Skip to main content

Structure and Function Reveal Insights in the Pharmacology of 5-HT Receptor Subtypes

  • Chapter
The Serotonin Receptors

Part of the book series: The Receptors ((REC))

Abstract

The purpose of this review is to examine experimental information concerning the structure and function of the G protein-coupled serotonin receptors in the three-dimensional context provided by the structure of rhodopsin. A critical examination of the suitability of rhodopsin as a template for serotonin receptor modeling from the level of sequence alignment to interpretation of biochemical experiments of relevance to the issues of structure-function relationships is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kroeze WK, Sheffler DJ, Roth BL. G protein-coupled receptors at a glance. J Cell Sci 2003;116:4867–4869.

    Article  PubMed  CAS  Google Scholar 

  2. Ballesteros JA, Shi L, Javitch JA. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol Pharmacol 2001;60:1–19.

    PubMed  CAS  Google Scholar 

  3. Shi L, Javitch JA. The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu Rev Pharmacol Toxicol 2002;42:437–467.

    Article  PubMed  CAS  Google Scholar 

  4. Gouldson PR, Kidley NJ, Bywater RP, et al. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor. Proteins 2004;56:67–84.

    Article  PubMed  CAS  Google Scholar 

  5. Wishart G, Bremner DH, Sturrock KR. Molecular modelling of the 5-hydroxy-tryptamine receptors. Receptors Channels 1999;6:317–335.

    PubMed  CAS  Google Scholar 

  6. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000;289:739–745.

    Article  PubMed  CAS  Google Scholar 

  7. Meng EC, Bourne HR. Receptor activation: what does the rhodopsin structure tell us? Trends Pharmacol Sci 2001;22:587–593.

    Article  PubMed  CAS  Google Scholar 

  8. Ballesteros J, Palczewski K. G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin. Curr Opin Drug Discov Dev 2001;4:561–574.

    CAS  Google Scholar 

  9. Filipek S, Teller DC, Palczewski K, Stenkamp R. The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors. Annu Rev Biophys Biomol Struct 2003;32:375–397.

    Article  PubMed  CAS  Google Scholar 

  10. Kroeze WK, Kristiansen K, Roth BL. Molecular biology of serotonin receptors structure and function at the molecular level. Curr Topics Med Chem 2002;2:507–528.

    Article  CAS  Google Scholar 

  11. Baldwin JM, Schertler GF, Unger VM. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G protein-coupled receptors. J Mol Biol 1997;272:144–164.

    Article  PubMed  CAS  Google Scholar 

  12. Fowler CB, Pogozheva ID, LeVine H 3rd, Mosberg HI. Refinement of a homology model of the mu-opioid receptor using distance constraints from intrinsic and engineered zinc-binding sites. Biochemistry 2004;43:8700–8710.

    Article  PubMed  CAS  Google Scholar 

  13. Bywater RP. Location and nature of the residues important for ligand recognition in G protein coupled receptors. J Mol Recogn 2005;18:60–72.

    Article  CAS  Google Scholar 

  14. Gether U, Kobilka BK. G protein-coupled receptors. II. Mechanism of agonist activation. J Biol Chem 1998;273:17,979–17,982.

    Article  PubMed  CAS  Google Scholar 

  15. Otaki JM, Firestein S. Length analyses of mammalian G protein-coupled receptors. J Theor Biol 2001;211:77–100.

    Article  PubMed  CAS  Google Scholar 

  16. Buck F, Meyerhof W, Werr H, Richter D. Characterization of N-and C-terminal deletion mutants of the rat serotonin HT2 receptor in Xenopus laevis oocytes. Biochem Biophys Res Commun 1991;178:1421–1428.

    Article  PubMed  CAS  Google Scholar 

  17. Del Tredici AL, Schiffer HH, Burstein ES, et al. Pharmacology of polymorphic variants of the human 5-HT1A receptor. Biochem Pharmacol 2004;67:479–490.

    Article  PubMed  CAS  Google Scholar 

  18. Harvey L, Reid RE, Ma C, Knight PJ, Pfeifer TA, Grigliatti TA. Human genetic variations in the 5HT2A receptor: a single nucleotide polymorphism identified with altered response to clozapine. Pharmacogenetics 2003;13:107–118.

    Article  PubMed  CAS  Google Scholar 

  19. Sakmar TP. Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same. Curr Opin Cell Biol 2002;14:189–195.

    Article  PubMed  CAS  Google Scholar 

  20. Westkaemper RB, Glennon RA. Application of ligand SAR, receptor modeling and receptor mutagenesis to the discovery and development of a new class of 5-HT(2A) ligands. Curr Topics Med Chem 2002;2:575–598.

    Article  CAS  Google Scholar 

  21. Wurch T, Colpaert FC, Pauwels PJ. Chimeric receptor analysis of the ketanserin binding site in the human 5-hydroxytryptamine1D receptor: importance of the second extracellular loop and fifth transmembrane domain in antagonist binding. Mol Pharmacol 1998;54:1088–1096.

    PubMed  CAS  Google Scholar 

  22. Shi L, Javitch JA. The second extracellular loop of the dopamine D2 receptor lines the binding-site crevice. Proc Natl Acad Sci USA 2004;101:440–445.

    Article  PubMed  CAS  Google Scholar 

  23. Bronowska A, Les A, Chilmonczyk Z, et al. Molecular dynamics of buspirone analogues interacting with the 5-HT1A and 5-HT2A serotonin receptors. Bioorg Med Chem 2001;9:881–895.

    Article  PubMed  CAS  Google Scholar 

  24. Krishna AG, Menon ST, Terry TJ, Sakmar TP. Evidence that helix 8 of rhodopsin acts as a membrane-dependent conformational switch. Biochemistry 2002;41:8298–8309.

    Article  PubMed  CAS  Google Scholar 

  25. Prioleau C, Visiers I, Ebersole BJ, Weinstein H, Sealfon SC. Conserved helix 7 tyrosine acts as a multistate conformational switch in the 5HT2C receptor. Identification of a novel “locked-on” phenotype and double revertant mutations. J Biol Chem 2002;277:36,577–36,584.

    Article  PubMed  CAS  Google Scholar 

  26. Chanda PK, Minchin MC, Davis AR, et al. Identification of residues important for ligand binding to the human 5-hydroxytryptamine 1A serotonin receptor. Mol Pharmacol 1993;43:516–520.

    PubMed  CAS  Google Scholar 

  27. Wang CD, Gallaher TK, Shih JC. Site-directed mutagenesis of the serotonin 5-hydroxytrypamine2 receptor: identification of amino acids necessary for ligand binding and receptor activation. Mol Pharmacol 1993;43:931–940.

    PubMed  CAS  Google Scholar 

  28. Sealfon SC, Chi L, Ebersole BJ, et al. Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor. J Biol Chem 1995;270:16,683–16,688.

    Article  PubMed  CAS  Google Scholar 

  29. Ho BY, Karschin A, Branchek T, Davidson N, Lester HA. The role of conserved aspartate and serine residues in ligand binding and in function of the 5-HT1A receptor: a site-directed mutation study. FEBS Lett 1992;312:259–262.

    Article  PubMed  CAS  Google Scholar 

  30. Kristiansen K, Kroeze WK, Willins DL, et al. A highly conserved aspartic acid (Asp-155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting of the 5-HT(2A) serotonin receptor but does not participate in activation via a “salt-bridge disruption” mechanism. J Pharmacol Exp Ther 2000;293:735–746.

    PubMed  CAS  Google Scholar 

  31. Manivet P, Schneider B, Smith JC, Choi DS, Maroteaux L, Kellermann O. The serotonin binding site of human and murine 5-HT2B receptors: molecular modeling and site-directed mutagenesis. J Biol Chem 2002;277:17,170–17,178.

    Article  PubMed  CAS  Google Scholar 

  32. Boess FG, Monsma FJ Jr, Sleight AJ, Launay JM. Identification of residues in transmembrane regions III and VI that contribute to the ligand binding site of the serotonin 5-HT6 receptor. J Neurochem 1998;71:2169–2177.

    Article  PubMed  CAS  Google Scholar 

  33. Porter JE, Perez DM. Characteristics for a salt-bridge switch mutation of the alpha(1b) adrenergic receptor. Altered pharmacology and rescue of constitutive activity. J Biol Chem 1999;274:34,535–34,538.

    Article  PubMed  CAS  Google Scholar 

  34. Shapiro DA, Kristiansen K, Weiner DM, Kroeze WK, Roth BL. Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6. J Biol Chem 2002;277:11,441–11,449.

    Article  PubMed  CAS  Google Scholar 

  35. Ballesteros JA, Jensen AD, Liapakis G, et al. Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 2001;276:29,171–29,177.

    Article  PubMed  CAS  Google Scholar 

  36. Weaver TM. The pi-helix translates structure into function. Protein Sci 2000;9:201–206.

    PubMed  CAS  Google Scholar 

  37. Fodje MN, Al-Karadaghi S. Occurrence, conformational features and amino acid propensities for the pi-helix. Protein Eng 2002;15:353–358.

    Article  PubMed  CAS  Google Scholar 

  38. Shapiro DA, Kristiansen K, Kroeze WK, Roth BL. Differential modes of agonist binding to 5-hydroxytryptamine(2A) serotonin receptors revealed by mutation and molecular modeling of conserved residues in transmembrane region 5. Mol Pharmacol 2000;58:877–886.

    PubMed  CAS  Google Scholar 

  39. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 1996;274:768–770.

    Article  PubMed  CAS  Google Scholar 

  40. Yang K, Farrens DL, Altenbach C, Farahbakhsh ZT, Hubbell WL, Khorana HG. Structure and function in rhodopsin. Cysteines 65 and 316 are in proximity in a rhodopsin mutant as indicated by disulfide formation and interactions between attached spin labels. Biochemistry 1996;35:14,040–14,046.

    Article  PubMed  CAS  Google Scholar 

  41. Sheikh SP, Zvyaga TA, Lichtarge O, Sakmar TP, Bourne HR. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 1996;383:347–350.

    Article  PubMed  CAS  Google Scholar 

  42. Roth BL, Shoham M, Choudhary MS, Khan N. Identification of conserved aromatic residues essential for agonist binding and second messenger production at 5-hydroxytryptamine2A receptors. Mol Pharmacol 1997;52:259–266.

    PubMed  CAS  Google Scholar 

  43. Fu D, Ballesteros JA, Weinstein H, Chen J, Javitch JA. Residues in the seventh membrane-spanning segment of the dopamine D2 receptor accessible in the binding-site crevice. Biochemistry 1996;35:11,278–11,285.

    Article  PubMed  CAS  Google Scholar 

  44. Rosendorff A, Ebersole BJ, Sealfon SC. Conserved helix 7 tyrosine functions as an activation relay in the serotonin 5HT(2C) receptor. Brain Res Mol Brain Res 2000;84:90–96.

    Article  PubMed  CAS  Google Scholar 

  45. Sylte I, Bronowska A, Dahl SG. Ligand induced conformational states of the 5-HT(1A) receptor. Eur J Pharmacol 2001;416:33–44.

    Article  PubMed  CAS  Google Scholar 

  46. Lopez-Rodriguez ML, Vicente B, Deupi X, et al. Design, synthesis and pharmacological evaluation of 5-hydroxytryptamine(1a) receptor ligands to explore the three-dimensional structure of the receptor. Mol Pharmacol 2002;62:15–21.

    Article  PubMed  CAS  Google Scholar 

  47. Strzelczyk AA, Jaronczyk M, Chilmonczyk Z, Mazurek AP, Chojnacka-Wojcik E, Sylte I. Intrinsic activity and comparative molecular dynamics of buspirone analogues at the 5-HT(1A) receptors. Biochem Pharmacol 2004;67:2219–2230.

    Article  PubMed  CAS  Google Scholar 

  48. Chambers JJ, Nichols DE. A homology-based model of the human 5-HT2A receptor derived from an in silico activated G protein coupled receptor. J Comput Aided Mol Des 2002;16:511–520.

    Article  PubMed  CAS  Google Scholar 

  49. Ebersole BJ, Visiers I, Weinstein H, Sealfon SC. Molecular basis of partial agonism: orientation of indoleamine ligands in the binding pocket of the human serotonin 5-HT2A receptor determines relative efficacy. Mol Pharmacol 2003;63:36–43.

    Article  PubMed  CAS  Google Scholar 

  50. Rashid M, Manivet P, Nishio H, et al. Identification of the binding sites and selectivity of sarpogrelate, a novel 5-HT2 antagonist, to human 5-HT2A, 5-HT2B and 5-HT2C receptor subtypes by molecular modeling. Life Sci 2003;73:193–207.

    Article  PubMed  CAS  Google Scholar 

  51. Rivail L, Giner M, Gastineau M, et al. New insights into the human 5-HT4 receptor binding site: exploration of a hydrophobic pocket. Br J Pharmacol 2004;143:361–370.

    Article  PubMed  CAS  Google Scholar 

  52. Hirst WD, Abrahamsen B, Blaney FE, et al. Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol Pharmacol 2003;64:1295–1308.

    Article  PubMed  CAS  Google Scholar 

  53. Pullagurla MR, Westkaemper RB, Glennon RA. Possible differences in modes of agonist and antagonist binding at human 5-HT6 receptors. Bioorg Med Chem Lett 2004;14:4569–4573.

    Article  PubMed  CAS  Google Scholar 

  54. Bissantz C, Bernard P, Hibert M, Rognan D. Protein-based virtual screening of chemical databases. II, Are homology models of G protein coupled receptors suitable targets? Proteins 2003;50:5–25.

    Article  PubMed  CAS  Google Scholar 

  55. Evers A, Klabunde T. Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. J Med Chem 2005;48:1088–1097.

    Article  PubMed  CAS  Google Scholar 

  56. Vedani A, Zbinden P, Snyder JP. Pseudo-receptor modeling: a new concept for the three-dimensional construction of receptor binding sites. J Recept Res 1993;13:163–177.

    PubMed  CAS  Google Scholar 

  57. Schleifer KJ, Tot E, Holtje HD. Pharmacophore and pseudoreceptor modelling of class Ib antiarrhythmic and local anaesthetic lidocaine analogues. Pharmazie 1998;53:596–602.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Westkaemper, R.B., Roth, B.L. (2006). Structure and Function Reveal Insights in the Pharmacology of 5-HT Receptor Subtypes. In: Roth, B.L. (eds) The Serotonin Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-080-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-080-5_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-568-2

  • Online ISBN: 978-1-59745-080-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics