) Cloning and sequence analysis of the gene and cDNA encoding mouse spermidine/spermine N1-acetyltransferase-a gene uniquely regulated by polyamines and their analogs. Biochim. Biophys. Acta 1216, 255–264.

    PubMed  CAS  Google Scholar 

  23. Xiao, L., Celano, P., Mank, A. R., Pegg, A. E., and Casero, R. A., Jr. (1991) Characterization of a full-length cDNA which codes for the human spermidine/spermine N1-acetyltransferase. Biochem. Biophys. Res. Commun. 179, 407–415.

    Article  PubMed  CAS  Google Scholar 

  24. Xiao, L., Celano, P., Mank, A. R., et al. (1992) Structure of the human spermidine/spermine N1-acetyltransferase gene (exon/intron gene organization and localization to Xp22.1). Biochem. Biophys. Res. Commun. 187, 1493–1502.

    Article  PubMed  CAS  Google Scholar 

  25. Coleman, C. S., Huang, H., and Pegg, A. E. (1996) Structure and critical residues at the active site of spermidine/spermine-N1-acetyltransferase. Biochem. J. 316, 697–701.

    PubMed  CAS  Google Scholar 

  26. Nikiforova, N. N., Velikodvorskaja, T. V., Kachko, A. V., et al. (2002) Induction of alternatively spliced spermidine/spermine N1-acetyltransferase mRNA in the human kidney cells infected by venezuelan equine encephalitis and tick-borne encephalitis viruses. Virology 297, 163–171.

    Article  PubMed  CAS  Google Scholar 

  27. Mita, K., Fukuchi, K., Hamana, K., Ichimura, S., and Nenoi, M. (2004) Accumulation of spermidine/spermine N1-acetyltransferase and alternatively spliced mRNAs as a delayed response of HeLa S3 cells following X-ray irradiation. Int. J. Radiat. Biol. 80, 369–375.

    Article  PubMed  CAS  Google Scholar 

  28. Fogel-Petrovic, M., Shappell, N. W., Bergeron, R. J., and Porter, C. W. (1993) Polyamine and polyamine analog regulation of spermidine/spermine N1-acetyltransferase in MALME-3M human melanoma cells. J. Biol. Chem. 268, 19,118–19,125.

    PubMed  CAS  Google Scholar 

  29. Xiao, L. and Casero, R. A., Jr. (1996) Differential transcription of the human spermidine/spermine N1-acetyltransferase (SSAT) gene in human lung carcinoma cells. Biochem. J. 313, 691–696.

    PubMed  CAS  Google Scholar 

  30. Fogel-Petrovic, M., Vujcic, S., Miller, J., and Porter, C. W. (1996) Differential post-transcriptional control of ornithine decarboxylase and spermidine-spermine N1-acetyltransferase by polyamines. FEBS Lett. 391, 89–94.

    Article  PubMed  CAS  Google Scholar 

  31. Parry, L., Balana Fouce, R., and Pegg, A. E. (1995) Post-transcriptional regulation of the content of spermidine/spermine N1-acetyltransferase by N1, N12-bis(ethyl) spermine. Biochem. J. 305, 451–458.

    PubMed  CAS  Google Scholar 

  32. Coleman, C. S., Huang, H., and Pegg, A. E. (1995) Role of the carboxyl terminal MATEE sequence of spermidine/spermine N1-acetyltransferase in the activity and stabilization by the polyamine analog N1,N12-bis(ethyl)spermine. Biochemistry 34, 13,423–13,430.

    Article  PubMed  CAS  Google Scholar 

  33. Coleman, C. S. and Pegg, A. E. (1997) Proteasomal degradation of spermidine/spermine N1-acetyltransferase requires the carboxyl-terminal glutamic acid residues. J. Biol. Chem. 272, 12,164–12,169.

    Article  PubMed  CAS  Google Scholar 

  34. Rogers, S., Wells, R., and Rechsteiner, M. (1986) Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science 234, 364–368.

    Article  PubMed  CAS  Google Scholar 

  35. Coleman, C. S. and Pegg, A. E. (2001) Polyamine analogues inhibit the ubiquitination of spermidine/spermine N1-acetyltransferase and prevent its targeting to the proteasome for degradation. Biochem. J. 358, 137–145.

    Article  PubMed  CAS  Google Scholar 

  36. Lu, L., Berkey, K. A., and Casero, R. A., Jr. (1996) RGFGIGS is an amino acid sequence required for acetyl coenzyme A binding and activity of human spermidine/spermine N1-acetyltransferase. J. Biol. Chem. 271, 18,920–18,924.

    Article  PubMed  CAS  Google Scholar 

  37. Wang, Y., Xiao, L., Thiagalingam, A., Nelkin, B. D., and Casero, R. A., Jr. (1998) The identification of a cis-element and a trans-acting factor involved in the response to polyamines and polyamine analogues in the regulation of the human spermidine/spermine N1-acetyltransferase gene transcription. J. Biol. Chem. 273, 34,623–34,630.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, Y., Devereux, W., Stewart, T. M., and Casero, R. A., Jr. (1999) Cloning and characterization of human polyamine-modulated factor-1, a transcriptional cofactor that regulates the transcription of the spermidine/spermine N1-acetyltransferase gene. J. Biol. Chem. 274, 22,095–22,101.

    Article  PubMed  CAS  Google Scholar 

  39. Motohashi, H., Katsuoka, F., Engel, J. D., and Yamamoto, M. (2004) Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc. Natl. Acad. Sci. USA 101, 6379–6384.

    Article  PubMed  CAS  Google Scholar 

  40. Kuroha, T., Takahashi, S., Komeno, T., Itoh, K., Nagasawa, T., and Yamamoto, M. (1998) Ablation of Nrf2 function does not increase the erythroid or megakaryocytic cell lineage dysfunction caused by p45 NF-E2 gene disruption. J. Biochem. (Tokyo) 123, 376–379.

    CAS  Google Scholar 

  41. Itoh, K., Chiba, T., Takahashi, S., et al. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313–322.

    Article  PubMed  CAS  Google Scholar 

  42. Marini, M. G., Chan, K., Casula, L., Kan, Y. W., Cao, A., and Moi, P. (1997) hMAF, a small human transcription factor that heterodimerizes specifically with Nrf1 and Nrf2. J. Biol. Chem. 272, 16,490–16,497.

    Article  PubMed  CAS  Google Scholar 

  43. Wang, Y., Devereux, W., Stewart, T. M., and Casero, R. A., Jr. (2002) Polyamine-modulated factor 1 binds to the human homologue of the 7a subunit of the Arabidopsis COP9 signalosome: Implications in gene expression. Biochem. J. 366, 79–86.

    Article  PubMed  CAS  Google Scholar 

  44. Porter, C. W., Ganis, B., Libby, P. R., and Bergeron, R. J. (1991) Correlations between polyamine analogue-induced increases in spermidine/spermine N1-acetyltransferase activity, polyamine pool depletion, and growth inhibition in human melanoma cell lines. Cancer Res. 51, 3715–3720.

    PubMed  CAS  Google Scholar 

  45. Porter, C. W., Ganis, B., Rustum, Y., Wrzosek, C., Kramer, D. L., and Bergeron, R. J. (1994) Collateral sensitivity of human melanoma multidrug-resistant variants to the polyamine analogue, N1,N11-diethylnorspermine. Cancer Res. 54, 5917–5924.

    PubMed  CAS  Google Scholar 

  46. Chang, B. K., Bergeron, R. J., Porter, C. W., and Liang, Y. (1992) Antitumor effects of Nalkylated polyamine analogues in human pancreatic adenocarcinoma models. Cancer Chemother. Pharmacol. 30, 179–182.

    Article  PubMed  CAS  Google Scholar 

  47. Chang, B. K., Bergeron, R. J., Porter, C. W., Vinson, J. R., Liang, Y., and Libby, P. R. (1992) Regulatory and antiproliferative effects of N-alkylated polyamine analogues in human and hamster pancreatic adenocarcinoma cell lines. Cancer Chemother. Pharmacol. 30, 183–188.

    Article  PubMed  CAS  Google Scholar 

  48. Chang, B. K., Liang, Y., Miller, D. W., Bergeron, R. J., Porter, C. W., and Wang, G. (1993) Effects of diethyl spermine analogues in human bladder cancer cell lines in culture. J. Urol. 150, 1293–1297.

    PubMed  CAS  Google Scholar 

  49. McCloskey, D. E., Casero, R. A., Jr., Woster, P. M., and Davidson, N. E. (1995) Induction of programmed cell death in human breast cancer cells by an unsymmetrically alkylated polyamine analogue. Cancer Res. 55, 3233–3236.

    PubMed  CAS  Google Scholar 

  50. McCloskey, D. E., Yang, J., Woster, P. M., Davidson, N. E., and Casero, R. A., Jr. (1996) Polyamine analogue induction of programmed cell death in human lung tumor cells. Clin. Cancer Res. 2, 441–446.

    PubMed  CAS  Google Scholar 

  51. Bernacki, R. J., Bergeron, R. J., and Porter, C. W. (1992) Antitumor activity of N,N bis(ethyl)spermine homologues against human MALME-3 melanoma xenografts. Cancer Res. 52, 2424–2430.

    PubMed  CAS  Google Scholar 

  52. Bernacki, R. J., Oberman, E. J., Seweryniak, K. E., Atwood, A., Bergeron, R. J., and Porter, C. W. (1995) Preclinical antitumor efficacy of the polyamine analogue N1, N11-diethylnorspermine administered by multiple injection or continuous infusion. Clin. Cancer Res. 1, 847–857.

    PubMed  CAS  Google Scholar 

  53. Porter, C. W., Bernacki, R. J., Miller, J., and Bergeron, R. J. (1993) Antitumor activity of N1,N11-bis(ethyl)norspermine against human melanoma xenografts and possible biochemical correlates of drug action. Cancer Res. 53, 581–586.

    PubMed  CAS  Google Scholar 

  54. Casero, R. A., Jr., Gabrielson, E. W., and Pegg, A. E. (1994) Immunohistochemical staining of human spermidine/spermine N1-acetyltransferase superinduced in response to treatment with antitumor polyamine analogues. Cancer Res. 54, 3955–3958.

    PubMed  CAS  Google Scholar 

  55. Gabrielson, E. W., Pegg, A. E., and Casero, R. A., Jr. (1999) The induction of spermidine/spermine N1-acetyltransferase (SSAT) is a common event in the response of human primary non-small cell lung carcinomas to exposure to the new antitumor polyamine analogue N1,N11-bis(ethyl)norspermine. Clin. Cancer Res. 5, 1638–1641.

    PubMed  CAS  Google Scholar 

  56. Shah, N., Antony, T., Haddad, S., et al. (1999) Antitumor effects of bis(ethyl)polyamine analogs on mammary tumor development in FVB/NTgN (MMTVneu) transgenic mice. Cancer Lett. 146, 15–23.

    Article  PubMed  CAS  Google Scholar 

  57. Gabrielson, E., Tully, E., Hacker, A., Pegg, A. E., Davidson, N. E., and Casero, R. A., Jr. (2004) Induction of spermidine/spermine N1-acetyltransferase in breast cancer tissues treated with the polyamine analogue N1, N11-diethylnorspermine. Cancer Chemother. Pharmacol. 54, 122–126.

    Article  PubMed  CAS  Google Scholar 

  58. Mank-Seymour, A. R., Murray, T. R., Berkey, K. A., Xiao, L., Kern, S., Casero, R. A., Jr. (1998) Two active copies of the X-linked gene spermidine/spermine N1-acetyltransferase (SSAT) in a female lung cancer cell line are associated with an increase in sensitivity to an antitumor polyamine analogue. Clin. Cancer Res. 4, 2003–2008.

    PubMed  CAS  Google Scholar 

  59. Parry, L., Lopez-Ballester, J., Wiest, L., and Pegg, A. E. (1995) Effect of expression of human spermidine/spermine N1-acetyltransferase in Escherichiacoli. Biochemistry 34, 2701–2709.

    Article  CAS  Google Scholar 

  60. Vujcic, S., Halmekyto, M., Diegelman, P., et al. (2000) Effects of conditional overexpression of spermidine/spermine N1-acetyltransferase on polyamine pool dynamics, cell growth, and sensitivity to polyamine analogs. J. Biol. Chem. 275, 38,319–38,328.

    Article  PubMed  CAS  Google Scholar 

  61. Murray-Stewart, T., Applegren, N. B., Devereux, W., et al. (2003) Spermidine/spermine N1-acetyltransferase (SSAT) activity in human small-cell lung carcinoma cells following transfection with a genomic SSAT construct. Biochem. J. 373, 629–634.

    Article  PubMed  CAS  Google Scholar 

  62. McCloskey, D. E. and Pegg, A. E. (2003) Properties of the spermidine/spermine N1-acetyltransferase mutant L156F that decreases cellular sensitivity to the polyamine analogue N1, N11-bis(ethyl)norspermine. J. Biol. Chem. 278, 13,881–13,887

    Article  PubMed  CAS  Google Scholar 

  63. McCloskey, D. E. and Pegg, A. E. (2000) Altered spermidine/spermine N1-acetyltransferase activity as a mechanism of cellular resistance to bis(ethyl)polyamine analogues. J. Biol. Chem. 275, 28,708–28,714.

    Article  PubMed  CAS  Google Scholar 

  64. Chen, Y., Kramer, D. L., Jell, J., Vujcic, S., and Porter, C. W. (2003) Small interfering RNA suppression of polyamine analog-induced spermidine/spermine N1-acetyltransferase. Mol. Pharmacol. 64, 1153–1159.

    Article  PubMed  CAS  Google Scholar 

  65. Chen, Y., Vujcic, S., Liang, P., Diegelman, P., Kramer, D. L., and Porter, C. W. (2003) Genomic identification and biochemical characterization of a second spermidine/spermine N1-acetyltransferase. Biochem. J. 373, 661–667.

    Article  PubMed  CAS  Google Scholar 

  66. Coleman, C. S., Stanley, B. A., Jones, A. D., and Pegg, A. E. (2004) Spermidine/spermine N 1-acetyltransferase-2 (SSAT2) acetylates thialysine and is not involved in polyamine metabolism. Biochem. J. 384, 139–148.

    Article  PubMed  CAS  Google Scholar 

  67. Alhonen, L., Karppinen, A., Uusi-Oukari, M., et al. (1998) Correlation of polyamine and growth responses to N1, N11-diethylnorspermine in primary fetal fibroblasts derived from transgenic mice overexpressing spermidine/spermine N1-acetyltransferase. J. Biol. Chem. 273, 1964–1969.

    Article  PubMed  CAS  Google Scholar 

  68. Alhonen, L., Parkkinen, J. J., Keinanen, T., Sinervirta, R., Herzig, K. H., and Janne, J. (2000) Activation of polyamine catabolism in transgenic rats induces acute pancreatitis. Proc. Natl. Acad. Sci. USA 97, 8290–8295.

    Article  PubMed  CAS  Google Scholar 

  69. Alhonen, L., Pietila, M., Halmekyto, M., Kramer, D. L., Janne, J., and Porter, C. W. (1999) Transgenic mice with activated polyamine catabolism due to overexpression of spermidine/ spermine N1-acetyltransferase show enhanced sensitivity to the polyamine analog, N1, N11-diethylnorspermine. Mol. Pharmacol. 55, 693–698.

    PubMed  CAS  Google Scholar 

  70. Alhonen, L., Rasanen, T. L., Sinervirta, R., et al. (2002) Polyamines are required for the initiation of rat liver regeneration. Biochem. J. 362, 149–153.

    Article  PubMed  CAS  Google Scholar 

  71. Bras, A. P., Janne, J., Porter, C. W., and Sitar, D. S. (2001) Spermidine/spermine N1-acetyltransferase catalyzes amantadine acetylation. Drug Metab. Dispos. 29, 676–680.

    PubMed  CAS  Google Scholar 

  72. Coleman, C. S., Pegg, A. E., Megosh, L. C., Guo, Y., Sawicki, J. A., and O’Brien, T. G. (2002) Targeted expression of spermidine/spermine N1-acetyltransferase increases susceptibility to chemically induced skin carcinogenesis. Carcinogenesis 23, 359–364.

    Article  PubMed  CAS  Google Scholar 

  73. Kaasinen, K., Koistinaho, J., Alhonen, L., and Janne, J. (2000) Overexpression of spermidine/ spermine N1-acetyltransferase in transgenic mice protects the animals from kainateinduced toxicity. Eur. J. Neurosci. 12, 540–548.

    Article  PubMed  CAS  Google Scholar 

  74. Kaasinen, S. K., Grohn, O. H., Keinanen, T. A., Alhonen, L., and Janne, J. (2003) Overexpression of spermidine/spermine N1-acetyltransferase elevates the threshold to pentylenetetrazol-induced seizure activity in transgenic mice. Exp. Neurol. 183, 645–652.

    Article  PubMed  CAS  Google Scholar 

  75. Kaasinen, S. K., Oksman, M., Alhonen, L., Tanila, H., and Janne, J. (2004) Spermidine/ spermine N1-acetyltransferase overexpression in mice induces hypoactivity and spatial learning impairment. Pharmacol. Biochem. Behav. 78, 35–45.

    Article  PubMed  CAS  Google Scholar 

  76. Kee, K., Foster, B. A., Merali, S., et al. (2004) Activated polyamine catabolism depletes acetyl-CoA pools and suppresses prostate tumor growth in TRAMP mice. J. Biol. Chem. 279, 40,076–40,083.

    Article  PubMed  CAS  Google Scholar 

  77. Min, S. H., Simmen, R. C., Alhonen, L., et al. (2002) Altered levels of growth-related and novel gene transcripts in reproductive and other tissues of female mice overexpressing spermidine/spermine N1-acetyltransferase (SSAT). J. Biol. Chem. 277, 3647–3657.

    Article  PubMed  CAS  Google Scholar 

  78. Pegg, A. E., Feith, D. J., Fong, L. Y., Coleman, C. S., O’Brien, T. G., and Shantz, L. M. (2003) Transgenic mouse models for studies of the role of polyamines in normal, hypertrophic and neoplastic growth. Biochem. Soc. Trans. 31, 356–360.

    Article  PubMed  CAS  Google Scholar 

  79. Rasanen, T. L., Alhonen, L., Sinervirta, R., et al. (2003) Gossypol activates pancreatic polyamine catabolism in normal rats and induces acute pancreatitis in transgenic rats overexpressing spermidine/spermine N1-acetyltransferase. Scand. J. Gastroenterol. 3 8, 787–793.

    Google Scholar 

  80. Suppola, S., Heikkinen, S., Parkkinen, J. J, et al. (2001) Concurrent overexpression of ornithine decarboxylase and spermidine/spermine N1-acetyltransferase further accelerates the catabolism of hepatic polyamines in transgenic mice. Biochem. J. 358, 343–348.

    Article  PubMed  CAS  Google Scholar 

  81. Suppola, S., Pietila, M., Parkkinen, J. J., et al. (1999) Overexpression of spermidine/spermine N1-acetyltransferase under the control of mouse metallothionein I promoter in transgenic mice: Evidence for a striking post-transcriptional regulation of transgene expression by a polyamine analogue. Biochem. J. 338, 311–316.

    Article  PubMed  CAS  Google Scholar 

  82. Janne, J., Alhonen, L., Pietila, M., and Keinanen, T. A. (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur. J. Biochem. 271, 877–894.

    Article  PubMed  CAS  Google Scholar 

  83. Kee, K., Vujcic, S., Merali, S., et al. (2004) Metabolic and antiproliferative consequences of activated polyamine catabolism in LNCaP prostate carcinoma cells. J. Biol. Chem. 279, 27,050–27,058.

    Article  PubMed  CAS  Google Scholar 

  84. Babbar, N., Ignatenko, N. A., Casero, R. A., Jr., and Gerner, E. W. (2003) Cyclooxygenaseindependent induction of apoptosis by sulindac sulfone is mediated by polyamines in colon cancer. J. Biol. Chem. 278, 47,762–47,775.

    Article  PubMed  CAS  Google Scholar 

  85. Maxwell, P. J., Longley, D. B., Latif, T., et al. (2003) Identification of 5-fluorouracilinducible target genes using cDNA microarray profiling. Cancer Res. 63, 4602–4606.

    PubMed  CAS  Google Scholar 

  86. Hector, S., Porter, C. W., Kramer, D. L., et al. (2004) Polyamine catabolism in platinum drug action: Interactions between oxaliplatin and the polyamine analogue N1, N11-diethylnorspermine at the level of spermidine/spermine N1-acetyltransferase. Mol. Cancer Ther. 3, 813–822.

    PubMed  CAS  Google Scholar 

  87. Choi, W., Gerner, E. W., Ramdas, L., et al. (2005) Combination of 5-fluorouracil and N1, N11-diethylnorspermine markedly activates spermidine/spermine N1-acetyltransferase expression, depletes polyamines, and synergistically induces apoptosis in colon carcinoma cells. J. Biol. Chem. 280, 3295–3304

    Article  PubMed  CAS  Google Scholar 

  88. Hahm, H. A., Dunn, V. R., Butash, K. A., et al. (2001) Combination of standard cytotoxic agents with polyamine analogues in the treatment of breast cancer cell lines. Clin. Cancer Res. 7, 391–399.

    PubMed  CAS  Google Scholar 

  89. Matsui, I., Wiegand, L., Pegg, A. E. (1981) Properties of spermidine N1-acetyltransferase from livers of rats treated with carbon tetrachloride and its role in the conversion of spermidine into putrescine. J. Biol. Chem. 256, 2454–2459.

    PubMed  CAS  Google Scholar 

  90. Della Ragione, F., and Pegg, A. E. (1983) Studies of the specificity and kinetics of rat liver spermidine/spermine N1-acetyltransferase. Biochem. J. 213, 701–706.

    PubMed  CAS  Google Scholar 

  91. Ragione, F. D., and Pegg, A. E. (1982) Purification and characterization of spermidine/ spermine N1-acetyltransferase from rat liver. Biochemistry 21, 6152–6158.

    Article  PubMed  CAS  Google Scholar 

  92. Nagesh Babu, G., Sailor, K. A., Sun, D., and Dempsey, R. J. (2001) Spermidine/spermine N1-acetyl transferase activity in rat brain following transient focal cerebral ischemia and reperfusion. Neurosci. Lett. 300, 17–20.

    Article  PubMed  CAS  Google Scholar 

  93. Weiss, T. S., Bernhardt, G., Buschauer, A., et al. (2002) Polyamine levels of human colorectal adenocarcinomas are correlated with tumor stage and grade. Int. J. Colorectal Dis. 17, 381–387.

    Article  PubMed  Google Scholar 

  94. Adibhatla, R. M., Hatcher, J. F., Sailor, K., and Dempsey, R. J. (2002) Polyamines and central nervous system injury: Spermine and spermidine decrease following transient focal cerebral ischemia in spontaneously hypertensive rats. Brain Res. 938, 81–86.

    Article  PubMed  CAS  Google Scholar 

  95. Rao, A. M., Hatcher, J. F., Dogan, A., and Dempsey, R. J. (2000) Elevated N1-acetylspermidine levels in gerbil and rat brains after CNS injury. J. Neurochem. 74, 1106–1111.

    Article  PubMed  CAS  Google Scholar 

  96. Zoli, M., Pedrazzi, P., Zini, I., and Agnati, L. F. (1996) Spermidine/spermine N1-acetyltransferase mRNA levels show marked and region-specific changes in the early phase after transient forebrain ischemia. Brain Res. Mol. Brain Res. 38, 122–134.

    Article  PubMed  CAS  Google Scholar 

  97. Zahedi, K., Wang, Z., Barone, S., et al. (2003) Expression of SSAT, a novel biomarker of tubular cell damage, increases in kidney ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 284, F1046–F1055.

    PubMed  CAS  Google Scholar 

  98. Wang, Z., Zahedi, K., Barone, S., et al. (2004) Overexpression of SSAT in kidney cells recapitulates various phenotypic aspects of kidney ischemia-reperfusion injury. J. Am. Soc. Nephrol. 15, 1844–1852.

    Article  PubMed  CAS  Google Scholar 

  99. Ha, H. C., Woster, P. M., Yager, J. D., and Casero, R. A., Jr. (1997) The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc. Natl. Acad. Sci. USA 94, 11,557–11,562.

    Article  PubMed  CAS  Google Scholar 

  100. Chen, Y., Kramer, D. L., Diegelman, P., Vujcic, S., and Porter, C. W. (2001) Apoptotic signaling in polyamine analogue-treated SK-MEL-28 human melanoma cells. Cancer Res. 61, 6437–6444.

    PubMed  CAS  Google Scholar 

  101. Holtta, E. (1977) Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry 16, 91–100.

    Article  PubMed  CAS  Google Scholar 

  102. Bolkenius, F. N. and Seiler, N. (1981) Acetyl derivatives as intermediates in polyamine catabolism. Int. J. Biochem. 13, 287–292.

    Article  PubMed  CAS  Google Scholar 

  103. Seiler, N., Bolkenius, F. N., and Rennert, O. M. (1981) Interconversion, catabolism and elimination of the polyamines. Med. Biol. 59, 334–346.

    PubMed  CAS  Google Scholar 

  104. Bolkenius, F. N. and Seiler, N. (1987) The role of polyamine reutilization in depletion of cellular stores of polyamines in non-proliferating tissues. B i o chim. Biophys. Acta 923, 125–135.

    CAS  Google Scholar 

  105. Seiler, N. (1987) Functions of polyamine acetylation. Can. J. Physiol. Pharmacol. 65, 2024–2035.

    PubMed  CAS  Google Scholar 

  106. Holtta, E. (1983) Polyamine oxidase (rat liver). Meth. Enzymol. 94, 306–311.

    PubMed  CAS  Google Scholar 

  107. Seiler, N. (1990) Polyamine metabolism. Digestion 46, 319–330.

    PubMed  CAS  Google Scholar 

  108. Wallace, H. M., Nuttall, M. E., and Coleman, C. S. (1988) Polyamine recycling enzymes in human cancer cells. Adv. Exp. Med. Biol. 250, 331–344.

    PubMed  CAS  Google Scholar 

  109. Seiler, N. (1995) Polyamine oxidase, properties and functions. Prog. Brain Res. 106, 333–344.

    Article  PubMed  CAS  Google Scholar 

  110. Seiler, N. (2000) Oxidation of polyamines and brain injury. Neurochem. Res. 25, 471–490.

    Article  PubMed  CAS  Google Scholar 

  111. Seiler, N., Duranton, B., and Raul, F. (2002) The polyamine oxidase inactivator MDL 72527. Prog. Drug Res. 59, 1–40.

    PubMed  CAS  Google Scholar 

  112. Morgan, D. M. (1998) Polyamine oxidases-enzymes of unknown function? Biochem. Soc. Trans. 26, 586–591.

    PubMed  CAS  Google Scholar 

  113. Vujcic, S., Liang, P., Diegelman, P., Kramer, D. L., Porter, C. W. (2003) Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion. Biochem. J. 370, 19–28.

    Article  PubMed  CAS  Google Scholar 

  114. Wu, T., Yankovskaya, V., and McIntire, W. S. (2003) Cloning, sequencing, and heterologous expression of the murine peroxisomal flavoprotein, N1-acetylated polyamine oxidase. J. Biol. Chem. 278, 20,514–20,525.

    Article  PubMed  CAS  Google Scholar 

  115. Wang, Y., Hacker, A., Murray-Stewart, T., et al. (2005) Properties of recombinant human N1-acetylpolyamine oxidase (hPAO): potential role in determining drug sensitivity. Cancer Chemother. Pharmacol. 56, 83–90.

    Article  PubMed  CAS  Google Scholar 

  116. Gould, S. J., Keller, G. A., Hosken, N., Wilkinson, J., and Subramani, S. (1989) Aconserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 108, 1657–1664.

    Article  PubMed  CAS  Google Scholar 

  117. Libby, P. R. and Porter, C. W. (1987) Separation of two isozymes of polyamine oxidase from murine L1210 leukemia cells. Biochem. Biophys. Res. Commun. 144, 528–535.

    Article  PubMed  CAS  Google Scholar 

  118. Bergeron, R. J., Weimar, W. R., Luchetta, G., et al. (1995) Metabolism and pharmacokinetics of N1,N11-diethylnorspermine. Drug Metab. Dispos. 23, 1117–1125.

    PubMed  CAS  Google Scholar 

  119. Lawson, K. R., Marek, S., Linehan, J. A., et al. (2002) Detoxification of the polyamine analogue N1-ethyl-N11-[(cycloheptyl)methy]-4,8-diazaundecane (CHENSpm) by polyamine oxidase. Clin. Cancer Res. 8, 1241–1247.

    PubMed  CAS  Google Scholar 

  120. Bolkenius, F. N. and Seiler, N. (1989) New substrates of polyamine oxidase. Dealkylation of N-alkyl-alpha, omega-diamines. Biol. Chem. Hoppe Seyler 370, 525–531.

    PubMed  CAS  Google Scholar 

  121. Bitonti, A. J., Dumont, J. A., Bush, T. L., Stemerick, D. M., Edwards, M. L., and McCann, P. P. (1990) Bis(benzyl)polyamine analogs as novel substrates for polyamine oxidase. J. Biol. Chem. 265, 382–388.

    PubMed  CAS  Google Scholar 

  122. Seiler, N., Douaud, F., Renault, J., et al. (1998) Polyamine sulfonamides with NMDA antagonist properties are potent calmodulin antagonists and cytotoxic agents. Int. J. Biochem. Cell Biol. 30, 393–406.

    Article  PubMed  CAS  Google Scholar 

  123. Bey, P., Bolkenius, F. N., Seiler, N., and Casara, P. (1985) N-2,3-Butadienyl-1,4-butanediamine derivatives: potent irreversible inactivators of mammalian polyamine oxidase. J. Med. Chem. 28, 1–2.

    Article  PubMed  CAS  Google Scholar 

  124. Claverie, N., Wagner, J., Knodgen, B., and Seiler, N. (1987) Inhibition of polyamine oxidase improves the antitumoral effect of ornithine decarboxylase inhibitors. Anticancer Res. 7, 765–772.

    PubMed  CAS  Google Scholar 

  125. Wang, Y., Devereux, W., Woster, P. M., Stewart, T. M., Hacker, A., and Casero, R. A., Jr. (2001) Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res. 61, 5370–5373.

    PubMed  CAS  Google Scholar 

  126. Wang, Y., Murray-Stewart, T., Devereux, W., et al. (2003) Properties of purified recombinant human polyamine oxidase, PAOh1/SMO. Biochem. Biophys. Res. Commun. 304, 605–611.

    Article  PubMed  CAS  Google Scholar 

  127. Devereux, W., Wang, Y., Stewart, T. M., et al. (2003) Induction of the PAOh1/ SMO polyamine oxidase by polyamine analogues in human lung carcinoma cells. Cancer Chemother. Pharmacol. 52, 383–390.

    Article  PubMed  CAS  Google Scholar 

  128. Vujcic, S., Diegelman, P., Bacchi, C. J., Kramer, D. L., and Porter, C. W. (2002) Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem. J. 367, 665–675.

    Article  PubMed  CAS  Google Scholar 

  129. Mitchell, J.L., Leyser, A., Holtorff, M. S., et al. (2002) Antizyme induction by polyamine analogues as a factor in cell growth inhibition. Biochem. J. 366, 663–671.

    Article  PubMed  CAS  Google Scholar 

  130. Reddy, V. K., Valasinas, A., Sarkar, A., Basu, H. S., Marton, L. J., and Frydman, B. (1998) Conformationally restricted analogues of N1, N12-bisethylspermine: synthesis and growth inhibitory effects on human tumor cell lines. J. Med. Chem. 41, 4723–4732.

    Article  PubMed  CAS  Google Scholar 

  131. Reddy, V. K., Sarkar, A., Valasinas, A., Marton, L. J., Basu, H. S., and Frydman, B. (2001) cis-Unsaturated analogues of 3,8,13,18,23-pentaazapentacosane (BE-4-4-4-4): Synthesis and growth inhibitory effects on human prostate cancer cell lines. J. Med. Chem. 44, 404–417.

    Article  PubMed  CAS  Google Scholar 

  132. Valasinas, A., Reddy, V. K., Blokhin, A. V., et al. (2003) Long-chain polyamines (oligoamines) exhibit strong cytotoxicities against human prostate cancer cells. Bioorg. Med. Chem. 11, 4121–4131.

    Article  PubMed  CAS  Google Scholar 

  133. Tavladoraki, P., Schinina, M. E., Cecconi, F., et al. (1998) Maize polyamine oxidase: primary structure from protein and cDNA sequencing. FEBS Lett. 426, 62–66.

    Article  PubMed  CAS  Google Scholar 

  134. Murray-Stewart, T., Wang, Y., Devereux, W., and Casero, R. A., Jr. (2002) Cloning and characterization of multiple human polyamine oxidase splice variants that code for isoenzymes with different biochemical characteristics. Biochem. J. 368, 673–677.

    Article  PubMed  CAS  Google Scholar 

  135. Cervelli, M., Polticelli, F., Federico, R., and Mariottini, P. (2003) Heterologous expression and characterization of mouse spermine oxidase. J. Biol. Chem. 278, 5271–5276.

    Article  PubMed  CAS  Google Scholar 

  136. Cervelli, M., Bellini, A., Bianchi, M., et al. (2004) Mouse spermine oxidase gene splice variants. Nuclear subcellular localization of a novel active isoform. Eur. J. Biochem. 271, 760–770.

    Article  PubMed  CAS  Google Scholar 

  137. Shi, Y., Sawada, J., Sui, G., et al. (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422, 735–738.

    Article  PubMed  CAS  Google Scholar 

  138. Shi, Y., Lan, F., Matson, C., et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953.

    Article  PubMed  CAS  Google Scholar 

  139. Wang, Y., Hacker, A., Murray-Stewart, T., Fleischer, J. G., Woster, P. M., and Casero, R. A. (2005) Induction of human spermine oxidase SMO(PAOh1) is regulated at the levels of new mRNA synthesis, mRNA stabilization, and newly synthesized protein. Biochem. J. 386, 543–547.

    Article  PubMed  CAS  Google Scholar 

  140. Bellelli, A., Cavallo, S., Nicolini, L., et al. (2004) Mouse spermine oxidase: a model of the catalytic cycle and its inhibition by N,N1-bis(2,3-butadienyl)-1,4-butanediamine. Biochem. Biophys. Res. Commun. 322, 1–8.

    Article  PubMed  CAS  Google Scholar 

  141. Parchment, R. E., and Pierce, G. B. (1989) Polyamine oxidation, programmed cell death, and regulation of melanoma in the murine embryonic limb. Cancer Res. 49, 6680–6686.

    PubMed  CAS  Google Scholar 

  142. Parchment, R. E. (1993) The implications of a unified theory of programmed cell death, polyamines, oxyradicals and histogenesis in the embryo. Int. J. Dev. Biol. 37, 75–83.

    PubMed  CAS  Google Scholar 

  143. Chaturvedi, R., Cheng, Y., Asim, M., et al. (2004) Induction of polyamine oxidase 1 by Helicobacter pylori causes macrophage apoptosis by hydrogen peroxide release and mitochondrial membrane depolarization. J. Biol. Chem. 279, 40,161–40,173.

    Article  PubMed  CAS  Google Scholar 

  144. Chu, F. F., Esworthy, R. S., Chu, P. G., et al. (2004) Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res. 64, 962–968.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Casero, R.A. et al. (2006). Recent Advances in the Understanding of Mammalian Polyamine Catabolism. In: Wang, JY., Casero, R.A. (eds) Polyamine Cell Signaling. Humana Press. https://doi.org/10.1007/978-1-59745-145-1_12

Download citation

Publish with us

Policies and ethics