Skip to main content

Genetic Analyses of Polycystic Ovary Syndrome

  • Chapter
  • 1329 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Summary

Polycystic ovary syndrome (PCOS) is a very common endocrine disorder with a strong genetic component that is characterized by hyperandrogenemia and menstrual irregularity. Over the last decade, the roles of more than 70 candidate genes in the etiology of PCOS have been evaluated. However, because of genetic and phenotypic heterogeneity and underpowered studies as a consequence of analyzing insufficiently large cohorts, the results of many of these studies remain inconclusive. This chapter will discuss the factors contributing to the complexity of genetic studies of PCOS including (1) the heritability of PCOS, (2) phenotyping heterogeneity, (3) power and study design of past and future genetic studies of PCOS, and (4) the results of a select group of candidate genes. Owing to the large number of PCOS candidate genes that have been studied, we have limited our discussion of candidate genes to six candidate gene regions that are specifically promising or have been studied intensively. The six genes are CYP11A, insulin gene variable number of tandem repeats (VNTR), calpain-10, sex hormone-binding globulin (SHBG), androgen receptor (AR) and X-chromosome inactivation, and the chromosome 19p13.2 susceptibility locus, D19S844. While past genetic studies of PCOS have yielded only modest results, the resources and techniques to remedy the major deficits of these early studies have now been assembled, promising that the next few years will be a very exciting and rewarding era for the genetic analysis of PCOS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diamanti-Kandarakis E, Kouli CR, Bergiele AT, et al. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab 1999;84)(11): 4006–11.

    Article  PubMed  CAS  Google Scholar 

  2. Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab 1998;83)(9):3078–82.

    Article  PubMed  CAS  Google Scholar 

  3. Azziz R, Marin C, Hoq L, Badamgarav E, Song P. Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span. J Clin Endocrinol Metab 2005;90)(8):4650–8.

    Article  PubMed  CAS  Google Scholar 

  4. Balen AH, Conway GS, Kaltsas G, et al. Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. Hum Reprod 1995;10:2107–11.

    PubMed  CAS  Google Scholar 

  5. Conway GS, Honour JW, Jacobs HS. Heterogeneity of the polycystic ovary syndrome: clinical, endocrine and ultrasound features in 556 patients. Clin Endocrinol (Oxf) 1989;30:459–70.

    CAS  Google Scholar 

  6. Burghen GA, Givens JR, Kitabchi AE. Correlation of hyperandrogenism with hyperinsulinism in polycystic ovarian disease. J Clin Endocrinol Metab 1980;50:113–6.

    PubMed  CAS  Google Scholar 

  7. Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 1989;38)(9):1165–74.

    Article  PubMed  CAS  Google Scholar 

  8. Cotrozzi G, Matteini M, Relli P, Lazzari T. Hyperinsulinism and insulin resistance in polycystic ovarian syndrome: a verification using oral glucose, I.V. glucose and tolbutamide. Acta Diabetologia Latina 1983;20)(2):135–42.

    Article  CAS  Google Scholar 

  9. Ehrmann DA, Sturis J, Byrne MM, Karrison T, Rosenfield RL, Polonsky KS. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest 1995;96)(1):520–7.

    Article  PubMed  CAS  Google Scholar 

  10. Dunaif A, Graf M, Mandeli J, Laumas V, Dobrjansky A. Characterization of groups of hyperandrogenic women with acanthosis nigricans, impaired glucose tolerance, and/or hyperinsulinemia. J Clin Endocrinol Metab 1987;65)(3):499–507.

    Article  PubMed  CAS  Google Scholar 

  11. Dunaif A, Segal KR, Shelley DR, Green G, Dobrjansky A, Licholai T. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes 1992;41)(10):1257–66.

    Article  PubMed  CAS  Google Scholar 

  12. Legro RS, Kunselman A, Dodson WC, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 1999;84:165–9.

    Article  PubMed  CAS  Google Scholar 

  13. Yildiz BO, Yarali H, Oguz H, Bayraktar M. Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003;88)(5):2031–6.

    Article  PubMed  CAS  Google Scholar 

  14. Sam S, Legro RS, Bentley-Lewis R, Dunaif A. Dyslipidemia and metabolic syndrome in the sisters of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005;90)(8):4797–802.

    Article  PubMed  CAS  Google Scholar 

  15. Sam S, Dunaif A. Polycystic ovary syndrome: syndrome XX? Trends Endocrinol Metab 2003;14)(8):365–70.

    Article  PubMed  CAS  Google Scholar 

  16. Sir-Petermann T, Angel B, Maliqueo M, Carvajal F, Santos JL, Pâerez-Bravo F. Prevalence of type II diabetes mellitus and insulin resistance in parents of women with polycystic ovary syndrome. Diabetologia 2002;45)(7):959–64.

    Article  PubMed  CAS  Google Scholar 

  17. Yilmaz M, Bukan N, Ersoy R, et al. Glucose intolerance, insulin resistance and cardiovascular risk factors in first degree relatives of women with polycystic ovary syndrome. Hum Reprod (Oxf) 2005;20)(9):2414–20.

    Article  CAS  Google Scholar 

  18. Kiddy DS, Hamilton-Fairley D, Bush A, et al. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol 1992;36)(1): 105–11.

    CAS  Google Scholar 

  19. Norman RJ, Noakes M, Wu R, Davies MJ, Moran L, Wang JX. Improving reproductive performance in overweight/obese women with effective weight management. Hum Reprod Update 2004;10)(3): 267–80.

    Article  PubMed  Google Scholar 

  20. Moran LJ, Noakes M, Clifton PM, Wittert G, Norman RJ. Short term energy restriction (using meal replacements) improves reproductive parameters in polycystic ovary syndrome. Asia Pacific J Clin Nutr 2004;13)(Suppl):S88.

    Google Scholar 

  21. Moran L, Norman RJ. Understanding and managing disturbances in insulin metabolism and body weight in women with polycystic ovary syndrome. Best practice Res Clin Obstet Gynaecol 2004;18(5):719–36.

    Article  CAS  Google Scholar 

  22. Norman RJ, Davies MJ, Lord J, Moran LJ. The role of lifestyle modification in polycystic ovary syndrome. Trends Endocrinol Metab 2002;13)(6):251–7.

    Article  PubMed  CAS  Google Scholar 

  23. Cooper HE, Spellacy WN, Prem KA, Cohen WD. Hereditary factors in Stein-Leventhal syndrome. Am J Obstet Gynecol 1968;100:371–87.

    PubMed  CAS  Google Scholar 

  24. Givens JR. Familial polycystic ovarian disease. Endocrinol Metab Clin N Am 1988;17)(4):771–83.

    CAS  Google Scholar 

  25. Hague W, Adams J, Reeders S, Peto TA, Jacobs H. Familial polycystic ovaries: A genetic disease. Clin Endocrinol 1988;29:593–605.

    CAS  Google Scholar 

  26. Ferriman D, Purdie AW. The inheritance of polycystic ovarian disease and a possible relationship to premature balding. Clin Endocrinol 1979;11)(3):291–300.

    CAS  Google Scholar 

  27. Carey AH, Chan KI, Short F, Williamson R, Franks S. Evidence for a single gene effect causing polycystic ovaries and male pattern baldness. Clin Endocrinol 1993;38:653–8.

    CAS  Google Scholar 

  28. Legro RS, Driscoll D, Strauss JF, Fox J, Dunaif A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci USA 1998;95:14956–60.

    Article  PubMed  CAS  Google Scholar 

  29. Kahsar-Miller M, Azziz R. Heritability and the risk of developing androgen excess. J Steroid Biochem Mol Biol 1999;69)(1–6):261–8.

    Article  Google Scholar 

  30. Jahanfar S, Eden J, Nguyen T, Wang X, Wilcken D. A twin study of polycystic ovary syndrome and lipids. Gynecol Endocrinol 1997;11)(2):111–7.

    PubMed  CAS  Google Scholar 

  31. Kahsar-Miller MD, Nixon C, Boots LR, Go RC, Azziz R. Prevalence of polycystic ovary syndrome (PCOS) in first degree relatives of patients with PCOS. Fertil Steril 2001;75)(1):53–8.

    Article  PubMed  CAS  Google Scholar 

  32. Vink J, Sadrzadeh SM, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome (PCOS) in a Dutch twin-family study. J Clin Endocrinol Metab 2005 [Epub ahead of print].

    Google Scholar 

  33. Urbanek M, Legro RS, Driscoll DA, et al. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Natl Acad Sci USA 1999;96)(15):8573–8.

    Article  PubMed  CAS  Google Scholar 

  34. Escobar-Morreale HF, Luque-Ramâirez M, San Millâan JL. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev 2005;26)(2):251–82.

    Article  PubMed  CAS  Google Scholar 

  35. Newton-Cheh C, Hirschhorn JN. Genetic association studies of complex traits: design and analysis issues. Mutat Res 2005;573)(1–2):54–69.

    PubMed  CAS  Google Scholar 

  36. Hirschhorn JN. Genetic approaches to studying common diseases and complex traits. Pediatr Res 2005;57)(5):74R–7R.

    Google Scholar 

  37. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005;6)(2):95–108.

    Article  PubMed  CAS  Google Scholar 

  38. Hattersley AT, McCarthy MI. What makes a good genetic association study? Lancet 2005;366)(9493):1315–23.

    Article  PubMed  Google Scholar 

  39. Zawadski JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome. In: Givens J, Haseltine F, Merriman G, eds. The Polycystic Ovary Syndrome. Cambridge, MA: Blackwell Scientific; 1992: 377–84.

    Google Scholar 

  40. The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004;19)(1):41–7.

    Google Scholar 

  41. Altshuler D, Hirschhorn J, Klannemark M, et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000;26)(1):76–80.

    Article  PubMed  CAS  Google Scholar 

  42. Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006;38)(3):320–3.

    Article  PubMed  CAS  Google Scholar 

  43. Hirschhorn JN, Altshuler D. Once and again-issues surrounding replication in genetic association studies. J Clin Endocrinol Metab 2002;87)(10):4438–41.

    Article  PubMed  CAS  Google Scholar 

  44. Gharani N, Waterworth DM, Batty S, et al. Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism. Hum Mol Genet 1997;6)(3):397–402.

    Article  PubMed  CAS  Google Scholar 

  45. Diamanti-Kandarakis E, Bartzis MI, Bergiele AT, Tsianateli TC, Kouli CR. Microsatellite polymorphism (tttta)(n) at -528 base pairs of gene CYP11alpha influences hyperandrogenemia in patients with polycystic ovary syndrome. Fertil Steril 2000;73:735–41.

    Article  PubMed  CAS  Google Scholar 

  46. Daneshmand S, Weitsman SR, Navab A, Jakimiuk AJ, Magoffin DA. Overexpression of theca-cell messenger RNA in polycystic ovary syndrome does not correlate with polymorphisms in the cholesterol side-chain cleavage and 17alpha-hydroxylase/C(17–20) lyase promoters. Fertil Steril 2002;77)(2):274–80.

    Article  PubMed  Google Scholar 

  47. San Millan JL, Sancho J, Calvo RM, Escobar-Morreale HF. Role of the pentanucleotide (tttta)(n) polymorphism in the promoter of the CYP11a gene in the pathogenesis of hirsutism. Fertil Steril 2001;75:797–802.

    Article  PubMed  CAS  Google Scholar 

  48. Gaasenbeek M, Powell BL, Sovio U, et al. Large-scale analysis of the relationship between CYP11A promoter variation, polycystic ovarian syndrome, and serum testosterone. J Clin Endocrinol Metab 2004;89)(5):2408–13.

    Article  PubMed  CAS  Google Scholar 

  49. Bell GI, Selby MJ, Rutter WJ. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 1982;295)(5844):31–5.

    Article  PubMed  CAS  Google Scholar 

  50. Bennett ST, Lucassen AM, Gough SC, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 1995;9)(3): 284–92.

    Article  PubMed  CAS  Google Scholar 

  51. Bennett ST, Todd JA. Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Ann Rev Genet 1996;30:343–70.

    Article  PubMed  CAS  Google Scholar 

  52. Vafiadis P, Bennett ST, Colle E, Grabs R, Goodyer CG, Polychronakos C. Imprinted and genotype-specific expression of genes at the IDDM2 locus in pancreas and leucocytes. J Autoimmun 1996;9)(3):397–403.

    Article  PubMed  CAS  Google Scholar 

  53. Kennedy GC, German MS, Rutter WJ. The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nat Genet 1995;9)(3):293–8.

    Article  PubMed  CAS  Google Scholar 

  54. Lucassen AM, Screaton GR, Julier C, Elliott TJ, Lathrop M, Bell JI. Regulation of insulin gene expression by the IDDM associated, insulin locus haplotype. Hum Mol Genet 1995;4)(4):501–6.

    Article  PubMed  CAS  Google Scholar 

  55. Owerbach D, Gabbay KH. The search for IDDM susceptibility genes: the next generation. Diabetes 1996;45)(5):544–51.

    Article  PubMed  CAS  Google Scholar 

  56. Huxtable SJ, Saker PJ, Haddad L, et al. Analysis of parent-offspring trios provides evidence for linkage and association between the insulin gene and type 2 diabetes mediated exclusively through paternally transmitted class III variable number tandem repeat alleles. Diabetes 2000;49)(1):126–30.

    Article  PubMed  CAS  Google Scholar 

  57. Ong KK, Phillips DI, Fall C, et al. The insulin gene VNTR, type 2 diabetes and birth weight. Nat Genet 1999;21)(3):262–3.

    Article  PubMed  CAS  Google Scholar 

  58. Le Stunff C, Fallin D, Schork NJ, Bougneres P. The insulin gene VNTR is associated with fasting insulin levels and development of juvenile obesity. Nat Genet 2000;26)(4):444–6.

    Article  PubMed  CAS  Google Scholar 

  59. Le Stunff C, Fallin D, Bougneres P. Paternal transmission of the very common class I INS VNTR alleles predisposes to childhood obesity. Nat Genet 2001;29)(1):96–9.

    Article  PubMed  CAS  Google Scholar 

  60. Waterworth DM, Bennett ST, Gharani N, et al. Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome. Lancet 1997;349)(9057):986–90.

    Article  PubMed  CAS  Google Scholar 

  61. Michelmore K, Ong K, Mason S, et al. Clinical features in women with polycystic ovaries: relationships to insulin sensitivity, insulin gene VNTR and birth weight. Clin Endocrinol (Oxf) 2001;55)(4):439–46.

    Article  CAS  Google Scholar 

  62. Calvo RM, Tellerâia D, Sancho J, San Millâan JL, Escobar-Morreale HF. Insulin gene variable number of tandem repeats regulatory polymorphism is not associated with hyperandrogenism in Spanish women. Fertil Steril 2002;77)(4):666–8.

    Article  PubMed  Google Scholar 

  63. Vankova M, Vrbikova J, Hill M, Cinek O, Bendlova B. Association of insulin gene VNTR polymorphism with polycystic ovary syndrome. Ann N Y Acad Sci 2002;967:558–65.

    Article  PubMed  CAS  Google Scholar 

  64. Powell BL, Haddad L, Bennett A, et al. Analysis of multiple data sets reveals no association between the insulin gene variable number tandem repeat element and polycystic ovary syndrome or related traits. J Clin Endocrinol Metab 2005;90)(5):2988–93.

    Article  PubMed  CAS  Google Scholar 

  65. Hanis CL, Boerwinkle E, Chakraborty R, et al. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet 1996;13)(2):161–6.

    Article  PubMed  CAS  Google Scholar 

  66. Horikawa Y, Oda N, Cox NJ, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000;26:163–75.

    Article  PubMed  CAS  Google Scholar 

  67. Evans JC, Frayling TM, Cassell PG, et al. Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. Am J Hum Genet 2001;69)(3):544–52.

    Article  PubMed  CAS  Google Scholar 

  68. Tsai HJ, Sun G, Weeks DE, et al. Type 2 diabetes and three calpain-10 gene polymorphisms in Samoans: no evidence of association. Am J Hum Genet 2001;69)(6):1236–44.

    Article  PubMed  CAS  Google Scholar 

  69. Weedon MN, Schwarz PE, Horikawa Y, et al. Meta-analysis and a large association study confirm a role for calpain-10 variation in type 2 diabetes susceptibility. Am J Hum Genet 2003;73: 1208–12.

    Article  PubMed  CAS  Google Scholar 

  70. Song Y, Niu T, Manson JE, Kwiatkowski DJ, Liu S. Are variants in the CAPN10 gene related to risk of type 2 diabetes? A quantitative assessment of population and family-based association studies. Am J Hum Genet 2004;74)(2):208–22.

    Article  PubMed  CAS  Google Scholar 

  71. Tsuchiya T, Schwarz P, Bosque-Plata L, et al. Association of the calpain-10 gene with type 2 diabetes in Europeans: results of pooled and meta-analyses. Mol Genet Metab 2006 [Epub ahead of print].

    Google Scholar 

  72. Baier LJ, Permana PA, Yang X, et al. A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J Clin Invest 2000;106)(7):R69–73.

    Google Scholar 

  73. Ehrmann DA, Schwarz PE, Hara M, et al. Relationship of calpain-10 genotype to phenotypic features of polycystic ovary syndrome. J Clin Endocrinol Metab 2002;87)(4):1669–73.

    Article  PubMed  CAS  Google Scholar 

  74. Haddad L, Evans JC, Gharani N, et al. Variation within the type 2 diabetes susceptibility gene calpain-10 and polycystic ovary syndrome. J Clin Endocrinol Metab 2002;87)(6):2606–10.

    Article  PubMed  CAS  Google Scholar 

  75. Gonzalez A, Abril E, Roca A, et al. Specific CAPN10 gene haplotypes influence the clinical profile of polycystic ovary patients. J Clin Endocrinol Metab 2003;88)(11):5529–36.

    Article  PubMed  CAS  Google Scholar 

  76. Gonzalez A, Abril E, Roca A, et al. CAPN10 alleles are associated with polycystic ovary syndrome. J Clin Endocrinol Metab 2002;87)(8):3971–6.

    Article  PubMed  CAS  Google Scholar 

  77. Nestler JE. Sex hormone-binding globulin: a marker for hyperinsulinemia and/or insulin resistance? J Clin Endocrinol Metab 1993;76)(2):273–4.

    Article  PubMed  CAS  Google Scholar 

  78. Plymate SR, Matej LA, Jones RE, Friedl KE. Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. J Clin Endocrinol Metab 1988;67)(3):460–4.

    PubMed  CAS  Google Scholar 

  79. Pugeat M, Crave JC, Elmidani M, et al. Pathophysiology of sex hormone binding globulin (SHBG): relation to insulin. J Steriod Biochem Mol Biol 1991;40)(4–6):841–9.

    Article  CAS  Google Scholar 

  80. Cousin P, Dâechaud H, Grenot C, Lejeune H, Pugeat M. Human variant sex hormone-binding globulin (SHBG) with an additional carbohydrate chain has a reduced clearance rate in rabbit. J Clin Endocrinol Metab 1998;83)(1):235–40.

    Article  PubMed  CAS  Google Scholar 

  81. Power SG, Bocchinfuso WP, Pallesen M, Warmels-Rodenhiser S, Van Baelen H, Hammond GL. Molecular analyses of a human sex hormone-binding globulin variant: evidence for an additional carbohydrate chain. J Clin Endocrinol Metab 1992;75)(4):1066–70.

    Article  PubMed  CAS  Google Scholar 

  82. Hogeveen KN, Talikka M, Hammond GL. Human sex hormone-binding globulin promoter activity is influenced by a (TAAAA)n repeat element within an Alu sequence. J Biol Chem 2001;276)(39): 36383–90.

    Article  PubMed  CAS  Google Scholar 

  83. Xita N, Tsatsoulis A, Chatzikyriakidou A, Georgiou I. Association of the (TAAAA)n repeat polymorphism in the sex hormone-binding globulin (SHBG) gene with polycystic ovary syndrome and relation to SHBG serum levels. J Clin Endocrinol Metab 2003;88)(12):5976–80.

    Article  PubMed  CAS  Google Scholar 

  84. Cousin P, Calemard-Michel L, Lejeune H, et al. Influence of SHBG gene pentanucleotide TAAAA repeat and D327N polymorphism on serum sex hormone-binding globulin concentration in hirsute women. J Clin Endocrinol Metab 2004;89)(2):917–24.

    Article  PubMed  CAS  Google Scholar 

  85. Jakubiczka S, Nedel S, Werder EA, et al. Mutations of the androgen receptor gene in patients with complete androgen insensitivity. Hum Mutat 1997;9)(1):57–61.

    Article  PubMed  CAS  Google Scholar 

  86. Hickey T, Chandy A, Norman RJ. The androgen receptor CAG repeat polymorphism and hX-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. J Clin Endocrinol Metab 2002;87)(1):161–5.

    Article  PubMed  CAS  Google Scholar 

  87. Jèaèaskelèainen J, Korhonen S, Voutilainen R, Hippelèainen M, Heinonen S. Androgen receptor gene CAG length polymorphism in women with polycystic ovary syndrome. Fertil Steril 2005;83)(6): 1724–8.

    Article  CAS  Google Scholar 

  88. Legro R, Shahbahrami B, Lobo R, Kovacs B. Size polymorphisms of the androgen receptor among female Hispanics and correlation with androgenic characteristics. Obstet Gynecol 1994;83)(5 Pt 1): 701–6.

    PubMed  CAS  Google Scholar 

  89. Mifsud A, Ramirez S, Yong EL. Androgen receptor gene CAG trinucleotide repeats in annovulatory infertility and polycystic ovaries. J Clin Endocrinol Metab 2000;85:3484–8.

    Article  PubMed  CAS  Google Scholar 

  90. Mèohlig M, Jèurgens A, Spranger J, et al. The androgen receptor CAG repeat modifies the impact of testosterone on insulin resistance in women with polycystic ovary syndrome. Eur J Endocrinol 2006;155)(1):127–30.

    Article  CAS  Google Scholar 

  91. Mhatre AN, Trifiro MA, Kaufman M, et al. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nat Genet 1993;5)(2):184–8.

    Article  PubMed  CAS  Google Scholar 

  92. Tut TG, Ghadessy FJ, Trifiro MA, Pinsky L, Yong EL. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J Clin Endocrinol Metab 1997;82)(11):3777–82.

    Article  PubMed  CAS  Google Scholar 

  93. Hickey TE, Legro RS, Norman RJ. Epigenetic modification of the X chromosome influences susceptibility to polycystic ovary syndrome. J Clin Endocrinol Metab 2006;91)(7):2789–91.

    Article  PubMed  CAS  Google Scholar 

  94. Urbanek M, Woodroffe A, Ewens KG, et al. Candidate gene region for polycystic ovary syndrome on chromosome 19p13.2. J Clin Endocrinol Metab 2005;90)(12):6623–9.

    Article  PubMed  CAS  Google Scholar 

  95. Tucci S, Futterweit W, Concepcion ES, et al. Evidence for association of polycystic ovary syndrome in caucasian women with a marker at the insulin receptor locus. J Clin Endocrinol Metab 2001;86)(1): 446–9.

    Article  PubMed  CAS  Google Scholar 

  96. Villuendas G, Escobar-Morreale HF, Tosi F, Sancho J, Moghetti P, San Millan JL. Association between the D19S884 marker at the insulin receptor gene locus and polycystic ovary syndrome. Fertil Steril 2003;79)(1):219–20.

    Article  PubMed  Google Scholar 

  97. Charbonneau NL, Ono RN, Corson GM, Keene DR, Sakai LY. Fine tuning of growth factor signals depends on fibrillin microfibril networks. Birth Defects Res C Embryo Today 2004;72)(1):37–50.

    Article  PubMed  CAS  Google Scholar 

  98. Corson GM, Charbonneau NL, Keene DR, Sakai LY. Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues. Genomics 2004;83)(3): 461–72.

    Article  PubMed  CAS  Google Scholar 

  99. Pereira L, Andrikopoulos K, Tian J, et al. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 1997;17)(2):218–22.

    Article  PubMed  CAS  Google Scholar 

  100. Arteaga-Solis E, Gayraud B, Lee SY, Shum L, Sakai L, Ramirez F. Regulation of limb patterning by extracellular microfibrils. J Cell Biol 2001;154)(2):275–81.

    Article  PubMed  CAS  Google Scholar 

  101. Carta L, Pereira L, Arteaga-Solis E, et al. Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem 2006;281)(12):8016–23.

    Article  PubMed  CAS  Google Scholar 

  102. Neptune ER, Frischmeyer PA, Arking DE, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 2003;33)(3):407–11.

    Article  PubMed  CAS  Google Scholar 

  103. Kaartinen V, Warburton D. Fibrillin controls TGF-beta activation. Nat Genet 2003;33)(3):331–2.

    Article  PubMed  CAS  Google Scholar 

  104. Kissin EY, Lemaire R, Korn JH, Lafyatis R. Transforming growth factor beta induces fibroblast fibrillin-1 matrix formation. Arthritis Rheum 2002;46)(11):3000–9.

    Article  PubMed  CAS  Google Scholar 

  105. Isogai Z, Gregory KE, Ono RN, et al. Microfibrils and morphogenesis. In: Tamburro AM, Pepe A, eds. Elastin. Potenza, Italy; 2003:213–23.

    Google Scholar 

  106. Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006;312)(5770):117–21.

    Article  PubMed  CAS  Google Scholar 

  107. Mehra A, Wrana JL. TGF-beta and the Smad signal transduction pathway. Biochem Cell Biol 2002;80)(5):605–22.

    Article  PubMed  CAS  Google Scholar 

  108. Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 2002;23)(6):787–823.

    Article  PubMed  CAS  Google Scholar 

  109. Findlay JK, Drummond AE, Dyson ML, Baillie AJ, Robertson DM, Ethier JF. Recruitment and development of the follicle; the roles of the transforming growth factor-beta superfamily. Mol Cell Endocrinol 2002;191)(1):35–43.

    Article  PubMed  CAS  Google Scholar 

  110. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci 2001;114)(Pt):4359–69.

    PubMed  CAS  Google Scholar 

  111. Gebhardt F, Zèanker KS, Brandt B. Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J Biol Chem 1999;274:13176–80.

    Article  PubMed  CAS  Google Scholar 

  112. Dolan-O’Keefe M, Chow V, Monnier J, Visner GA, Nick HS. Transcriptional regulation and structural organization of the human cytosolic phospholipase A(2) gene. Am J Physiol Lung Cell Mol Physiol 2000;278:L649–57.

    PubMed  CAS  Google Scholar 

  113. Hata R, Akai J, Kimura A, Ishikawa O, Kuwana M, Shinkai H. Association of functional microsatellites in the human type I collagen alpha2 chain (COL1A2) gene with systemic sclerosis. Biochem Biophys Res Commun 2000;272:36–40.

    Article  PubMed  CAS  Google Scholar 

  114. Rothenburg S, Koch-Nolte F, Rich A, Haag F. A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity. Proc Natl Acad Sci USA 2001;98:8985–90.

    Article  PubMed  CAS  Google Scholar 

  115. Ferrand PE, Parry S, Sammel M, et al. A polymorphism in the matrix metalloproteinase-9 promoter is associated with increased risk of preterm premature rupture of membranes in African Americans. Mol Hum Reprod 2002;8:494–501.

    Article  PubMed  CAS  Google Scholar 

  116. Fornoni A, Lenz O, Striker LJ, Striker GE. Glucose induces clonal selection and reversible dinucleotide repeat expansion in mesangial cells isolated from glomerulosclerosis-prone mice. Diabetes 2003;52:2594–602.

    Article  PubMed  CAS  Google Scholar 

  117. Fenech AG, Billington CK, Swan C, et al. Novel polymorphisms influencing transcription of the human CHRM2 gene in airway smooth muscle. Am J Respir Cell Mol Biol 2004;30:678–86.

    Article  PubMed  CAS  Google Scholar 

  118. Huang TS, Lee CC, Chang AC, et al. Shortening of microsatellite deoxy(CA) repeats involved in GL331-induced down-regulation of matrix metalloproteinase-9 gene expression. Biochem Biophys Res Commun 2003;300:901–7.

    Article  PubMed  CAS  Google Scholar 

  119. Gao PS, Heller NM, Walker W, et al. Variation in dinucleotide (GT) repeat sequence in the first exon of the STAT6 gene is associated with atopic asthma and differentially regulates the promoter activity in vitro. J Med Genet 2004;41)(7):535–9.

    Article  PubMed  CAS  Google Scholar 

  120. Gabellini N. A polymorphic GT repeat from the human cardiac Na+Ca2+ exchanger intron 2 activates splicing. Eur J Biochem 2001;268:1076–83.

    Article  PubMed  CAS  Google Scholar 

  121. Hui J, Stangl K, Lane WS, Bindereif A. HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nat Struct Biol 2003;10:33–7.

    Article  PubMed  CAS  Google Scholar 

  122. Hui J, Reither G, Bindereif A. Novel functional role of CA repeats and hnRNP L in RNA stability. RNA 2003;9:931–6.

    Article  PubMed  CAS  Google Scholar 

  123. Stangl K, Cascorbi I, Laule M, et al. High CA repeat numbers in intron 13 of the endothelial nitric oxide synthase gene and increased risk of coronary artery disease. Pharmacogenetics 2000;10:133–40.

    Article  PubMed  CAS  Google Scholar 

  124. Stewart DR, Dombroski BA, Urbanek M, et al. Fine mapping of genetic susceptibility to polycystic ovary syndrome on chromosome 19p13.2 and tests of regulatory activity. J Clin Endocrinol Metab 2006 [Epub ahead of print].

    Google Scholar 

  125. The International HapMap Consortium. The International HapMap Project. Nature 2003;426)(6968):789–96.

    Google Scholar 

  126. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P. A haplotype map of the human genome. Nature 2005;437)(7063):1299–320.

    Article  CAS  Google Scholar 

  127. Heinonen S, Korhonen S, Helisalmi S, et al. Associations between two single nucleotide polymorphisms in the adiponectin gene and polycystic ovary syndrome. Gynecol Endocrinol 2005;21)(3):165–9.

    Article  PubMed  CAS  Google Scholar 

  128. San Millan JL, Cortâon M, Villuendas G, Sancho J, Peral B, Escobar-Morreale HF. Association of the polycystic ovary syndrome with genomic variants related to insulin resistance, type 2 diabetes mellitus, and obesity. J Clin Endocrinol Metab 2004;89)(6):2640–6.

    Google Scholar 

  129. Perez-Bravo F, Echiburâu B, Maliqueo M, Santos JL, Sir-Petermann T. Tryptophan 64 –> arginine polymorphism of beta-3-adrenergic receptor in Chilean women with polycystic ovary syndrome. Clin Endocrinol 2005;62)(2):126–31.

    Article  CAS  Google Scholar 

  130. Zulian E, Sartorato P, Schiavi F, et al. The M235T polymorphism of the angiotensinogen gene in women with polycystic ovary syndrome. Fertil Steril 2005;84)(5):1520–1.

    Article  PubMed  CAS  Google Scholar 

  131. Heinonen S, Korhonen S, Hippelainen M, Hiltunen M, Mannermaa A, Saarikoski S. Apolipoprotein E alleles in women with polycystic ovary syndrome. Fertil Steril 2001;75)(5):878–80.

    Article  PubMed  CAS  Google Scholar 

  132. Babu KA, Rao KL, Kanakavalli MK, Suryanarayana VV, Deenadayal M, Singh L. CYP1A1, GSTM1 and GSTT1 genetic polymorphism is associated with susceptibility to polycystic ovaries in South Indian women. Reprod Biomed online 2004;9)(2):194–200.

    Article  PubMed  CAS  Google Scholar 

  133. Techatraisak K, Conway GS, Rumsby G. Frequency of a polymorphism in the regulatory region of the 17 alpha-hydroxylase-17,20-lyase (CYP17) gene in hyperandrogenic states. Clin Endocrinol 1997;46)(2):131–4.

    Article  CAS  Google Scholar 

  134. Gharani N, Waterworth DM, Williamson R, Franks S. 5′ Polymorphism of the CYP17 gene is not associated with serum testosterone levels in women with polycystic ovaries. J Clin Endocrinol Metab 1996;81)(11):4174.

    Article  PubMed  CAS  Google Scholar 

  135. Marszalek B, Laciânski M, Babych N, et al. Investigations on the genetic polymorphism in the region of CYP17 gene encoding 5’-UTR in patients with polycystic ovarian syndrome. Gynecol Endocrinol 2001;15)(2):123–8.

    Article  PubMed  CAS  Google Scholar 

  136. Diamanti-Kandarakis E, Bartzis MI, Zapanti ED, et al. Polymorphism T–>C (-34 bp) of gene CYP17 promoter in Greek patients with polycystic ovary syndrome. Fertil Steril 1999;71)(3):431–5.

    Article  PubMed  CAS  Google Scholar 

  137. Tucci S, Futterweit W, Concepcion FS, et al. Evidence for association of polycystic ovary syndrome in caucasian women with a marker at the insulin receptor gene locus. J Clin Endocrinol Metabol 2001;86)(1):446–9.

    Article  CAS  Google Scholar 

  138. Kahsar-Miller M, Boots LR, Bartolucci A, Azziz R. Role of a CYP17 polymorphism in the regulation of circulating dehydroepiandrosterone sulfate levels in women with polycystic ovary syndrome. Fertil Steril 2004;82)(4):973–5.

    Article  PubMed  CAS  Google Scholar 

  139. Petry CJ, Ong KK, Michelmore KF, et al. Association of aromatase (CYP 19) gene variation with features of hyperandrogenism in two populations of young women. Hum Reprod 2005;20)(7):1837–43.

    Article  PubMed  CAS  Google Scholar 

  140. Sèoderlund D, Canto P, Carranza-Lira S, Mâendez JP. No evidence of mutations in the P450 aromatase gene in patients with polycystic ovary syndrome. Hum Reprod (Oxf) 2005;20)(4):965–9.

    Article  CAS  Google Scholar 

  141. Witchel SF, Aston CE. The role of heterozygosity for CYP21 in the polycystic ovary syndrome. J Pediatr Endocrinol Metab 2000;13:1315–7.

    PubMed  Google Scholar 

  142. Witchel SF, Kahsar-Miller M, Aston CE, White C, Azziz R. Prevalence of CYP21 mutations and IRS1 variant among women with polycystic ovary syndrome and adrenal androgen excess. Fertil Steril 2005;83)(2):371–5.

    Article  PubMed  CAS  Google Scholar 

  143. Kahsar-Miller M, Boots LR, Azziz R. Dopamine D3 receptor polymorphism is not associated with the polycystic ovary syndrome. Fertil Steril 1999;71)(3):436–8.

    Article  PubMed  CAS  Google Scholar 

  144. Legro R, Muhleman D, Comings D, Lobo R, Kovacs B. A dopamine D3 receptor genotype is associated with hyperandrogenic chronic anovulation and resistant to ovulation induction with clomiphene citrate in female Hispanics. Fertil Steril 1995;63)(4):779–84.

    PubMed  CAS  Google Scholar 

  145. Korhonen S, Romppanen EL, Hiltunen M, et al. Two exonic single nucleotide polymorphisms in the microsomal epoxide hydrolase gene are associated with polycystic ovary syndrome. Fertil Steril 2003;79)(6):1353–7.

    Article  PubMed  Google Scholar 

  146. Liao WX, Roy AC, Ng SC. Preliminary investigation of follistatin gene mutations in women with polycystic ovary syndrome. Mol Hum Reprod 1999;6:587–90.

    Article  Google Scholar 

  147. Urbanek M, Wu X, Vickery KR, et al. Allelic variants of the follistatin gene in polycystic ovary syndrome. J Clin Endocrinol Metab 2000;85)(12):4455–61.

    Article  PubMed  CAS  Google Scholar 

  148. Takakura K, Takebayashi K, Wang HQ, Kimura F, Kasahara K, Noda Y. Follicle-stimulating hormone receptor gene mutations are rare in Japanese women with premature ovarian failure and polycystic ovary syndrome. Fertil Steril 2001;75)(1):207–9.

    Article  PubMed  CAS  Google Scholar 

  149. Tong Y, Liao WX, Roy AC, Ng SC. Absence of mutations in the coding regions of follicle-stimulating hormone receptor gene in Singapore Chinese women with premature ovarian failure and polycystic ovary syndrome. Horm Metab Res 2001;33)(4):221–6.

    Article  PubMed  CAS  Google Scholar 

  150. Sudo S, Kudo M, Wada S, Sato O, Hsueh AJ, Fujimoto S. Genetic and functional analyses of polymorphisms in the human FSH receptor gene. Mol Hum Reprod 2002;8)(10):893–9.

    Article  PubMed  CAS  Google Scholar 

  151. Tong Y, Liao WX, Roy AC, Ng SC. Association of AccI polymorphism in the follicle-stimulating hormone beta gene with polycystic ovary syndrome. Fertil Steril 2000;74:1233–6.

    Article  PubMed  CAS  Google Scholar 

  152. Ho CK, Wood JR, Stewart DR, et al. Increased transcription and increased messenger ribonucleic acid (mRNA) stability contribute to increased GATA6 mRNA abundance in polycystic ovary syndrome theca cells. J Clin Endocrinol Metab 2005;90)(12):6596–602.

    Article  PubMed  CAS  Google Scholar 

  153. Takebayashi K, Takakura K, Wang H, Kimura F, Kasahara K, Noda Y. Mutation analysis of the growth differentiation factor-9 and -9B genes in patients with premature ovarian failure and polycystic ovary syndrome. Fertil Steril 2000;74:976–9.

    Article  PubMed  CAS  Google Scholar 

  154. Cohen DP, Stein EM, Li Z, Matulis CK, Ehrmann DA, Layman LC. Molecular analysis of the gonadotropin-releasing hormone receptor in patients with polycystic ovary syndrome. Fertil Steril 1999;72)(2):360–3.

    Article  PubMed  CAS  Google Scholar 

  155. Kahsar-Miller M, Azziz R, Feingold E, Witchel SF. A variant of the glucocorticoid receptor gene is not associated with adrenal androgen excess in women with polycystic ovary syndrome. Fertil Steril 2000;74)(6):1237–40.

    Article  PubMed  CAS  Google Scholar 

  156. San Millâan JL, Botella-Carretero JI, Alvarez-Blasco F, et al. A study of the hexose-6-phosphate dehydrogenase gene R453Q and 11beta-hydroxysteroid dehydrogenase type 1 gene 83557insA polymorphisms in the polycystic ovary syndrome. J Clin Endocrinol Metab 2005;90)(7):4157–62.

    Article  CAS  Google Scholar 

  157. White PC. Genotypes at 11beta-hydroxysteroid dehydrogenase type 11B1 and hexose-6-phosphate dehydrogenase loci are not risk factors for apparent cortisone reductase deficiency in a large population-based sample. J Clin Endocrinol Metab 2005;90)(10):5880–3.

    Article  PubMed  CAS  Google Scholar 

  158. Moghrabi N, Hughes IA, Dunaif A, Andersson S. Deleterious missense mutations and silent polymorphism in the human 17beta-hydroxysteroid dehydrogenase 3 gene (HSD17B3). J Clin Endocrinol Metab 1998;83)(8):2855–60.

    Article  PubMed  CAS  Google Scholar 

  159. Qin K, Ehrmann DA, Cox N, Refetoff S, Rosenfield RL. Identification of a functional polymorphism of the human type 5 17beta-hydroxysteroid dehydrogenase gene associated with polycystic ovary syndrome. J Clin Endocrinol Metab 2006;91)(1):270–6.

    Article  PubMed  CAS  Google Scholar 

  160. Walch K, Grimm C, Zeillinger R, Huber JC, Nagele F, Hefler LA. A common interleukin-6 gene promoter polymorphism influences the clinical characteristics of women with polycystic ovary syndrome. Fertil Steril 2004;81)(6):1638–41.

    Article  PubMed  CAS  Google Scholar 

  161. Siegel S, Futterweit W, Davies TF, et al. A C/T single nucleotide polymorphism at the tyrosine kinase domain of the insulin receptor gene is associated with polycystic ovary syndrome. Fertil Steril 2002;78)(6):1240–3.

    Article  PubMed  Google Scholar 

  162. El Mkadem SA, Lautier C, Macari F, et al. Role of allelic variants Gly972Arg of IRS-1 and Gly1057Asp of IRS-2 in moderate-to-severe insulin resistance of women with polycystic ovary syndrome. Diabetes 2001;50)(9):2164–8.

    Article  PubMed  CAS  Google Scholar 

  163. Dilek S, Ertunc D, Tok EC, Erdal EM, Aktas A. Association of Gly972Arg variant of insulin receptor substrate-1 with metabolic features in women with polycystic ovary syndrome. Fertil Steril 2005;84)(2):407–12.

    Article  PubMed  CAS  Google Scholar 

  164. Villuendas G, Botella-Carretero JI, Roldan B, Sancho J, Escobar-Morreale HF, San Millan JL. Polymorphisms in the insulin receptor substrate-1 (IRS-1) gene and the insulin receptor substrate-2 (IRS-2) gene influence glucose homeostasis and body mass index in women with polycystic ovary syndrome and non-hyperandrogenic controls. Hum Reprod (Oxf) 2005;20)(11):3184–91.

    Article  CAS  Google Scholar 

  165. Sir-Petermann T, Pâerez-Bravo F, Angel B, Maliqueo M, Calvillan M, Palomino A. G972R polymorphism of IRS-1 in women with polycystic ovary syndrome. Diabetologia 2001;44)(9):1200–1.

    Article  PubMed  CAS  Google Scholar 

  166. Oksanen L, Tiitinen A, Kaprio J, Koistinen HA, Karonen S, Kontula K. No evidence for mutations of the leptin or leptin receptor genes in women with polycystic ovary syndrome. Mol Hum Reprod 2000;6:873–6.

    Article  PubMed  CAS  Google Scholar 

  167. Erel CT, Cine N, Elter K, Kaleli S, Senturk LM, Baysal B. Leptin receptor variant in women with polycystic ovary syndrome. Fertil Steril 2002;78)(6):1334–5.

    Article  PubMed  Google Scholar 

  168. Tapanainen JS, Koivunen R, Fauser BC, et al. A new contributing factor to polycystic ovary syndrome: the genetic variant of luteinizing hormone. J Clin Endocrinol Metab 1999;84)(5):1711–5.

    Article  PubMed  CAS  Google Scholar 

  169. Kim NK, Nam YS, Ko JJ, Chung HM, Chung KW, Cha KY. The luteinizing hormone beta-subunit exon 3 (Gly102Ser) gene mutation is rare in Korean women with endometriosis and polycystic ovary syndrome. Fertil Steril 2001;75)(6):1238–9.

    Article  PubMed  CAS  Google Scholar 

  170. Wang HQ, Takakura K, Takebayashi K, Noda Y. Mutational analysis of the mullerian-inhibiting substance gene and its receptor gene in Japanese women with polycystic ovary syndrome and premature ovarian failure. Fertil Steril 2002;78)(6):1329–30.

    Article  PubMed  Google Scholar 

  171. Walch K, Nagele F, Zeillinger R, Vytiska-Binstorfer E, Huber JC, Hefler LA. A polymorphism in the matrix metalloproteinase-1 gene promoter is associated with the presence of polycystic ovary syndrome in Caucasian women. Fertil Steril 2005;83)(5):1565–7.

    Article  PubMed  CAS  Google Scholar 

  172. Orio F, Jr., Palomba S, Di Biase S, et al. Homocysteine levels and C677T polymorphism of methylenetetrahydrofolate reductase in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003;88)(2):673–9.

    Article  PubMed  CAS  Google Scholar 

  173. Walch K, Grimm C, Huber JC, Nagele F, Kolbus A, Hefler LA. A polymorphism of the plasminogen activator inhibitor-1 gene promoter and the polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2005;123)(1):77–81.

    Article  PubMed  CAS  Google Scholar 

  174. Diamanti-Kandarakis E, Palioniko G, Alexandraki K, Bergiele A, Koutsouba T, Bartzis M. The prevalence of 4G5G polymorphism of plasminogen activator inhibitor-1 (PAI-1) gene in polycystic ovarian syndrome and its association with plasma PAI-1 levels. Eur J Endocrinol 2004;150)(6):793–8.

    Article  PubMed  CAS  Google Scholar 

  175. Heinonen S, Korhonen S, Helisalmi S, Koivunen R, Tapanainen JS, Laakso M. The 121Q allele of the plasma cell membrane glycoprotein 1 gene predisposes to polycystic ovary syndrome. Fertil Steril 2004;82)(3):743–5.

    Article  PubMed  CAS  Google Scholar 

  176. Hahn S, Fingerhut A, Khomtsiv U, et al. The peroxisome proliferator activated receptor gamma Pro12Ala polymorphism is associated with a lower hirsutism score and increased insulin sensitivity in women with polycystic ovary syndrome. Clin Endocrinol 2005;62)(5):573–9.

    Article  CAS  Google Scholar 

  177. Orio F, Jr., Palomba S, Cascella T, et al. Lack of an association between peroxisome proliferator-activated receptor-gamma gene Pro12Ala polymorphism and adiponectin levels in the polycystic ovary syndrome. J Clin Endocrinol Metab 2004;89)(10):5110–5.

    Article  PubMed  CAS  Google Scholar 

  178. tra2 Orio F, Jr., Matarese G, Di Biase S, et al. Exon 6 and 2 peroxisome proliferator-activated receptor-gamma polymorphisms in polycystic ovary syndrome. J Clin Endocrinol Metab 2003;88)(12):5887–92.

    Article  PubMed  CAS  Google Scholar 

  179. Korhonen S, Heinonen S, Hiltunen M, et al. Polymorphism in the peroxisome proliferator-activated receptor-gamma gene in women with polycystic ovary syndrome. Hum Reprod 2003;18)(3):540–3.

    Article  PubMed  CAS  Google Scholar 

  180. Urbanek M, Du Y, Silander K, et al. Variation in resistin gene promoter not associated with polycystic ovary syndrome. Diabetes 2003;52)(1):214–7.

    Article  PubMed  CAS  Google Scholar 

  181. Korhonen S, Romppanen EL, Hiltunen M, et al. Lack of association between C-850T polymorphism of the gene encoding tumor necrosis factor-alpha and polycystic ovary syndrome. Gynecol Endocrinol 2002;16)(4):271–4.

    Article  PubMed  CAS  Google Scholar 

  182. Milner CR, Craig JE, Hussey ND, Norman RJ. No association between the -308 polymorphism in the tumour necrosis factor alpha (TNFalpha) promoter region and polycystic ovaries. Mol Hum Reprod 1999;5:5–9.

    Article  PubMed  CAS  Google Scholar 

  183. Peral B, San Millan JL, Castello R, Moghetti P, Escobar-Morreale HF. Comment: the methionine 196 arginine polymorphism in exon 6 of the TNF receptor 2 gene (TNFRSF1B) is associated with the polycystic ovary syndrome and hyperandrogenism. J Clin Endocrinol Metab 2002;87)(8):3977–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Urbanek, M. (2008). Genetic Analyses of Polycystic Ovary Syndrome. In: Dunaif, A., Chang, R.J., Franks, S., Legro, R.S. (eds) Polycystic Ovary Syndrome. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-108-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-108-6_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-831-7

  • Online ISBN: 978-1-59745-108-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics