Skip to main content

Hormonal Regulation of the Vascular System: An Overview

  • Chapter
Cardiovascular Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 739 Accesses

References

This chapter discusses hormonal influence on the vasculature. Catecholamines are the best-known and classic stimulators of vascular tone. The rennin–angiotensin–aldosterone system (RAAS) induces vasoconstriction and may damage the vasculature. Sex steroids have gender-dependent disparate genomic and rapid, nongenomic effects on the vasculature. Insulin may have beneficial properties, whereas growth hormone and IGF-1 imbalances are tied to coronary heart disease (CHD). Adipokines are produced in the fat tissue and also affect the vasculature in many ways. While this overview can only briefly touch on all the systems mentioned, later chapters provide greater depth to the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison T. On the Constitutional and Local Effects of Disease of the Suprarenal Capsules. London: S. Highley, 1855.

    Google Scholar 

  2. Oliver G, Schafer EA. On the physiological action of extract of the suprarenal capsules. J Physiol (Lond). 1894; 16.

    Google Scholar 

  3. Marin E, Sessa WC. Role of endothelial-derived nitric oxide in hypertension and renal disease. Curr Opin Nephrol Hypertens. Mar 2007;16(2):105–110.

    Google Scholar 

  4. Toda N, Ayajiki K, Okamura T. Interaction of endothelial nitric oxide and angiotensin in the circulation. Pharmacol Rev. Mar 2007;59(1):54–87.

    Article  CAS  Google Scholar 

  5. Teschemacher AG. Real-time measurements of noradrenaline release in periphery and central nervous system. Auton Neurosci. Jan 15 2005;117(1):1–8.

    Google Scholar 

  6. Guimaraes S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev. Jun 2001;53(2):319–356.

    Google Scholar 

  7. Shah NC, Pringle S, Struthers A. Aldosterone blockade over and above ACE-inhibitors in patients with coronary artery disease but without heart failure. J Renin Angiotensin Aldosterone Syst. Mar 2006;7(1): 20–30.

    Google Scholar 

  8. Ferro A, Queen LR, Priest RM, et al. Activation of nitric oxide synthase by beta 2-adrenoceptors in human umbilical vein endothelium in vitro. Br J Pharmacol. Apr 1999;126(8):1872–1880.

    Google Scholar 

  9. Fisher MH, Amend AM, Bach TJ, et al. A selective human beta3 adrenergic receptor agonist increases metabolic rate in rhesus monkeys. J Clin Invest. Jun 1 1998;101(11):2387–2393.

    Google Scholar 

  10. Rader DJ. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am J Med. Mar 2007;120(3 Suppl 1):S12–S18.

    Google Scholar 

  11. Jose PA, Eisner GM, Felder RA. Dopamine and the kidney: a role in hypertension? Curr Opin Nephrol Hypertens. Mar 2003;12(2):189–194.

    Google Scholar 

  12. Miyata N, Park F, Li XF, Cowley AW, Jr. Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am J Physiol. Sep 1999;277(3 Pt 2):F437–F446.

    Google Scholar 

  13. Garvin JL. Angiotensin stimulates bicarbonate transport and Na+/K+ ATPase in rat proximal straight tubules. J Am Soc Nephrol. Apr 1991;1(10):1146–1152.

    Google Scholar 

  14. Carey RM, Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev. Jun 2003;24(3):261–271.

    Google Scholar 

  15. Dostal DE, Baker KM. The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res. Oct 1 1999;85(7):643–650.

    Google Scholar 

  16. Danser AH, van Kesteren CA, Bax WA, et al. Prorenin, renin, angiotensinogen, and angiotensin-converting enzyme in normal and failing human hearts. Evidence for renin binding. Circulation. Jul 1 1997;96(1):220–226.

    Google Scholar 

  17. Balcells E, Meng QC, Johnson WH, Jr., Oparil S, Dell’Italia LJ. Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations. Am J Physiol. Oct 1997;273(4 Pt 2):H1769–H1774.

    Google Scholar 

  18. Lindpaintner K, Jin M, Wilhelm MJ, et al. Intracardiac generation of angiotensin and its physiologic role. Circulation. Jun 1988;77(6 Pt 2):I18–I23.

    Google Scholar 

  19. Lindpaintner K, Jin MW, Niedermaier N, Wilhelm MJ, Ganten D. Cardiac angiotensinogen and its local activation in the isolated perfused beating heart. Circ Res. Sep 1990;67(3):564–573.

    Google Scholar 

  20. Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. Dec 3 1993;75(5):977–984.

    Google Scholar 

  21. Navar LG, Harrison-Bernard LM, Nishiyama A, Kobori H. Regulation of Intrarenal Angiotensin II in Hypertension: Am Heart Assoc; 2002.

    Google Scholar 

  22. Just A, Olson AJ, Whitten CL, Arendshorst WJ. Superoxide mediates acute renal vasoconstriction produced by angiotensin II and catecholamines by a mechanism independent of nitric oxide. Am J Physiol Heart Circ Physiol. Jan 2007;292(1):H83–H92.

    Google Scholar 

  23. Imanishi T, Kobayashi K, Kuroi A, et al. Effects of angiotensin II on NO bioavailability evaluated using a catheter-type NO sensor. Hypertension. Dec 2006;48(6):1058–1065.

    Google Scholar 

  24. Mulrow PJ, Franco-Saenz R. The adrenal renin-angiotensin system: a local hormonal regulator of aldosterone production. J Hypertens. 1996;14:173–176.

    Article  PubMed  CAS  Google Scholar 

  25. Brown NJ. Aldosterone and end-organ damage. Curr Opin Nephrol Hypertens. May 2005;14(3):235–241.

    Google Scholar 

  26. Duprez DA, Bauwens FR, De Buyzere ML, et al. Influence of arterial blood pressure and aldosterone on left ventricular hypertrophy in moderate essential hypertension. Am J Cardiol. Jan 21 1993;71(3):17A–20A.

    Google Scholar 

  27. Romagni P, Rossi F, Guerrini L, Quirini C, Santiemma V. Aldosterone induces contraction of the resistance arteries in man. Atherosclerosis. Feb 2003;166(2):345–349.

    Google Scholar 

  28. Gros R, Ding Q, Armstrong S, O’Neil C, Pickering JG, Feldman RD. Rapid effects of aldosterone on clonal human vascular smooth muscle cells. Am J Physiol Cell Physiol. Feb 2007;292(2):C788–C794.

    Google Scholar 

  29. Marcy TR, Ripley TL. Aldosterone antagonists in the treatment of heart failure. Am J Health Syst Pharm. Jan 1 2006;63(1):49–58.

    Google Scholar 

  30. Williams TA, Verhovez A, Milan A, Veglio F, Mulatero P. Protective effect of spironolactone on endothelial cell apoptosis. Endocrinology. May 2006;147(5):2496–2505.

    Google Scholar 

  31. Frey FJ, Odermatt A, Frey BM. Glucocorticoid-mediated mineralocorticoid receptor activation and hypertension. Curr Opin Nephrol Hypertens. Jul 2004;13(4):451–458.

    Google Scholar 

  32. Dittmar KD, Pratt WB. Folding of the glucocorticoid receptor by the reconstituted Hsp90-based chaperone machinery. The initial hsp90.p60.hsp70-dependent step is sufficient for creating the steroid binding conformation. J Biol Chem. May 16 1997;272(20):13047–13054.

    Google Scholar 

  33. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond). Jun 1998;94(6):557–572.

    Google Scholar 

  34. Hafezi-Moghadam A, Simoncini T, Yang Z, et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med. May 2002;8(5): 473–479.

    Google Scholar 

  35. Brotman DJ, Girod JP, Garcia MJ, et al. Effects of short-term glucocorticoids on cardiovascular biomarkers. J Clin Endocrinol Metab. Jun 2005;90(6):3202–3208.

    Google Scholar 

  36. Albiger N, Testa RM, Almoto B, et al. Patients with Cushing’s syndrome have increased intimal media thickness at different vascular levels: comparison with a population matched for similar cardiovascular risk factors. Horm Metab Res. Jun 2006;38(6):405–410.

    Google Scholar 

  37. Tauchmanova L, Rossi R, Biondi B, et al. Patients with subclinical Cushing’s syndrome due to adrenal adenoma have increased cardiovascular risk. J Clin Endocrinol Metab. Nov 2002;87(11):4872–4878.

    Google Scholar 

  38. Colao A, Pivonello R, Spiezia S, et al. Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab. Aug 1999;84(8):2664–2672.

    Google Scholar 

  39. Bansilal S, Farkouh ME, Fuster V. Role of insulin resistance and hyperglycemia in the development of atherosclerosis. Am J Cardiol. Feb 19 2007;99(4A):6B–14B.

    Google Scholar 

  40. Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. Apr 18 2006;113(15): 1888–1904.

    Google Scholar 

  41. Lteif A, Vaishnava P, Baron AD, Mather KJ. Endothelin limits insulin action in obese/insulin-resistant humans. Diabetes. Mar 2007;56(3):728–734.

    Google Scholar 

  42. Grassi G. Sympathetic overdrive and cardiovascular risk in the metabolic syndrome. Hypertens Res. Nov 2006;29(11):839–847.

    Google Scholar 

  43. Grassi G, Quarti-Trevano F, Seravalle G, Dell’Oro R. Cardiovascular risk and adrenergic overdrive in the metabolic syndrome. Nutr Metab Cardiovasc Dis. Jul 2007;17(6):473–481.

    Google Scholar 

  44. Delafontaine P. Insulin-like growth factor I and its binding proteins in the cardiovascular system. Cardiovasc Res. Dec 1995;30(6):825–834.

    Google Scholar 

  45. Bornfeldt KE, Raines EW, Nakano T, Graves LM, Krebs EG, Ross R. Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J Clin Invest. Mar 1994;93(3):1266–1274.

    Google Scholar 

  46. Gockerman A, Prevette T, Jones JI, Clemmons DR. Insulin-like growth factor (IGF)-binding proteins inhibit the smooth muscle cell migration responses to IGF-I and IGF-II. Endocrinology. Oct 1995;136(10):4168–4173.

    Google Scholar 

  47. Pricci F, Pugliese G, Romano G, et al. Insulin-like growth factors I and II stimulate extracellular matrix production in human glomerular mesangial cells. Comparison with transforming growth factor-beta. Endocrinology. Mar 1996;137(3):879–885.

    Google Scholar 

  48. Hochberg Z, Hertz P, Maor G, Oiknine J, Aviram M. Growth hormone and insulin-like growth factor-I increase macrophage uptake and degradation of low density lipoprotein. Endocrinology. Jul 1992;131(1): 430–435.

    Google Scholar 

  49. Renier G, Clement I, Desfaits AC, Lambert A. Direct stimulatory effect of insulin-like growth factor-I on monocyte and macrophage tumor necrosis factor-alpha production. Endocrinology. Nov 1996;137(11):4611–4618.

    Google Scholar 

  50. Colao A, Di Somma C, Salerno M, Spinelli L, Orio F, Lombardi G. The cardiovascular risk of GH-deficient adolescents. J Clin Endocrinol Metab. Aug 2002;87(8):3650–3655.

    Google Scholar 

  51. Maison P, Griffin S, Nicoue-Beglah M, Haddad N, Balkau B, Chanson P. Impact of growth hormone (GH) treatment on cardiovascular risk factors in GH-deficient adults: a meta-analysis of blinded, randomized, placebo-controlled trials. J Clin Endocrinol Metab. May 2004;89(5):2192–2199.

    Google Scholar 

  52. Burger AG, Monson JP, Colao AM, Klibanski A. Cardiovascular risk in patients with growth hormone deficiency: effects of growth hormone substitution. Endocr Pract. Nov-Dec 2006;12(6):682–689.

    Google Scholar 

  53. Laustsen PG, Russell SJ, Cui L, et al. Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol Cell Biol. Mar 2007;27(5):1649–1664.

    Google Scholar 

  54. Clayton RN. Cardiovascular function in acromegaly. Endocr Rev. Jun 2003;24(3):272–277.

    Google Scholar 

  55. Rosen T, Bengtsson BA. Premature mortality due to cardiovascular disease in hypopituitarism. Lancet. Aug 4 1990;336(8710):285–288.

    Google Scholar 

  56. Juul A, Scheike T, Davidsen M, Gyllenborg J, Jorgensen T. Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case–control study. Circulation. Aug 20 2002;106(8):939–944.

    Google Scholar 

  57. Ruotolo G, Bavenholm P, Brismar K, et al. Serum insulin-like growth factor-I level is independently associated with coronary artery disease progression in young male survivors of myocardial infarction: beneficial effects of bezafibrate treatment. J Am Coll Cardiol. Mar 1 2000;35(3):647–654.

    Google Scholar 

  58. Frystyk J, Ledet T, Moller N, Flyvbjerg A, Orskov H. Cardiovascular disease and insulin-like growth factor I. Circulation. Aug 20 2002;106(8):893–895.

    Google Scholar 

  59. Fischer F, Schulte H, Mohan S, et al. Associations of insulin-like growth factors, insulin-like growth factor binding proteins and acid-labile subunit with coronary heart disease. Clin Endocrinol (Oxf). Nov 2004;61(5):595–602.

    Google Scholar 

  60. Zumoff B, Troxler RG, O’Connor J, et al. Abnormal hormone levels in men with coronary artery disease. Arteriosclerosis. Jan–Feb 1982;2(1):58–67.

    Google Scholar 

  61. Bush TL. Noncontraceptive estrogen use and risk of cardiovascular disease: an overview and critique of the literature. The Menopause: Biological and Clinical Consequences of Ovarian Failure: Evolution and Management. Norwell, Mass: Serono Symposia. 1990:211–223.

    Google Scholar 

  62. Hsia J, Langer RD, Manson JE, et al. Conjugated equine estrogens and coronary heart disease: the Women’s Health Initiative. Arch Intern Med. Feb 13 2006;166(3):357–365.

    Google Scholar 

  63. Anderson GL, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. Jama. Apr 14 2004;291(14):1701–1712.

    Google Scholar 

  64. Hsia J, Criqui MH, Rodabough RJ, et al. Estrogen plus progestin and the risk of peripheral arterial disease: the Women’s Health Initiative. Circulation. Feb 10 2004;109(5):620–626.

    Google Scholar 

  65. Barrett-Connor E, Goodman-Gruen D. Prospective study of endogenous sex hormones and fatal cardiovascular disease in postmenopausal women. BMJ. Nov 4 1995;311(7014):1193–1196.

    Google Scholar 

  66. Rosano GM, Vitale C, Fini M. Hormone replacement therapy and cardioprotection: what is good and what is bad for the cardiovascular system? Ann N Y Acad Sci. Dec 2006;1092:341–348.

    Google Scholar 

  67. Kato S, Sato T, Watanabe T, et al. Function of nuclear sex hormone receptors in gene regulation. Can Chemother Pharmacol. Nov 2005;56 Suppl 1:4–9.

    Google Scholar 

  68. Christodoulakos GE, Lambrinoudaki IV, Botsis DC. The cardiovascular effects of selective estrogen receptor modulators. Ann N Y Acad Sci. Dec 2006;1092:374–384.

    Google Scholar 

  69. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med. Jun 10 1999;340(23):1801–1811.

    Google Scholar 

  70. Turgeon JL, Carr MC, Maki PM, Mendelsohn ME, Wise PM. Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: Insights from basic science and clinical studies. Endocr Rev. Oct 2006;27(6):575–605.

    Google Scholar 

  71. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA. Jun 11 1996;93(12):5925–5930.

    Google Scholar 

  72. Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. Mar 1997;138(3):863–870.

    Google Scholar 

  73. Haas E, Meyer MR, Schurr U, et al. Differential Effects of 17β-Estradiol on Function and Expression of Estrogen Receptor α, Estrogen Receptor β, and GPR30 in Arteries and Veins of Patients With Atherosclerosis. Hypertension. Apr 23 2007.

    Google Scholar 

  74. Watanabe T, Akishita M, Nakaoka T, et al. Estrogen receptor beta mediates the inhibitory effect of estradiol on vascular smooth muscle cell proliferation. Cardiovasc Res. Sep 1 2003;59(3):734–744.

    Google Scholar 

  75. Mendelsohn ME. Genomic and nongenomic effects of estrogen in the vasculature. Am J Cardiol. Jul 3 2002;90(1A):3F–6F.

    Google Scholar 

  76. Klouche M. Estrogens in human vascular diseases. Ann N Y Acad Sci. Nov 2006;1089:431–443.

    Google Scholar 

  77. Iruela-Arispe ML, Rodriguez-Manzaneque JC, Abu-Jawdeh G. Endometrial endothelial cells express estrogen and progesterone receptors and exhibit a tissue specific response to angiogenic growth factors. Microcirculation. Jun 1999;6(2):127–140.

    Google Scholar 

  78. Bergqvist A, Bergqvist D, Ferno M. Estrogen and progesterone receptors in vessel walls. Biochemical and immunochemical assays. Acta Obstet Gynecol Scand. Jan 1993;72(1):10–16.

    Google Scholar 

  79. Hermenegildo C, Oviedo PJ, Garcia-Martinez MC, Garcia-Perez MA, Tarin JJ, Cano A. Progestogens stimulate prostacyclin production by human endothelial cells. Hum Reprod. Jun 2005;20(6):1554–1561.

    Google Scholar 

  80. Selles J, Polini N, Alvarez C, Massheimer V. Nongenomic action of progesterone in rat aorta: role of nitric oxide and prostaglandins. Cell Signal. May 2002;14(5):431–436.

    Google Scholar 

  81. Arnlov J, Pencina MJ, Amin S, et al. Endogenous sex hormones and cardiovascular disease incidence in men. Ann Intern Med. Aug 1 2006;145(3):176–184.

    Google Scholar 

  82. Sudhir K, Chou TM, Messina LM, et al. Endothelial dysfunction in a man with disruptive mutation in oestrogen-receptor gene. Lancet. Apr 19 1997;349(9059):1146–1147.

    Google Scholar 

  83. Maffei L, Murata Y, Rochira V, et al. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab. Jan 2004;89(1):61–70.

    Google Scholar 

  84. Ebeling P, Koivisto VA. Physiological importance of dehydroepiandrosterone. Lancet. Jun 11 1994; 343(8911):1479–1481.

    Google Scholar 

  85. Wu FC, von Eckardstein A. Androgens and coronary artery disease. Endocr Rev. Apr 2003;24(2):183–217.

    Google Scholar 

  86. Hayashi T, Esaki T, Muto E, et al. Dehydroepiandrosterone retards atherosclerosis formation through its conversion to estrogen: the possible role of nitric oxide. Arterioscler Thromb Vasc Biol. Mar 2000;20(3):782–792.

    Google Scholar 

  87. Barrett-Connor E, Goodman-Gruen D. The epidemiology of DHEAS and cardiovascular disease. Ann N Y Acad Sci. Dec 29 1995;774:259–270.

    Google Scholar 

  88. Berr C, Lafont S, Debuire B, Dartigues JF, Baulieu EE. Relationships of dehydroepiandrosterone sulfate in the elderly with functional, psychological, and mental status, and short-term mortality: a French community-based study. Proc Natl Acad Sci USA. Nov 12 1996;93(23):13410–13415.

    Google Scholar 

  89. Kiechl S, Willeit J, Bonora E, Schwarz S, Xu Q. No association between dehydroepiandrosterone sulfate and development of atherosclerosis in a prospective population study (Bruneck Study). Arterioscler Thromb Vasc Biol. Apr 2000;20(4):1094–1100.

    Google Scholar 

  90. Tilvis RS, Kahonen M, Harkonen M. Dehydroepiandrosterone sulfate, diseases and mortality in a general aged population. Aging (Milano). Feb 1999;11(1):30–34.

    Google Scholar 

  91. Trivedi DP, Khaw KT. Dehydroepiandrosterone sulfate and mortality in elderly men and women. J Clin Endocrinol Metab. Sep 2001;86(9):4171–4177.

    Google Scholar 

  92. Nair KS, Rizza RA, O’Brien P, et al. DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med. Oct 19 2006;355(16):1647–1659.

    Google Scholar 

  93. Yue P, Chatterjee K, Beale C, Poole-Wilson PA, Collins P. Testosterone relaxes rabbit coronary arteries and aorta. Circulation. Feb 15 1995;91(4):1154–1160.

    Google Scholar 

  94. Webb CM, McNeill JG, Hayward CS, de Zeigler D, Collins P. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation. Oct 19 1999;100(16):1690–1696.

    Google Scholar 

  95. Jones RD, Pugh PJ, Jones TH, Channer KS. The vasodilatory action of testosterone: a potassium-channel opening or a calcium antagonistic action? Br J Pharmacol. Mar 2003;138(5):733–744.

    Google Scholar 

  96. Ong PJ, Patrizi G, Chong WC, Webb CM, Hayward CS, Collins P. Testosterone enhances flow-mediated brachial artery reactivity in men with coronary artery disease. Am J Cardiol. Jan 15 2000;85(2):269–272.

    Google Scholar 

  97. Hall J, Jones RD, Jones TH, Channer KS, Peers C. Selective inhibition of L-type Ca2+ channels in A7r5 cells by physiological levels of testosterone. Endocrinology. Jun 2006;147(6):2675–2680.

    Google Scholar 

  98. English KM, Mandour O, Steeds RP, Diver MJ, Jones TH, Channer KS. Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms. Eur Heart J. Jun 2000;21(11): 890–894.

    Google Scholar 

  99. Sieminska L, Wojciechowska C, Swietochowska E, et al. Serum free testosterone in men with coronary artery atherosclerosis. Med Sci Monit. May 2003;9(5):CR162–CR166.

    Google Scholar 

  100. Dobrzycki S, Serwatka W, Nadlewski S, et al. An assessment of correlations between endogenous sex hormone levels and the extensiveness of coronary heart disease and the ejection fraction of the left ventricle in males. J Med Invest. Aug 2003;50(3–4):162–169.

    Google Scholar 

  101. Barrett-Connor E, Khaw KT. Endogenous sex hormones and cardiovascular disease in men. A prospective population-based study. Circulation. Sep 1988;78(3):539–545.

    Google Scholar 

  102. Cauley JA, Gutai JP, Kuller LH, Dai WS. Usefulness of sex steroid hormone levels in predicting coronary artery disease in men. Am J Cardiol. Oct 1 1987;60(10):771–777.

    Google Scholar 

  103. Contoreggi CS, Blackman MR, Andres R, et al. Plasma levels of estradiol, testosterone, and DHEAS do not predict risk of coronary artery disease in men. J Androl. Sep–Oct 1990;11(5):460–470.

    Google Scholar 

  104. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. Feb 2001;86(2):724–731.

    Google Scholar 

  105. Hautanen A, Manttari M, Manninen V, et al. Adrenal androgens and testosterone as coronary risk factors in the Helsinki Heart Study. Atherosclerosis. Feb 1994;105(2):191–200.

    Google Scholar 

  106. Phillips GB, Yano K, Stemmermann GN. Serum sex hormone levels and myocardial infarction in the Honolulu Heart Program. Pitfalls in prospective studies on sex hormones. J Clin Epidemiol. 1988;41(12):1151–1156.

    Article  PubMed  CAS  Google Scholar 

  107. Yarnell JW, Beswick AD, Sweetnam PM, Riad-Fahmy D. Endogenous sex hormones and ischemic heart disease in men. The Caerphilly prospective study. Arterioscler Thromb. Apr 1993;13(4):517–520.

    Google Scholar 

  108. Karila TA, Karjalainen JE, Mantysaari MJ, Viitasalo MT, Seppala TA. Anabolic androgenic steroids produce dose-dependent increase in left ventricular mass in power atheletes, and this effect is potentiated by concomitant use of growth hormone. Int J Sports Med. Jul 2003;24(5):337–343.

    Google Scholar 

  109. Nieminen MS, Ramo MP, Viitasalo M, et al. Serious cardiovascular side effects of large doses of anabolic steroids in weight lifters. Eur Heart J. Oct 1996;17(10):1576–1583.

    Google Scholar 

  110. Ferrera PC, Putnam DL, Verdile VP. Anabolic steroid use as the possible precipitant of dilated cardiomyopathy. Cardiology. Mar–Apr 1997;88(2):218–220.

    Google Scholar 

  111. Malkin CJ, Pugh PJ, West JN, van Beek EJ, Jones TH, Channer KS. Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J. Jan 2006;27(1):57–64.

    Google Scholar 

  112. Arad Y, Badimon JJ, Badimon L, Hembree WC, Ginsberg HN. Dehydroepiandrosterone feeding prevents aortic fatty streak formation and cholesterol accumulation in cholesterol-fed rabbit. Arteriosclerosis. Mar–Apr 1989;9(2):159–166.

    Google Scholar 

  113. Alexandersen P, Haarbo J, Byrjalsen I, Lawaetz H, Christiansen C. Natural androgens inhibit male atherosclerosis: a study in castrated, cholesterol-fed rabbits. Circ Res. Apr 16 1999;84(7):813–819.

    Google Scholar 

  114. Hak AE, Witteman JC, de Jong FH, Geerlings MI, Hofman A, Pols HA. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam study. J Clin Endocrinol Metab. Aug 2002;87(8):3632–3639.

    Google Scholar 

  115. van den Beld AW, Bots ML, Janssen JA, Pols HA, Lamberts SW, Grobbee DE. Endogenous hormones and carotid atherosclerosis in elderly men. Am J Epidemiol. Jan 1 2003;157(1):25–31.

    Google Scholar 

  116. Ng MK, Quinn CM, McCrohon JA, et al. Androgens up-regulate atherosclerosis-related genes in macrophages from males but not females: molecular insights into gender differences in atherosclerosis. J Am Coll Cardiol. Oct 1 2003;42(7):1306–1313.

    Google Scholar 

  117. Montalcini T, Gorgone G, Gazzaruso C, Sesti G, Perticone F, Pujia A. Role of endogenous androgens on carotid atherosclerosis in non-obese postmenopausal women. Nutr Metab Cardiovasc Dis. Dec 2007;17(10):705–711.

    Google Scholar 

  118. Montalcini T, Gorgone G, Gazzaruso C, Sesti G, Perticone F, Pujia A. Endogenous testosterone and endothelial function in postmenopausal women. Coron Artery Dis. Feb 2007;18(1):9–13.

    Google Scholar 

  119. Palmer M, Ljunghall S, Akerstrom G, et al. Patients with primary hyperparathyroidism operated on over a 24-year period: temporal trends of clinical and laboratory findings. J Chronic Dis. 1987;40(2):121–130.

    Article  PubMed  CAS  Google Scholar 

  120. Wermers RA, Khosla S, Atkinson EJ, et al. Survival after the diagnosis of hyperparathyroidism: a population-based study. Am J Med. Feb 1998;104(2):115–122.

    Google Scholar 

  121. Duprez D, Bauwens F, De Buyzere M, et al. Relationship between parathyroid hormone and left ventricular mass in moderate essential hypertension. J Hypertens Suppl. Dec 1991;9(6):S116–S117.

    Google Scholar 

  122. Dalberg K, Brodin LA, Juhlin-Dannfelt A, Farnebo LO. Cardiac function in primary hyperparathyroidism before and after operation. An echocardiographic study. Eur J Surg. Mar 1996;162(3):171–176.

    Google Scholar 

  123. Lundgren E, Ljunghall S, Akerstrom G, Hetta J, Mallmin H, Rastad J. Case–control study on symptoms and signs of “asymptomatic” primary hyperparathyroidism. Surgery. Dec 1998;124(6):980–985; discussion985–986.

    Google Scholar 

  124. Nainby-Luxmoore JC, Langford HG, Nelson NC, Watson RL, Barnes TY. A case-comparison study of hypertension and hyperparathyroidism. J Clin Endocrinol Metab. Aug 1982;55(2):303–306.

    Google Scholar 

  125. Baykan M, Erem C, Gedikli O, et al. Impairment of flow-mediated vasodilatation of brachial artery in patients with Cushing’s Syndrome. Endocrine. Jun 2007;31(3):300–304.

    Google Scholar 

  126. Lundgren E, Szabo E, Ljunghall S, Bergstrom R, Holmberg L, Rastad J. Population based case–control study of sick leave in postmenopausal women before diagnosis of hyperparathyroidism. BMJ. Sep 26 1998;317(7162):848–851.

    Google Scholar 

  127. Hanson AS, Linas SL. Parathyroid hormone/adenylate cyclase coupling in vascular smooth muscle cells. Hypertension. Apr 1994;23(4):468–475.

    Google Scholar 

  128. Bilezikian JP, Potts JT, Jr., Fuleihan Gel H, et al. Summary statement from a workshop on asymptomatic primary hyperparathyroidism: a perspective for the 21st century. J Bone Miner Res. Nov 2002;17 Suppl2:N2–N11.

    Google Scholar 

  129. Eigelberger MS, Cheah WK, Ituarte PH, Streja L, Duh QY, Clark OH. The NIH criteria for parathyroidectomy in asymptomatic primary hyperparathyroidism: are they too limited? Ann Surg. Apr 2004;239(4):528–535.

    Google Scholar 

  130. Razvi S, Ingoe L, Keeka G, Oates C, McMillan C, Weaver JU. The beneficial effect of L-thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J Clin Endocrinol Metab. May 2007;92(5):1715–1723.

    Google Scholar 

  131. Napoli R, Guardasole V, Angelini V, et al. Acute effects of triiodothyronine on endothelial function in human subjects. J Clin Endocrinol Metab. Jan 2007;92(1):250–254.

    Google Scholar 

  132. Bohlen F, Kratzsch J, Mueller M, et al. Leptin inhibits cell growth of human vascular smooth muscle cells. Vascul Pharmacol. Jan 2007;46(1):67–71.

    Google Scholar 

  133. Singhal A, Farooqi IS, Cole TJ, et al. Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? Circulation. Oct 8 2002;106(15):1919–1924.

    Google Scholar 

  134. Wolk R, Berger P, Lennon RJ, Brilakis ES, Johnson BD, Somers VK. Plasma leptin and prognosis in patients with established coronary atherosclerosis. J Am Coll Cardiol. Nov 2 2004;44(9):1819–1824.

    Google Scholar 

  135. Reilly MP, Iqbal N, Schutta M, et al. Plasma leptin levels are associated with coronary atherosclerosis in type 2 diabetes. J Clin Endocrinol Metab. Aug 2004;89(8):3872–3878.

    Google Scholar 

  136. Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin – the classical, resistin – the controversical, adiponectin – the promising, and more to come. Best Pract Res Clin Endocrinol Metab. Dec 2005;19(4): 525–546.

    Google Scholar 

  137. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J Immunol. May 1 2005;174(9):5789–5795.

    Google Scholar 

  138. Calabro P, Samudio I, Willerson JT, Yeh ET. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation. Nov 23 2004;110(21):3335–3340.

    Google Scholar 

  139. Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. Feb 22 2005;111(7):932–939.

    Google Scholar 

  140. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. Jan 2004;24(1):29–33.

    Google Scholar 

  141. Gil-Campos M, Canete RR, Gil A. Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr. Oct 2004;23(5):963–974.

    Google Scholar 

  142. Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. Feb 2005;6(1):13–21.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tamler, R., LeRoith, D. (2009). Hormonal Regulation of the Vascular System: An Overview. In: Fonseca, V.A. (eds) Cardiovascular Endocrinology. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-141-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-141-3_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-850-8

  • Online ISBN: 978-1-59745-141-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics