Skip to main content

Electrophysiological Properties of Gαs-Coupled 5-HT Receptors (5-HT4, 5-HT6, 5-HT7)

  • Chapter
The Serotonin Receptors

Part of the book series: The Receptors ((REC))

Abstract

Serotonin receptors of the 5-HT4 and 5-HT7 subtypes couple to heterotrimeric G proteins of the Gαs type and signal their electrophysiological effects by stimulating adenylate cyclase, increasing intracellular cAMP, and activating protein kinase A (PKA). These receptors, like many other receptors coupling to Gαs, modulate three classic currents in excitable tissues: the hyperpolarization-activated cation current I h , a calcium-activated potassium current generally known as I AHP , and the L-type calcium current. 5-HT4 and 5-HT7 receptors inhibit I SAHP and facilitate L-type calcium currents by increasing cAMP and activating PKA. However, these receptors facilitate I h by a direct effect of cAMP that is independent of PKA. Other currents might also contribute to the postsynaptic effects signaled by these receptors in specific neuronal cell types. Little is known at the present time regarding the electrophysiological responses signaled by the activation of 5-HT6 receptors. A key remaining question is how these receptors and currents are regulated by synaptically released serotonin in a physiological context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoyer D, Clarke DE, Fozard JR, et al. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 1994;46:157–203.

    PubMed  CAS  Google Scholar 

  2. Hawkins RD, Kandel ER, Siegelbaum SA. Learning to modulate transmitter release: themes and variations in synaptic plasticity. Annu Rev Neurosci 1993;16:625–665.

    Article  PubMed  CAS  Google Scholar 

  3. Sah P, Faber ES. Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 2002;66:345–353.

    Article  PubMed  CAS  Google Scholar 

  4. Faber ES, Sah P. Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 2003;9:181–194.

    Article  PubMed  CAS  Google Scholar 

  5. Nicoll RA. The coupling of neurotransmitter receptors to ion channels in the brain. Science 1988;241:545–551.

    Article  PubMed  CAS  Google Scholar 

  6. Andrade R, Nicoll RA. Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol 1987; 394:99–124.

    PubMed  CAS  Google Scholar 

  7. Andrade R, Chaput Y. 5-Hydroxytryptamine4-like receptors mediate the slow excitatory response to serotonin in the rat hippocampus. J Pharmacol Exp Ther 1991;257:930–937.

    PubMed  CAS  Google Scholar 

  8. Torres GE, Holt IL, Andrade R. Antagonists of 5-HT4 receptor-mediated responses in adult hippocampal neurons. J Pharmacol Exp Ther 1994;271:255–261.

    PubMed  CAS  Google Scholar 

  9. Torres GE, Chaput Y, Andrade R. Cyclic AMP and protein kinase A mediate 5-hydroxytryptamine type 4 receptor regulation of calcium-activated potassium current in adult hippocampal neurons. Mol Pharmacol 1995;47:191–197.

    PubMed  CAS  Google Scholar 

  10. Torres GE, Arfken CL, Andrade R. 5-Hydroxytryptamine4 receptors reduce after-hyperpolarization in hippocampus by inhibiting calcium-induced calcium release. Mol Pharmacol 1996;50:1316–1322.

    PubMed  CAS  Google Scholar 

  11. Villalobos C, Shakkottai VG, Chandy KG, Michelhaugh SK, Andrade R. SKCa channels mediate the medium but not the slow calcium-activated afterhyperpolarization in cortical neurons. J Neurosci 2004;24:3537–3542.

    Article  PubMed  CAS  Google Scholar 

  12. Bacon WL, Beck SG. 5-Hydroxytryptamine(7) receptor activation decreases slow afterhyperpolarization amplitude in CA3 hippocampal pyramidal cells. J Pharmacol Exp Ther 2000;294:672–679.

    PubMed  CAS  Google Scholar 

  13. Tokarski K, Zahorodna A, Bobula B, Hess G. 5-HT7 receptors increase the excitability of rat hippocampal CA1 pyramidal neurons. Brain Res 2003;993:230–234.

    Article  PubMed  CAS  Google Scholar 

  14. Zaccolo M, Pozzan T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 2002;295:1711–1715.

    Article  PubMed  CAS  Google Scholar 

  15. Tokarski K, Zahorodna A, Bobula B, Hess G. Comparison of the effects of 5-HT1A and 5-HT4 receptor activation on field potentials and epileptiform activity in rat hippocampus. Exp Brain Res 2002;147:505–510.

    Article  PubMed  CAS  Google Scholar 

  16. Gill CH, Soffin EM, Hagan JJ, Davies CH. 5-HT7 receptors modulate synchronized network activity in rat hippocampus. Neuropharmacology 2002;42:82–92.

    Article  PubMed  CAS  Google Scholar 

  17. Dumuis A, Bouhelal R, Sebben M, Cory R, Bockaert J. A nonclassical 5-hydroxy-tryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol Pharmacol 1988;34:880–887.

    PubMed  CAS  Google Scholar 

  18. Fagni L, Dumuis A, Sebben M, Bockaert J. The 5-HT4 receptor subtype inhibits K+ current in colliculi neurones via activation of a cyclic AMP-dependent protein kinase. Br J Pharmacol 1992;105:973–979.

    PubMed  CAS  Google Scholar 

  19. Ansanay H, Dumuis A, Sebben M, Bockaert J, Fagni L. cAMP-dependent, long-lasting inhibition of a K+ current in mammalian neurons. Proc Natl Acad Sci USA 1995;92:6635–6639.

    Article  PubMed  CAS  Google Scholar 

  20. Pan H, Galligan JJ. 5-HT1A and 5-HT4 receptors mediate inhibition and facilitation of fast synaptic transmission in enteric neurons. Am J Physiol 1994;266:G230–G238.

    PubMed  CAS  Google Scholar 

  21. Bailey CH, Bartsch D, Kandel ER. Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci USA 1996;93:13,445–13,452.

    Article  PubMed  CAS  Google Scholar 

  22. Bockaert J, Claeysen S, Sebben M, Dumuis A. 5-HT4 receptors: gene, transduction and effects on olfactory memory. Ann NY Acad Sci 1998;861:1–15.

    Article  PubMed  CAS  Google Scholar 

  23. Kulla A, Manahan-Vaughan D. Modulation by serotonin 5-HT(4) receptors of long-term potentiation and depotentiation in the dentate gyrus of freely moving rats. Cereb Cortex 2002;12:150–162.

    Article  PubMed  Google Scholar 

  24. Kemp A, Manahan-Vaughan D. Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition. Proc Natl Acad Sci USA 2004;101:8192–8197.

    Article  PubMed  CAS  Google Scholar 

  25. Noble D, Tsien RW. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol 1968;195:185–214.

    PubMed  CAS  Google Scholar 

  26. Baruscotti M, Difrancesco D. Pacemaker channels. Ann NY Acad Sci 2004;1015:111–121.

    Article  PubMed  Google Scholar 

  27. Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 2003;65:453–480.

    Article  PubMed  CAS  Google Scholar 

  28. Kaupp UB, Seifert R. Molecular diversity of pacemaker ion channels. Annu Rev Physiol 2001;63:235–257.

    Article  PubMed  CAS  Google Scholar 

  29. Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 1996;58:299–327.

    Article  PubMed  CAS  Google Scholar 

  30. Bobker DH, Williams JT. Serotonin augments the cationic current I h in central neurons. Neuron 1989;2:1535–1540.

    Article  PubMed  CAS  Google Scholar 

  31. Pape HC, McCormick DA. Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 1989;340:715–718.

    Article  PubMed  CAS  Google Scholar 

  32. Bickmeyer U, Heine M, Manzke T, Richter DW. Differential modulation of I(h) by 5-HT receptors in mouse CA1 hippocampal neurons. Eur J Neurosci 2002;16:209–218.

    Article  PubMed  Google Scholar 

  33. Placantonakis DG, Schwarz C, Welsh JP. Serotonin suppresses subthreshold and suprathreshold oscillatory activity of rat inferior olivary neurones in vitro. J Physiol 2000;524(Pt3):833–851.

    Article  PubMed  CAS  Google Scholar 

  34. Gasparini S, Difrancesco D. Action of serotonin on the hyperpolarization-activated cation current (I h) in rat CA1 hippocampal neurons. Eur J Neurosci 1999;11:3093–3100.

    Article  PubMed  CAS  Google Scholar 

  35. Cardenas CG, Mar LP, Vysokanov AV, et al. Serotonergic modulation of hyperpolarization-activated current in acutely isolated rat dorsal root ganglion neurons. J Physiol 1999;518(Pt 2):507–523.

    Article  PubMed  CAS  Google Scholar 

  36. Spain WJ. Serotonin has different effects on two classes of Betz cells from the cat. J Neurophysiol 1994;72:1925–1937.

    PubMed  CAS  Google Scholar 

  37. Chapin EM, Andrade R. A 5-HT(7) receptor-mediated depolarization in the anterodorsal thalamus. I. Pharmacological characterization. J Pharmacol Exp Ther 2001;297:395–402.

    PubMed  CAS  Google Scholar 

  38. Beique JC, Campbell B, Perring P, et al. Serotonergic regulation of membrane potential in developing rat prefrontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J Neurosci 2004;24:4807–4817.

    Article  PubMed  CAS  Google Scholar 

  39. Beique JC, Chapin-Penick EM, Mladenovic L, Andrade R, Serotonergic facilitation of synaptic activity in the developing rat prefrontal cortex. J Physiol 2004; 556:739–754.

    Article  PubMed  CAS  Google Scholar 

  40. Chapin EM, Andrade R. A 5-HT(7) receptor-mediated depolarization in the anterodorsal thalamus. II. Involvement of the hyperpolarization-activated current I(h). J Pharmacol Exp Ther 2001;297:403–409.

    PubMed  CAS  Google Scholar 

  41. Gustafson EL, Durkin MM, Bard JA, Zgombick J, Branchek TA. A receptor autoradiographic and in situ hybridization analysis of the distribution of the 5-ht7 receptor in rat brain. Br J Pharmacol 1996;117:657–666.

    PubMed  CAS  Google Scholar 

  42. Santoro B, Chen S, Luthi A, et al. Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 2000;20:5264–5275.

    PubMed  CAS  Google Scholar 

  43. Beaumont V, Zucker RS. Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels. Nat Neurosci 2000;3:133–141.

    Article  PubMed  CAS  Google Scholar 

  44. Cuttle MF, Rusznak Z, Wong AY, Owens S, Forsythe ID. Modulation of a presynaptic hyperpolarization-activated cationic current (I(h)) at an excitatory synaptic terminal in the rat auditory brainstem. J Physiol 2001;534:733–744.

    Article  PubMed  CAS  Google Scholar 

  45. Chapin EM, Haj-Dahmane S, Torres G, Andrade R. The 5-HT(4) receptor-induced depolarization in rat hippocampal neurons is mediated by cAMP but is independent of I(h). Neurosci Lett 2002;324:1–4.

    PubMed  CAS  Google Scholar 

  46. Bickmeyer U, Heine M, Manzke T, and Richter DW. Differential modulation of I(h) by 5-HT receptors in mouse CA1 hippocampal neurons. Eur J Neurosci 2002;16:209–218.

    Article  PubMed  Google Scholar 

  47. Vasilyev DV, Barish ME. Postnatal development of the hyperpolarization-activated excitatory current Ih in mouse hippocampal pyramidal neurons. J Neurosci 2002;22:8992–9004.

    PubMed  CAS  Google Scholar 

  48. Ludwig A, Zong X, Hofmann F, Biel M. Structure and function of cardiac pacemaker channels. Cell Physiol Biochem 1999;9:179–186.

    Article  PubMed  CAS  Google Scholar 

  49. Ouadid H, Seguin J, Dumuis A, Bockaert J, Nargeot J. Serotonin increases calcium current in human atrial myocytes via the newly described 5-hydroxytryptamine4 receptors. Mol Pharmacol 1992;41:346–351.

    PubMed  CAS  Google Scholar 

  50. Pino R, Cerbai E, Calamai G, et al. Effect of 5-HT4 receptor stimulation on the pacemaker current I(f) in human isolated atrial myocytes. Cardiovasc Res 1998;40:516–522.

    Article  PubMed  CAS  Google Scholar 

  51. Bach T, Syversveen T, Kvingedal AM, et al. 5HT4(a) and 5-HT4(b) receptors have nearly identical pharmacology and are both expressed in human atrium and ventricle. Naunyn-Schmiedebergs Arch Pharmacol 2001;363:146–160.

    Article  PubMed  CAS  Google Scholar 

  52. Mialet J, Berque-Bestel I, Eftekhari P, et al. Isolation of the serotoninergic 5-HT4(e) receptor from human heart and comparative analysis of its pharmacological profile in C6-glial and CHO cell lines. Br J Pharmacol 2000;129:771–781.

    Article  PubMed  CAS  Google Scholar 

  53. Lovenberg TW, Baron BM, de Lecea L, et al. A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 1993;11:449–458.

    Article  PubMed  CAS  Google Scholar 

  54. Sprouse J, Reynolds L, Li X, Braselton J, Schmidt A. 8-OH-DPAT as a 5-HT7 agonist: phase shifts of the circadian biological clock through increases in cAMP production. Neuropharmacology 2004;46:52–62.

    Article  PubMed  CAS  Google Scholar 

  55. Jovanovska A, Prosser RA. Translational and transcriptional inhibitors block serotonergic phase advances of the suprachiasmatic nucleus circadian pacemaker in vitro. J Biol Rhythms 2002;17:137–146.

    Article  PubMed  CAS  Google Scholar 

  56. Gerard C, Martres MP, Lefevre K, et al. Immuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system. Brain Res 1997;746:207–219.

    Article  PubMed  CAS  Google Scholar 

  57. Minabe Y, Shirayama Y, Hashimoto K, Routledge C, Hagan JJ, Ashby CR Jr. Effect of the acute and chronic administration of the selective 5-HT6 receptor antagonist SB-271046 on the activity of midbrain dopamine neurons in rats: an in vivo electrophysiological study. Synapse 2004;52:20–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Andrade, R. (2006). Electrophysiological Properties of Gαs-Coupled 5-HT Receptors (5-HT4, 5-HT6, 5-HT7). In: Roth, B.L. (eds) The Serotonin Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-080-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-080-5_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-568-2

  • Online ISBN: 978-1-59745-080-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics