Skip to main content

Fetal Origins of Polycystic Ovary Syndrome

  • Chapter
Polycystic Ovary Syndrome

Summary

While the origins of polycystic ovary syndrome (PCOS) in humans are still debated, animal models reliably implicate a fetal origin. Androgen excess, one of the key diagnostic criteria for PCOS and one of its most reliably inherited traits, programs reproductive, adrenal and metabolic organs and tissues during fetal development, producing adult pathology that closely mimics PCOS. Differential gestational timing of androgen excess may also account for heterogeneity in the adult PCOS phenotype. Our fetal or developmental origins hypothesis predicts that development of therapeutic interventions designed to circumvent fetal programming by gestational androgen excess could well eliminate adult PCOS phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, Witchel SF. Position statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. J Clin Endocrinol Metab. 2006, 91:4237–4245.

    Article  PubMed  CAS  Google Scholar 

  2. Zawadzki JA, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, Givens JR, Haseltine FP, Merriam GR, eds. Polycystic Ovary Syndrome. Boston, MA: Blackwell Scientific. 1992, 377–384.

    Google Scholar 

  3. Rotterdam ESHRE /ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004, 19:41–47.

    Article  Google Scholar 

  4. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004, 89:2745–2749.

    Article  PubMed  CAS  Google Scholar 

  5. Diamanti-Kandarakis E, Piperi C. Genetics of polycystic ovary syndrome: searching for the way out of the labyrinth. Hum Reprod Update 2005, 11:631–643.

    Article  PubMed  CAS  Google Scholar 

  6. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome (PCOS) in a Dutch twin-family study. J Clin Endocrinol Metab 2006, 91: 2100–2104.

    Article  PubMed  CAS  Google Scholar 

  7. Legro RS, Driscoll D, Strauss JF 3rd, Fox J, Dunaif A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci USA 1998, 95:14956–14960.

    Article  PubMed  CAS  Google Scholar 

  8. Chhabra S, McCartney CR, Yoo RY, Eagleson CA, Chang RJ, Marshall JC. Progesterone inhibition of the hypothalamic gonadotropin-releasing hormone pulse generator: evidence for varied effects in hyperandrogenemic adolescent girls. J Clin Endocrinol Metab 2005, 90:2810–2815.

    Article  PubMed  CAS  Google Scholar 

  9. Ibanez L, de Zegher FD. Low-dose flutamide-metformin therapy for hyperinsulinemic hyperandrogenism in non-obese adolescents and women. Hum Reprod Update 2006, 12:243–252.

    Article  PubMed  CAS  Google Scholar 

  10. Leibel NI, Baumann EE, Kocherginsky M, Rosenfield RL. Relationship of adolescent polycystic ovary syndrome to parental metabolic syndrome. J Clin Endocrinol Metab 2006, 91: 1275–1283.

    Article  PubMed  CAS  Google Scholar 

  11. Ibanez L, Potau N, Zampolli M, Prat N, Virdis R, Vicens-Calvet E, Carrascosa A. Hyperinsulinemia in postpubertal girls with a history of premature pubarche and functional ovarian hyperandrogenism. J Clin Endocrinol Metab 1996, 81:1237–1243.

    Article  PubMed  CAS  Google Scholar 

  12. Ibanez L, Potau N, Francois I, de Zegher F. Precocious pubarche, hyperinsulinism, and ovarian hyperandrogenism in girls: relation to reduced fetal growth. J Clin Endocrinol Metab 1998, 83: 3558–3562.

    Article  PubMed  CAS  Google Scholar 

  13. Abbott DH, Dumesic DA, Franks S. Developmental origin of polycystic ovary syndrome - a hypothesis. J Endocrinol 2002, 174:1–5.

    Article  PubMed  CAS  Google Scholar 

  14. Xita N, Tsatsoulis A. Fetal programming of polycystic ovary syndrome by androgen excess: evidence from experimental, clinical and genetic association studies. J Clin Endocrinol Metab 2006, 91: 1660–16666.

    Article  PubMed  CAS  Google Scholar 

  15. Ellinwood WE, McClellan MC, Brenner RM, Resko JA. Estradiol synthesis by fetal monkey ovaries correlates with antral follicle formation. Biol Reprod 1983, 28:505–516.

    Article  PubMed  CAS  Google Scholar 

  16. Wilson CM, McPhaul MJ. A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol Cell Endocrinol 1996, 18:51–57.

    Article  Google Scholar 

  17. Goy RW, Bercovitch FB, McBrair MC. Behavioral masculinization is independent of genital masculinization in prenatally androgenized female rhesus macaques. Horm Behav 1988, 22:552–571.

    Article  PubMed  CAS  Google Scholar 

  18. Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 1995, 16:271–321.

    Article  PubMed  CAS  Google Scholar 

  19. Sir-Petermann T, Maliqueo M, Angel B, Lara HE, Perez-Bravo F, Recabarren SE. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum Reprod 2002, 17:2573–2579.

    Article  PubMed  CAS  Google Scholar 

  20. Gitau R, Adams D, Fisk NM, Glover V. Fetal plasma testosterone correlates positively with cortisol. Arch Dis Child Fetal Neonatal Ed 2005, 90:F166–F169.

    Google Scholar 

  21. Wood JR, Nelson VL, Ho C, Jansen E, Wang CY, Urbanek M, McAllister JM, Mosselman S, Strauss JF III. The molecular phenotype of polycystic ovary syndrome (PCOS) theca cells and new candidate PCOS genes defined by microarray analysis. J Biol Chem 2003, 278:26380–26390.

    Article  PubMed  CAS  Google Scholar 

  22. Wood JR, Ho CK, Nelson-Degrave VL, McAllister JM, Strauss JF III. The molecular signature of polycystic ovary syndrome (PCOS) theca cells defined by gene expression profiling. J Reprod Immunol 2004, 63:51–60.

    Article  PubMed  CAS  Google Scholar 

  23. Nelson-Degrave VL, Wickenheisser JK, Hendricks KL, Asano T, Fujishiro M, Legro RS, Kimball SR, Strauss JF III, McAllister JM. Alterations in mitogen-activated protein kinase and extracellular regulated kinase signaling in theca cells contribute to excessive androgen production in polycystic ovary syndrome. Mol Endocrinol 2005, 19:379–390.

    Article  PubMed  CAS  Google Scholar 

  24. Escobar-Morreale HF, Luque-Ramirez M, San Millan JL. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev 2005, 26:251–282.

    Article  PubMed  CAS  Google Scholar 

  25. Hickey T, Chandy A, Norman RJ. The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. J Clin Endocrinol Metab 2002, 87:161–165.

    Article  PubMed  CAS  Google Scholar 

  26. Ibanez L, Ong KK, Mongan N, Jaaskelainen J, Marcos MV, Hughes IA, de Zegher F, Dunger DB. Androgen receptor gene CAG repeat polymorphism in the development of ovarian hyperandrogenism. J Clin Endocrinol Metab 2003, 88:3333–3338.

    Article  PubMed  CAS  Google Scholar 

  27. Xita N, Tsatsoulis A, Chatzikyriakidou A, Georgiou I. Association of the (TAAAA)n repeat polymorphism in the sex hormone-binding globulin (SHBG) gene with polycystic ovary syndrome and relation to SHBG serum levels. J Clin Endocrinol Metab 2003, 88:5976–5980.

    Article  PubMed  CAS  Google Scholar 

  28. Legro RS and Strauss JF. Molecular progress in infertility: polycystic ovary syndrome. Fertil Steril 2003, 78:569–576.

    Article  Google Scholar 

  29. Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ, Strauss JF III, Spielman RS, Dunaif A. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Natl Acad Sci USA 1999, 96:8573–8578.

    Article  PubMed  CAS  Google Scholar 

  30. Urbanek M, Woodroffe A, Ewens KG, Diamanti-Kandarakis E, Legro RS, Strauss JF III, Dunaif A, Spielman RS. Candidate gene region for polycystic ovary syndrome on chromosome 19p13.2. J Clin Endocrinol Metab 2005, 90:6623–6629.

    Article  PubMed  CAS  Google Scholar 

  31. Tucci S, Futterweit W, Concepcion ES, Greenberg DA, Villanueva R, Davies TF and Tomer Y. Evidence for association of polycystic ovary syndrome in Caucasian women with a marker at the insulin receptor gene locus. J Clin Endocrinol Metab 2001, 86:446–449.

    Article  PubMed  CAS  Google Scholar 

  32. Villuendas G, Escobar-Morreale HF, Tosi F, Sancho J, Moghetti P, San Millan JL. Association between the D19S884 marker at the insulin receptor gene locus and polycystic ovary syndrome. Fertil Steril 2003, 79:219–220.

    Article  PubMed  Google Scholar 

  33. Strauss JF III. Some new thoughts on the pathophysiology and genetics of polycystic ovary syndrome. Ann N Y Acad Sci 2003, 997:42–48.

    Article  PubMed  Google Scholar 

  34. Baik I, Devito WJ, Ballen K, Becker PS, Okulicz W, Liu Q, Delpapa E, Lagiou P, Sturgeon S, Trichopoulos D, Quesenberry PJ, Hsieh CC. Association of fetal hormone levels with stem cell potential: evidence for early life roots of human cancer. Cancer Res 2005, 65:358–363.

    PubMed  CAS  Google Scholar 

  35. Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update 2005, 11:357–374.

    Article  PubMed  CAS  Google Scholar 

  36. Barker DJP. Mothers, Babies and Health in Later Life. Edinburgh: Churchill Livingstone. 1994.

    Google Scholar 

  37. Resko JA, Buhl AE, Phoenix CH. Treatment of pregnant rhesus macaques with testosterone propionate: observations on its fate in the fetus. Biol Reprod 1987, 37:1185–1191.

    Article  PubMed  CAS  Google Scholar 

  38. Jahanfar S, Eden JA, Warren P, Seppala M, Nguyen TV. A twin study of polycystic ovary syndrome. Fertil Steril 1995, 63:478–486.

    PubMed  CAS  Google Scholar 

  39. Abbott DH, Dumesic DA, Eisner JR, Colman RJ, Kemnitz JW. Insights into the development of PCOS from studies of prenatally androgenized female rhesus monkeys. Trends Endocrinol Metab 1998, 9:62–67.

    Article  CAS  PubMed  Google Scholar 

  40. Azziz R. Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: the Rotterdam criteria are premature. J Clin Endocrinol Metab 2006, 91:781–785.

    Article  PubMed  CAS  Google Scholar 

  41. Abbott DH, Dobbert MJW, Levine JE, Dumesic DA, Tarantal AF. Androgen Excess Induces Fetal Programming of LH Hypersecretion in a Female Rhesus Monkey Model for Polycystic Ovary Syndrome (PCOS). Abstract #OR28–2 presented at the 87th Annual Meeting of the Endocrine Society, San Diego, CA, June 4–7, 2005.

    Google Scholar 

  42. Herman RA, Jones B, Mann DR, Wallen K. Timing of prenatal androgen exposure: anatomical and endocrine effects on juvenile male and female rhesus monkeys. Horm Behav 2000, 38:52–66.

    Article  PubMed  CAS  Google Scholar 

  43. Goy RW, Uno H, Sholl SA. Psychological and anatomical consequences of prenatal exposure to androgens in female rhesus. In: Toxicity of Hormones in Perinatal Life. Mori T, Nagasawa H, eds. Boca Raton, FL: CRC Press, Inc. 1988, 127–142.

    Google Scholar 

  44. Emans SJ, Grace E, Goldstein DP. Oligomenorrhea in adolescent girls. J Pediatr 1980, 97:815–819.

    Article  PubMed  CAS  Google Scholar 

  45. Jabbour SA. Cutaneous manifestations of endocrine disorders: a guide for dermatologists. Am J Clin Dermatol 2003, 4:315–331.

    Article  PubMed  Google Scholar 

  46. Slob AK, den Hamer R, Woutersen PJ and van der Werff ten Bosch JJ. Prenatal testosterone propionate and postnatal ovarian activity in the rat. Acta Endocrinol (Copenh) 1983, 103:420–427.

    Google Scholar 

  47. Manikkam M, Crespi EJ, Doop DD, Herkimer C, Lee JS, Yu S, Brown MB, Foster DL, Padmanabhan V. Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology 2004, 145:790–798.

    Article  PubMed  CAS  Google Scholar 

  48. France JT, Mason JI, Magness RR, Murry BA, Rosenfeld CR. Ovine placental aromatase: studies of activity levels, kinetic characteristics and effects of aromatase inhibitors. J Steroid Biochem 1987, 28:155–160.

    Article  PubMed  CAS  Google Scholar 

  49. Tanguy G, Thoumsin HJ, Zorn JR, Cedard L. DHEA-S-loading test in cases of intrauterine growth retardation: relationship between the pattern of the maternal plasma metabolites and the fetoplacental dysfunction. Gy necol Obstet Invest 1981, 12:305–316.

    CAS  Google Scholar 

  50. McGivern RF. Low birthweight in rats induced by prenatal exposure to testosterone combined with alcohol, pair-feeding, or stress. Teratology 1989, 40:335–338.

    Article  PubMed  CAS  Google Scholar 

  51. Eisner JR, Barnett MA, Dumesic DA, Abbott DH. Ovarian hyperandrogenism in adult female rhesus monkeys exposed to prenatal androgen excess. Fertil Steril. 2002, 77:167–172.

    Article  PubMed  Google Scholar 

  52. Abbott DH, Eisner JR, Colman RJ, Kemnitz JW and Dumesic DA. Prenatal androgen excess programs for PCOS in female rhesus monkeys. In: Polycystic Ovary Syndrome. R.J. Chang, A. Dunaif and J. Hiendel (eds), Marcel Dekker, Inc., New York. 2002, 119–133.

    Google Scholar 

  53. Steiner RA, Clifton DK, Spies HG and Resko JA. Sexual differentiation and feedback control of luteinizing hormone secretion in the rhesus monkey. Biol Reprod 1976, 15:206–212.

    Article  PubMed  CAS  Google Scholar 

  54. Abbott DH, Bruns CM, Barnett DK, Zhou R, Colman RJ, Kemnitz JW, Padmanabhan V, Goodfriend TL, Dumesic DA. Metabolic and reproductive consequences of prenatal testosterone exposure. Abstract #S34-1 presented at the 85^th Annual Meeting of the Endocrine Society, Philadelphia, PA, June 19–22, 2003.

    Google Scholar 

  55. Bruns CM, Baum ST, Colman RJ, Dumesic DA, Eisner JR, Jensen MD, Whigham LD, Abbott DH. Prenatal androgen excess negatively impacts body fat distriburion in a nonhuman primate model of polycystic ovary syndrome. Int J Obes (Lond). 2007, May 1; [Epub ahead of print].

    Google Scholar 

  56. Hokken-Koelega AC. Timing of puberty and fetal growth. Best Pract Res Clin Endocrinol Metab 2002, 16:65–71.

    Article  PubMed  CAS  Google Scholar 

  57. Sir-Petermann T, Hitchsfeld C, Maliqueo M, Codner E, Echiburu B, Gazitua R, Recabarren S, Cassorla F. Birth weight in offspring of mothers with polycystic ovarian syndrome. Hum Reprod 2005, 20:2122–2126.

    Article  PubMed  Google Scholar 

  58. Laitinen J, Taponen S, Martikainen H, Pouta A, Millwood I, Hartikainen AL, Ruokonen A, Sovio U, McCarthy MI, Franks S, Jarvelin MR. Body size from birth to adulthood as a predictor of self-reported polycystic ovary syndrome symptoms. Int J Obes Relat Metab Disord 2003, 27:710–715.

    Article  PubMed  CAS  Google Scholar 

  59. Sadrzadeh S, Klip WA, Broekmans FJ, Schats R, Willemsen WN, Burger CW, Van Leeuwen FE, Lambalk CB; OMEGA Project group. Birth weight and age at menarche in patients with polycystic ovary syndrome or diminished ovarian reserve, in a retrospective cohort. Hum Reprod 2003, 18:2225–2230.

    Google Scholar 

  60. Cresswell JL, Barker DJ, Osmond C, Egger P, Phillips DI, Fraser RB (1997) Fetal growth, length of gestation, and polycystic ovaries in adult life. Lancet 350, 1131–1135.

    Article  PubMed  CAS  Google Scholar 

  61. Thoumsin HJ, Alsat E, Cedard L. In vitro aromatization of androgens into estrogens in placental insufficiency. Gynecol Obstet Invest 1982, 13:37–43.

    Article  PubMed  CAS  Google Scholar 

  62. Goy RW, Bercovitch FB, McBrair MC. Behavioral masculinization is independent of genital masculinization in prenatally androgenized female rhesus macaques. Horm Behav 1988, 22:552–571.

    Article  PubMed  CAS  Google Scholar 

  63. Gorzynski G and Katz JL. The polycystic ovary syndrome:psychosexual correlates. Arch Sex Behav 1977, 6:215–222.

    Article  PubMed  CAS  Google Scholar 

  64. Dittmann RW, Kappes ME and Kappes MH. Sexual behavior in adolescent and adult females with congenital adrenal hyperplasia. Psychoneuroendocrinology 1992, 17:153–170.

    Article  PubMed  CAS  Google Scholar 

  65. Hall CM, Jones JA, Meyer-Bahlburg HF, Dolezal C, Coleman M, Foster P, Price DA and Clayton PE. Behavioral and physical masculinization are related to genotype in girls with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2004, 89:419–424.

    Article  PubMed  CAS  Google Scholar 

  66. Goy RW and Robinson JA. Prenatal exposure of rhesus monkeys to patent androgens: morphological, behavioral, and physiological consequences. In Banbury Report II: Environmental Factors in Human Growth and Development, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory, 1982, 355–378.

    Google Scholar 

  67. Dumesic DA, Abbott DH, Eisner JR, Goy RW. Prenatal exposure of female rhesus monkeys to testosterone propionate increases serum luteinizing hormone levels in adulthood. Fertil Steril 1997, 67:155–163.

    Article  PubMed  CAS  Google Scholar 

  68. Resko JA, Goy RW, Robinson JA, Norman RL. The pubescent rhesus monkey: some characteristics of the menstrual cycle. Biol Reprod. 1982, 27:354–361.

    Article  PubMed  CAS  Google Scholar 

  69. Wilen R, Goy RW, Resko JA, Naftolin F. Pubertal body weight and growth in the female rhesus pseudohermaphrodite. Biol of Reprod 1977, 16:470–473.

    CAS  Google Scholar 

  70. Kemnitz JW, Sladky KK, Flitsch TJ, Pomerantz SM, Goy RW. Androgenic influences on body size and composition of adult rhesus monkeys. Am J Physiol 1988, 255:E857–864.

    PubMed  CAS  Google Scholar 

  71. Abbott DH, Dumesic DA, Eisner, J.W. Kemnitz JW, Goy RW. The prenatally androgenized female rhesus monkey as a model for polycystic ovarian syndrome. In: Azziz R, Nestler JE and Dewailly D, eds. Androgen Excess Disorders in Women. Philadelphia, PA: Lippencott-Raven Press. 1997, 369–382.

    Google Scholar 

  72. Dumesic DA, Schramm RD, Peterson E, Paprocki AM, Zhou R, Abbott DH. Impaired developmental competence of oocytes in adult prenatally androgenized female rhesus monkeys undergoing gonadotropin stimulation for in vitro fertilization. J Clin Endocrinol Metab 2002, 87:1111–1119.

    Article  PubMed  CAS  Google Scholar 

  73. Burger CW, Korsen T, van Kessel H, van Dop PA, Caron FJ, Schoemaker J. Pulsatile luteinizing hormone patterns in the follicular phase of the menstrual cycle, polycystic ovarian disease (PCOD) and non-PCOD secondary amenorrhea. J Clin Endocrinol Metab 1985, 61:1126–1132.

    PubMed  CAS  Google Scholar 

  74. Eagleson CA, Bellows AB, Hu K, Gingrich MB and Marshall JC. Obese patients with polycystic ovary syndrome: evidence that metformin does not restore sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by ovarian steroids. J Clin Endocrinol Metab 2003, 88: 5158–5162.

    Article  PubMed  CAS  Google Scholar 

  75. McCartney CR, Prendergast S, Chhabra C, Chopra C and Marshall JC. Neuroendcorine Connection in PCOS. In Marco Filicori, ed., Updates in Infertility Treatment 2004. Bologna, Italy: Medimond, International Proceedings. 2004, 427–436.

    Google Scholar 

  76. West C, Foster DL, Evans NP, Robinson J and Padmanabhan V. Intra-follicular activin availability is altered in prenatally-androgenized lambs. Mol Cell Endocrinol 2001, 185:51–59.

    Article  PubMed  CAS  Google Scholar 

  77. Sarma HN, Manikkam M, Herkimer C, Dell’Orco J, Foster DL, Padmanabhan V. Fetal programming: excess prenatal testosterone reduces postnatal luteinizing hormone, but not follicle-stimulating hormone responsiveness, to estradiol negative feedback in the female. Endocrinology 2005, 146:4281–4291.

    Article  PubMed  CAS  Google Scholar 

  78. Sullivan SD, Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone nerurons: implications for a common fertility disorder. Proc Natl Acad Sci USA 2004, 101:7129–7134.

    Article  PubMed  CAS  Google Scholar 

  79. Foecking EM, Szabo M, Schwartz NB, Levine JF. Neuroendocrine consequences of prenatal androgen exposure in the female rat: absence of luteinizing hormone surges, suppression of progesterone receptor gene expression, and acceleration of the gonadotropin-releasing hormone pulse generator. Biol Reprod 2005, 72:1475–1483.

    Article  PubMed  CAS  Google Scholar 

  80. Eagleson CA, Gingrich MB, Pastro CL, Arora TK, Burt CM, Evans WS, Marshall JC. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 2000, 85:4047–4052.

    Article  PubMed  CAS  Google Scholar 

  81. Levine JE, Terasawa E, Hoffmann SM, Dobbert MJW, Foecking E, Abbott DH. Luteinizing Hormone (LH) Hypersecretion and Diminished LH Responses to RU486 in a Nonhuman Primate Model for Polycystic Ovary Syndrome (PCOS). Abstract #P1–85 presented at the 87th Annual Meeting of the Endocrine Society, San Diego, CA, June 4–7, 2005.

    Google Scholar 

  82. Dunaif A, Scott D, Finegood D, Quintana B and Whitcomb R. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 1996, 81, 3299–3306.

    Article  PubMed  CAS  Google Scholar 

  83. Ehrmann DA, Schneider DJ, Sobel BE, Cavaghan MK, Imperial J, Rosenfield RL, Polonsky KS. Troglitazone improves defects in insulin action, insulin secretion, ovarian steroidogenesis and fibrinolysis in women with polycystic ovary syndrome. J Clin Endocrinol Metab 1997, 82: 2108–2116.

    Article  PubMed  CAS  Google Scholar 

  84. Nestler JE, Jakubowicz DJ, Evans WS and Pasquali R. Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. N Engl J Med 1998, 338: 1876–1880.

    Article  PubMed  CAS  Google Scholar 

  85. Zhou R, Bruns CM, Bird IM, Kemnitz JW, Goodfriend TL, Dumesic DA, Abbott DH. Pioglitazone improves insulin action and normalizes menstrual cycles in a majority of prenatally androgenized female rhesus monkeys. Reprod Toxicol. 2007, 23:438–448.

    Article  PubMed  CAS  Google Scholar 

  86. Lord JM, Flight IH, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ 2003, 327:951–953.

    Article  PubMed  CAS  Google Scholar 

  87. Dumesic DA, Schramm RD, Bird IM, Peterson E, Paprocki AM, Zhou R, Abbott DH. Reduced intrafollicular androstenedione and estradiol levels in early-treated prenatally androgenized female rhesus monkeys receiving FSH therapy for in vitro fertilization. Biol Reprod 2003, 69:1213–1219.

    Article  PubMed  CAS  Google Scholar 

  88. Dumesic DA, Schramm RD, Abbott DH. Early origins of polycystic ovary syndrome (PCOS). Reprod Fertil Dev 2005, 17:349–360.

    Article  PubMed  CAS  Google Scholar 

  89. Homburg R, Armar NA, Eshel A, Adams J and Jacobs HS. Influence of serum luteinising hormone concentrations on ovulation, conception, and early pregnancy loss in polycystic ovary syndrome. BMJ 1988, 297:1024–1026.

    PubMed  CAS  Google Scholar 

  90. Sagle M, Bishop K, Ridley N, Alexander FM, Michel M, Bonney RC, Beard RW and Franks S. Recurrent early miscarriage and polycystic ovaries. BMJ 1988, 297:1027–1028.

    Article  PubMed  CAS  Google Scholar 

  91. Dor J, Shulman A, Levran D, Ben-Rafael Z, Rudak E and Mashiach S. The treatment of patients with polycystic ovarian syndrome by in-vitro fertilization and embryo transfer: a comparison of results with those of patients with tubal infertility. Hum Reprod 1990, 5:816–818.

    PubMed  CAS  Google Scholar 

  92. Tarlatzis BC, Grimbizis G, Pournaropoulos F, Bontis J, Lagos S, Spanos E and Mantalenakis S. The prognostic value of basal luteinizing hormone : follicle-stimulating hormone ratio in the treatment of patients with polycystic ovarian syndrome by assisted reproduction techniques. Hum Reprod 1995, 10:2545–2549.

    PubMed  CAS  Google Scholar 

  93. Ludwig M, Finas DF, Al-Hasani S, Diedrich K, Ortmann O. Oocyte quality and treatment outcome in intracytoplasmic sperm injection cycles of polycystic ovarian syndrome patients. Hum Reprod 1999, 14:354–358.

    Article  PubMed  CAS  Google Scholar 

  94. Tesarik J, Mendoza C. Nongenomic effects of 17β-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J Clin Endocrinol Metab 1995, 80:1438–1443.

    Article  PubMed  CAS  Google Scholar 

  95. Zheng P, Wei S, Bavister BD, Yang J, Ding C, Ji W. 17β-estradiol and progesterone improve in-vitro cytoplasmic maturation of oocytes from unstimulated prepubertal and adult rhesus monkeys. Hum Reprod 2003, 18:2137–2144.

    Article  PubMed  CAS  Google Scholar 

  96. Foong SC, Abbott DH, Lesnick TG, Session DR, Walker DL, Dumesic DA. Diminished intrafollicular estradiol levels in in vitro fertilization cycles from women with reduced ovarian response to recombinant human follicle-stimulating hormone. Fertil Steril 2005, 83:1377–1383.

    Article  PubMed  CAS  Google Scholar 

  97. Foong SC, Abbott DH, Zschunke MA, Lesnick TG, Phy JL, Dumesic DA. Follicle luteinization in hyperandrogenic follicles of polycystic ovary syndrome (PCOS) patients undergoing gonadotropin therapy for in vitro fertilization (IVF). J Clin Endocrinol Metab 2006, 91: 2327–2333.

    Article  PubMed  CAS  Google Scholar 

  98. Nelson VL, Qin Kn KN, Rosenfield RL, Wood JR, Penning TM, Legro RS, Strauss JF III, McAllister JM. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab 2001, 86:5925–5933.

    Article  PubMed  CAS  Google Scholar 

  99. Zhou R, Bird IM, Dumesic DA, Abbott DH. Adrenal hyperandrogenism is induced by fetal androgen excess in a rhesus monkey model of polycystic ovary syndrome. J Clin Endocrinol Metab 2005, 90:6630–6637.

    Article  PubMed  CAS  Google Scholar 

  100. Wild RA, Umstot ES, Andersen RN, Ranney G, Givens JR. Androgen parameters and their correlation with body weight in one hundred thirty-eight women thought to have hyperandrogenism. Am J Obstet Gynecol 1983, 146:602–606.

    PubMed  CAS  Google Scholar 

  101. Moran C, Knochenhauer E, Boots LR, Azziz R. Adrenal androgen excess in hyperandrogenism: relation to age and body mass. Fertil Steril 1999, 71:671–674.

    Article  PubMed  CAS  Google Scholar 

  102. Carmina E, Koyama T, Chang L, Stanczyk FZ, Lobo RA. Does ethnicity influence the prevalence of adrenal hyperandrogenism and insulin resistance in polycystic ovary syndrome? Am J Obstet Gynecol 1992, 167:1807–1812.

    PubMed  CAS  Google Scholar 

  103. Eisner JR, Dumesic DA, Kemnitz JW, Abbott DH. Timing of prenatal androgen excess determines differential impairment in insulin secretion and action in adult female rhesus monkeys. J Clin Endocrinol Metab 2000, 85:1206–1210.

    Article  PubMed  CAS  Google Scholar 

  104. Abbott DH, Eisner JR, Goodfriend TL, Medley RD, Peterson EJ, Colman Ricki J, Kemnitz JW and Dumesic DA. Leptin and Total Free Fatty Acids are Elevated in the Circulation of Prenatally Androgenized Female Rhesus Monkeys. Abstract #P2–329, 84th Annual Meeting of the Endocrine Society, San Francisco, CA, June 2002.

    Google Scholar 

  105. Eisner JR, Dumesic DA, Kemnitz JW, Colman RJ, Abbott DH. Increased adiposity in female rhesus monkeys exposed to androgen excess during early gestation. Obes Res 2003, 11:279–286.

    PubMed  Google Scholar 

  106. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002, 287:356–359.

    Article  PubMed  Google Scholar 

  107. Abbott DH, Padmanabhan V and Dumesic DA. Contributions of androgen and estrogen to fetal programming of ovarian dysfunction. Reproductive Biology and Endocrinology 2006, 4:17.

    Google Scholar 

  108. Coviello AD, Legro RS, Dunaif A. Adolescent girls with polycystic ovary syndrome have an increased risk of the metabolic syndrome associated with increasing androgen levels independent of obesity and insulin resistance. J Clin Endocrinol Metab 2006, 91:492–497.

    Article  PubMed  CAS  Google Scholar 

  109. Carmina E, Napoli N, Longo RA, Rini GB, Lobo RA. Metabolic syndrome in polycystic ovary syndrome (PCOS): lower prevalence in southern Italy than in the USA and the influence of criteria for the diagnosis of PCOS. Eur J Endocrinol 2006, 154:141–145.

    Article  PubMed  CAS  Google Scholar 

  110. Ehrmann DA, Liljenquist DR, Kasza K, Azziz R, Legro RS, Ghazzi MN; PCOS/Troglitazone Study Group. Prevalence and predictors of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2006, 91:48–53.

    Article  PubMed  CAS  Google Scholar 

  111. Wagenknecht LE, Langefeld CD, Scherzinger AL, Norris JM, Haffner SM, Saad MF, Bergman RN. Insulin sensitivity, insulin secretion, and abdominal fat: the Insulin Resistance Atherosclerosis Study (IRAS) Family Study. Diabetes 2003, 52:2490–2496.

    Article  PubMed  CAS  Google Scholar 

  112. Puder JJ, Varga S, Kraenzlin M, De Geyter C, Keller U, Muller B. Central fat excess in polycystic ovary syndrome: relation to low-grade inflammation and insulin resistance. J Clin Endocrinol Metab 2005, 90:6014–6021.

    Article  PubMed  CAS  Google Scholar 

  113. Bruns CM, Baum ST, Colman RJ, Eisner JR, Kemnitz JW, Weindruch R, Abbott DH. Insulin resistance and impaired insulin secretion in prenatally androgenized male rhesus monkeys. J Clin Endocrinol Metab 2004, 89:6218–6223.

    Article  PubMed  CAS  Google Scholar 

  114. Yildiz BO, Yarali H, Oguz H, Bayraktar M. Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003, 88:2031–2036.

    Article  PubMed  CAS  Google Scholar 

  115. Fox R. Prevalence of a positive family history of type 2 diabetes in women with polycystic ovarian disease. Gynecol Endocrinol 1999, 13:390–393.

    Article  PubMed  CAS  Google Scholar 

  116. Sir-Petermann T, Maliqueo M, Angel B, Lara HE, Perez-Bravo F, Recabarren SE. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum Reprod 2002, 17:2573–2579.

    Article  PubMed  CAS  Google Scholar 

  117. Colilla S, Cox NJ, Ehrmann DA. Heritability of insulin secretion and insulin action in women with polycystic ovary syndrome and their first degree relatives. J Clin Endocrinol Metab 2001, 86:2027–2031.

    Article  PubMed  CAS  Google Scholar 

  118. Yilmaz M, Bukan N, Ersoy R, Karakoc A, Yetkin I, Ayvaz G, Cakir N, Arslan M. Glucose intolerance, insulin resistance and cardiovascular risk factors in first degree relatives of women with polycystic ovary syndrome. Hum Reprod 2005, 20:2414–2420.

    Article  PubMed  CAS  Google Scholar 

  119. Legro RS, Kunselman AR, Demers L, Wang SC, Bentley-Lewis R, Dunaif A. Elevated dehydroepiandrosterone sulfate levels as the reproductive phenotype in the brothers of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2002, 87:2134–2138.

    Article  PubMed  CAS  Google Scholar 

  120. Sir-Petermann TS, Cartes A, Maliqueo M, Vantman D, Gutierrez C, Toloza H, Echiburu B, Recabarren SE. Patterns of hormonal response to the GnRH agonist leuprolide in brothers of women with polycystic ovary syndrome: a pilot study. Hum Reprod 2004, 19:2742–2747.

    Article  CAS  Google Scholar 

  121. Barnes RB, Rosenfield RL, Ehrmann DA, Cara JF, Cuttler L, Levitsky LL, Rosenthal IM. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 1994, 79:1328–1333.

    Article  PubMed  CAS  Google Scholar 

  122. Merke DP and Cutler GB Jr. New ideas for medical treatment of congenital adrenal hyperplasia. Endocrinol Metab Clin North Am 2001, 30:121–135.

    PubMed  CAS  Google Scholar 

  123. Phocas I, Chryssikopoulos A, Sarandakou A, Rizos D and Trakakis E. A contribution to the classification of cases of non-classic 21-hydroxylase-deficient congenital adrenal hyperplasia. Gynecol Endocrinol 1995, 9:229–238.

    PubMed  CAS  Google Scholar 

  124. Stikkelbroeck NM, Hermus AR, Braat DD and Otten BJ. Fertility in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Obstet Gynecol Surv 2003, 58:275–284.

    Article  PubMed  Google Scholar 

  125. Hautanen A, Raikkonen K, Adlercreutz H. Associations between pituitary-adrenocortical function and abdominal obesity, hyperinsulinaemia and dyslipidaemia in normotensive males. J Intern Med 1997, 241:451–461.

    Article  PubMed  CAS  Google Scholar 

  126. Beck-Peccoz P, Padmanabhan V, Baggiani AM, Cortelazzi D, Buscaglia M, Medri G, Marconi AM, Pardi G, Beitins IZ. Maturation of hypothalamic-pituitary-gonadal function in normal human fetuses: circulating levels of gonadotropins, their common alpha-subunit and free testosterone, and discrepancy between immunological and biological activities of circulating follicle-stimulating hormone. J Clin Endocrinol Metab 1991, 73:525–532.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Abbott, D.H. et al. (2008). Fetal Origins of Polycystic Ovary Syndrome. In: Dunaif, A., Chang, R.J., Franks, S., Legro, R.S. (eds) Polycystic Ovary Syndrome. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-108-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-108-6_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-831-7

  • Online ISBN: 978-1-59745-108-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics